关键词不能为空

当前您在: 主页 > 高中公式大全 >

标准体重计算公式正弦定理的变形及三角形面积公式

作者:高考题库网
来源:https://bjmy2z.cn/gaokao
2020-09-08 15:22
tags:三角形面积公式

励志歌曲精选-怎样培养孩子的阅读兴趣


第二课时 正弦定理的变形及三角形面积公式



【选题明细表】
题号
知识点、方法

正弦定理的变形应用
三角形面积公式的应用
正弦定理的综合应用
正弦定理的实际应用

基础达标
1.在△ABC中,若sin A>sin B,则有( C )
(A)ab (D)a≤b
解析:∵a=2Rsin A,b=2Rsin B,
又sin A>sin B,
∴a>b.故选C.
2.已知△ABC中,A∶B∶C=1∶1∶4,则a∶b∶c等于( C )
(A)1∶1∶4 (B)1∶1∶
(C)1∶1∶ (D)1∶2∶
解析:∵A∶B∶C=1∶1∶4,
1、2、6
3、7
5
8

9、10

4
∴A=30°,B=30°,C=120°,
∴a∶b∶c=(2Rsin A)∶(2Rsin B)∶(2Rsin C)
=sin A∶sin B∶sin C
=sin 30°∶sin 30°∶sin 120°
=1∶1∶.故选C.
3.在△ABC中,若A=75°,B=45°,c=6,则△ABC的面积为( A )
(A)9+3 (B)
(C) (D)


解析:∵A=75°,B=45°,
∴C=60°,b===2,
=9+3. ∴S
△ABC
=bcsin A=×2×6×
故选A.
4.(2013即墨 实验高中高二月考)在锐角三角形ABC中,a,b,c分别是
内角A,B,C的对边,设B=2A,则 的取值范围是( B )
(A)(-2,2) (B)(,) (C)(,2) (D)(0,2)
解析:由锐角三角形知
又B=2A,A+B+C=180°,
∴30°
∴===2cos A∈(,).故选B.
5 .(2013连江一中高二期中联考)若三角形的三个内角成等差数列,对
应三边成等比数列,则三角形 的形状是( C )
(A)等腰三角形 (B)直角三角形
(C)等边三角形 (D)等腰直角三角形
解析:设三角形的三角为A,B,C,所对的边分别为a,b,c,则
A+C=2B,ac=b
2
,
∵A+C+B=180°,
∴2B+B=180°,即B=60°.
又由ac=b
2
及正弦定理,得
sin Asin C=sin
2
B=sin
2
60°=,
令A=60°-α,则C=60°+α,
∴sin(60°-α)·sin(60°+α)=,
(cos α+sin α)=,
cos
2
α-sin
2
α=.
∵cos
2
α+sin
2
α=1,
∴sin α=0,
又-60°<α<60°,
∴α=0°,
∴A=B=C,
∴三角形是等边三角形.故选C.
6.在△ABC中,若b=,B=60°,则
解析 :由正弦定理


答案:2
能力提升
7.(2011年高考福建 卷)若△ABC的面积为,BC=2,C=60°,则边AB的
长度等于 .
解析:由于S
△ABC
=,BC=2,C=60°,
∴=×2×AC×,
∴AC=2,
∴△ABC为正三角形,
∴AB=2.
答案:2
8.如图所示,我炮兵阵地位于地面A处,两观察所分别位于地面点C和
D处,已知CD=6000 m,∠ACD=45°,∠ADC=75°,目标出现于地面上点
B处时,测得∠BCD=30°,∠B DC=15°,求炮兵阵地到目标的距离.(结
果保留根号)
=
=
=
,
=2.
==2R,
= .

解:在△ACD中,∠CAD=180°-∠ACD-∠ADC=60°,
∴AD==CD.
在△BCD中,∠CBD=180°-30°-15°=135°,
∴BD==CD.
在△ABD中,∠ADB=∠ADC+∠CDB=90°,
∴AB==·CD=1000(m).
m. 即炮兵阵地到目标的距离为1000
9.在△ABC中,A、B、C所对的边分别为a、b、c,且b=acos C,△ABC
的最大边长为12,最小角的正弦值为.
(1)判断三角形的形状;
(2)求△ABC的面积.
解:(1)由正弦定理知=
∵b=acos C,
∴cos C=,即sin B=sin Acos C,
,
∵A+B+C=π,
∴sin(A+C)=sin Acos C,
即cos Asin C=0,
在△ABC中sin C≠0,
∴cos A=0,
∴A=,
∴△ABC为直角三角形.
(2)由题意知a=12,不妨设最小角为C,
∴sin C=,
则cos C=,
=8, ∴b=acos C=12×
∴S
△ABC
=absin C=×12×8×=16.
10. (2012年高考大纲全国卷)△ABC的内角A,B,C的对边分别为a、b、
c,已知cos(A- C)+cos B=1,a=2c,求C.
解:由B=π-(A+C),得cos B=-cos(A+C),
于是cos(A-C)+cos B=cos(A-C)-cos(A+C)=2sin Asin C,
由已知得sin Asin C=,①
由a=2c及正弦定理得sin A=2sin C,②
由①②得sin
2
C=,
于是sin C=或sin C=-(舍去),
又a=2c>c,
∴A>C,即C为锐角,
∴C=.

丈夫英文-专业介绍


山东科技大学济南-用似的造句比喻句


女生自我介绍幽默大气-辽宁大学招生网


长歌行的作者是谁-老师诗歌


英语音标发音方法-黄石理工学院贴吧


文科分数线-9去干


太阳的质量是地球的多少倍-绝句译文


经典霸气的复仇名言-寒衣处处催刀尺



本文更新与2020-09-08 15:22,由作者提供,不代表本网站立场,转载请注明出处:https://bjmy2z.cn/gaokao/389094.html

正弦定理的变形及三角形面积公式的相关文章

  • 歌剧《拉贝日记》入围国际歌剧大奖

    细节描写-上大选课 2020年12月5日发(作者:季宾) 歌剧《拉贝日记》入围国际歌剧大奖 ; 【期刊名称】《歌剧》 【年(卷),期】2018(000)003 【摘要】英国《歌剧》杂志主办的国际歌剧大奖不

    高中公式大全
  • 马加爵案例观后感

    比喻齐心协力的古诗-凉拌变蛋 2020年12月5日发(作者:倪士毅) 观马加爵事件后的深思 因为要写观后感,所以一直和朋友讨论着马加爵,几乎都说他 该死、心理变态、神经并脑不好、杀

    高中公式大全
  • 马加爵案件的分析和思考

    一斤是多少两-哭泣的桂花树 2020年12月5日发(作者:葛昌纯) 马加爵案件的分析和思考 0991931 电子政务 马燕茹 “马家爵事件”虽然早已“既往矣”,但事件背后存在的各种社会问题却值

    高中公式大全
  • 马加爵事件大讨论概要

    我国基本政治制度-全国2卷 2020年12月5日发(作者:曾子墨) 马加爵事件大讨论 马加爵事件发生后,在全国引起了巨大反响,教育界更是给予了特别的关 注。3月28日晚7:00在研究生会办公

    高中公式大全
  • 世界上难度最大的钢琴曲排行榜

    基因检测费用-孝心故事 2020年12月5日发(作者:邱义仁) 世界上难度最大的钢琴曲排行榜 排名第一:拉赫玛尼诺夫的《第三钢琴协奏曲》拉赫玛尼诺夫的《第三钢琴协奏曲》表现了 最坚

    高中公式大全
  • 高考钢琴曲目

    视力矫正手术-华南理工录取分数线 2020年12月5日发(作者:古煌) (一)钢琴主考练习曲曲目 第一级别组 编号 曲名 1.车尔尼钢琴练习曲(299):第15首 2. 车尔尼钢琴练习曲(299):第

    高中公式大全