关键词不能为空

当前您在: 主页 > 数学 >

高中理科数学公式大全(完整版)培训资料

作者:高考题库网
来源:https://www.bjmy2z.cn/gaokao
2020-09-14 14:14
tags:高中数学公式

母校高中数学老师-高中数学必修四必修五公式大全






高理科数学公式大
全(完整版)


精品文档
高中数学公式大全(最新整理版)

§01. 集合与简易逻辑
1. 元素与集合的关系
x?A?x?C
U< br>A
,
x?C
U
A?x?A
.
2.德摩根公式 < br>C
U
(AIB)?C
U
AUC
U
B;C
U< br>(AUB)?C
U
AIC
U
B
.
3.包含关系 < br>AIB?A?AUB?B
?A?B?C
U
B?C
U
A

?AIC
U
B??
?C
U
AUB?R

4.容斥原理
card(AUB)?cardA?cardB?card(AIB)
.
5 .集合
{a
1
,a
2
,L,a
n
}
的子集 个数共有
2
n

个;真子集有2
n
–1个;非空子集有
2
n
–1
个;非空的真子集有
2
n
–2个.
6.二次函数的解析式的三种形式
(1)一般式
f(x)?ax
2
?bx?c(a?0)
;
(2)顶点式
f(x)?a(x?h)
2
?k(a?0)
;
(3)零点式
f(x)?a(x?x
1
)(x?x
2
)(a?0)
.
7.一元二次方程的实根分布
依据:若
f(m)f(n)?0
,则方程
f(x)?0
在区间
(m,n)
内至少有一个实根 .

f(x)?x
2
?px?q
,则
(1)方程
f(x)? 0
在区间
(m,??)
内有根的充要
?
p
2
?4q ?0
?
条件为
f(m)?0

?
p

?
??m
?2
(2)方程
f(x)?0
在区间
(m,n)内有根的充要条
?
f(m)?0
?
f(n)?0
?
?< br>f(m)?0
?
件为
f(m)f(n)?0

?
p< br>2
?4q?0

?

?
f(n)?0
??
m??
p
?n
?
?2
?
f(n)?0

?
?
f(m)?0
(3)方程
f(x)?0
在区间< br>(??,n)
内有根的充要
?
p
2
?4q?0
?条件为
f(m)?0

?
p
.
?
??m
?2
8.定区间上含参数的二次不等式恒成立的
条件依据
(1)在给定区间
(??,??)
的子区间
L
(形如
??
,
?
?

?
??,
?
?

?
?
,??
?
不同)上含参数的二次
不等式
f(x ,t)?0
(
t
为参数)恒成立的充要条件

f(x,t)
min
?0(x?L)
.
(2)在给定区间
(??,??)
的子区 间上含参数
的二次不等式
f(x,t)?0
(
t
为参数)恒成立的充
要条件是
f
(
x
,
t
)
man
?
0(
x?L
)
.
(3)
f(x)?ax
4
?bx
2
?c?0
恒成立的充要条
?
a?0
?
a ?0
?
件是
?
b?0

?
2
.
b?4ac?0
?
c?0
?
?
9.真值表
p q 非p p或q p且q
真 真 假 真 真
真 假 假 真 假
假 真 真 真 假
假 假 真 假 假

10.四种命题的相互关系
原命题:与逆命题互逆,与否命题互否,
与逆否命题互为逆否;
逆命题:与原命题互逆,与逆否命题互
否,与否命题互为逆否;
否命题:与原命题互否,与逆命题互为逆
否,与逆否命题互逆;
逆否命题:与逆命题互否,与否命题互
逆,与原命题互为逆否;
15.充要条件
(1)充分条件:若
p?q
,则
p

q
充分条
件.
(2)必要条件:若
q?p
,则
p

q
必要
条件.
(3)充要条件:若
p?q
,且
q?p
,则
p< br>是
q
充要条件.
注:如果甲是乙的充分条件,则乙是甲的
必要条件;反之亦然.
§02. 函数
11.函数的单调性
(1)设
x
1
?x
2
??
a,b
?
,x
1
?x
2
那么
收集于网络,如有侵权请联系管理员删除


精品文档
18.两个函数图象的对称性
(1)函数
y?f(x)
与函数
y? f(?x)
的图象关
于直线
x?0
(即
y
轴)对称. (2)函数
y?f(mx?a)
与函数
y?f(b?mx)
(x
1
?x
2
)
?
f(x
1
)?f(x
2)
?
?0?
a?b
f(x
1
)?f(x
2)
x?
的图象关于直线
对称.
?0?f(x)在
?
a,b
?
上是减函数.
2m
x
1
?x
2
(3)函数
y?f(x)

y?f?1
(x)
的图象关于
(2)设函数
y?f(x)
在某个区间内 可导,如
直线y=x对称.

f
?
(x)?0
,则
f(x)
为增函数;如果
19.若将函数
y?f(x)
的图象右移
a
、上移
f
?
(x)?0
,则
f(x)
为减函数.
b
个单位,得到函数
y?f(x?a)?b
的图象;若
f(x)g( x)
12.如果函数和都是减函数,则在
将曲线
f(x,y)?0
的图象右移
a
、上移
b
个单
公共定义域内,和函数
f(x)?g(x)
也是减函数;
位,得到曲线
f(x?a,y?b)?0
的图象.
如果函数
y?f(u)

u?g(x)
在其对应的定义域
20.互为 反函数的两个函数的关系
上都是减函数,则复合函数
y?f[g(x)]
是增函数.
f(a)?b?f
?1
(b)?a
.
13.奇偶函数的图象特征
21.若函数
y?f(kx?b)
存在反函数,则其反
奇函数的图象关于原点 对称,偶函数的图
1
象关于y轴对称;反过来,如果一个函数的图象
函数为
y ?
[
f
?1
(
x
)
?b
]
,并不 是
y?[f
?1
(kx?b)
,
k
关于原点对称,那么这个 函数是奇函数;如果
1
?1
y?
[
f
(
kx?b< br>)
y?
[
f
(
x
)
?b
]
的反函
而函数是
一个函数的图象关于y轴对称,那么这个函数
k
是偶函数.
数.
14.若函数
y?f(x)
是偶函数,则
22.几个常见的函数方程
f(x?a)?f(?x?a)
;若函数
y?f(x?a)
是偶
(1)正比例函数
函数,则
f(x?a)?f(?x?a)
.
f(x)?cx
,
f(x?y)?f(x)?f(y),f(1)?c
. < br>15.对于函数
(2)指数函数
y?f(x)
(
x?R
),< br>f(x?a)?f(b?x)
恒成立,则
f(x)?a
x
,
f (x?y)?f(x)f(y),f(1)?a?0
.
a?b
函数
f(x)
的对称轴是函数
x?
; (3)对数函数
2
f(x)?log
a
x
,
两个函数
y?f(x?a)

y?f(b?x)

f(xy)?f(x)?f(y),f(a)?1(a?0,a?1)
.
a?b
图象关于直线
x?
对称.
(4)幂函数
2
f(x)?x
?
,
f(xy)?f(x)f(y),f
'
(1)?< br>?
.
16若
f(x)??f(?x?a)
,则函数
y?f( x)
的图象
(5)余弦函数
f(x)?cosx
,正弦函数
a
关于点
(
,0)
对称;
g(x)?sinx

f(x ?y)?f(x)f(y)?g(x)g(y)

2
g(x)

f(x)??f(x?a)
,则函数
y?f(x)

f(0)?1 ,lim?1
.
x?0
x
周期为
2a
的周期函数.
23.几个函数方程的周期(约定a>0)

(1)
f(x)?f(x? a)
,则
f(x)
的周期
17.函数
y?f(x)
的图象的 对称性
T=a;
(1)函数
y?f(x)
的图象关于直线
x?a
对称
(2)
f(x)?f(x?a)?0

?f(a?x)?f(a?x)

1
?f(2a?x)?f(x)
.
(
f
(
x
)
?
0)


f(x?a)?
f(x)
a?b
(2)函数
y?f(x)
的图象关 于直线
x?
1
2

f(x?a)??
(f(x)?0),
对称
?f(a?mx)?f(b?mx)

f(x)
?f(a?b?mx)?f(mx)
.
收集于网络,如有侵权请联系管理员删除
(x
1
?x
2
)
?
f(x
1
)?f(x
2
)
?
?0?
f(x
1
)?f(x
2
)
?0?f(x)在
?
a,b
?
上是增函数;
x
1
?x
2


精品文档
1
?f(x )?f
2
(x)?f(x?a),(f(x)?
?
0,1
?
)
,
2

f(x)
的周期T=2a;
1
(f(x )?0)
,则
f(x)
(3)
f(x)?1?
f(x?a)
的周期T=3a;
f(x
1
)?f(x
2
)
(4)
f(x
1
?x
2
)?

1?f(x
1
) f(x
2
)
f(a)?1(f(x
1
)?f(x
2
)?1,0?|x
1
?x
2
|?2a)
,则

n< br>log
a
b
(
a?0
,且
m
a?1
,
m,n?0
,且
m?1
,
n?1
,

N?0
).
29.对数的四则运算法则
若a>0,a≠1,M>0,N>0,则
(1)
log
a
(MN) ?log
a
M?log
a
N
;
M
(2)
log
a
?log
a
M?log
a
N
;
N
(3)
log
a
M
n
?nlog
aM(n?R)
.
推论
log
a
m
b
n
?


(5)
f(x)?f(x?a)?f(x?2a)f(x?3a)?f(x?4a)

§03. 数 列
30. 平均增长率的问题
?f(x)f(x?a)f(x?2 a)f(x?3a)f(x?4a)
,则
f(x)
如果原来产值的基础数为N,平均增 长率为
的周期T=5a;
p
,则对于时间
x
的总产值
y< br>,有
y?N(1?p)
x
.
(6)
f(x?a)?f(x) ?f(x?a)
,则
f(x)
的周
31.数列的同项公式与前n项的和的关系
期T=6a.
n?1
?
s
1
,
24.分数指数幂
a
n
?
?
( 数列
{a
n
}
的前 n项的
m
s?s,n?2
1
?
nn?1
(1)
a< br>n
?

a?0,m,n?N
?
,且
n?1
) .
n
m
和为
s
n
?a
1
?a
2
?L?a
n
).
a
f(x)
的周期T=4a;
(2)
a
?
m
n
?
1
m
n
a?0,m,n?N
?
,且
n?1
).
a
25.根式的性质
(1)
(
n
a
)
n
?a
.
(2)当
n
为奇数时,
n
a
n
?a
; < br>?
a,a?0

n
为偶数时,
n
a
n
?|a|?
?
.
?
?a,a?0
26.有理指数幂的运算性质
(1)
a
r
?a
s
?a
r?s
(a? 0,r,s?Q)
.
(2)
(a
r
)
s
?a< br>rs
(a?0,r,s?Q)
.
(3)
(ab)
r
?a
r
b
r
(a?0,b?0,r?Q)
.
注: 若a> 0,p是一个无理数,则a
p

示一个确定的实数.上述有理指数幂的运算性
质,对于无理数指数幂都适用.
27.指数式与对数式的互化式
32.等差数列的通项公式
a
n
?a
1
?(n?1)d?dn?a
1
?d(n ?N
*
)

其前n项和公式为
n(a
1
?a< br>n
)
n(n?1)
s
n
?
?na
1
?d

2
2
d1
?n
2
?(a
1
?d)n
.
22
33.等比数列的通项公式
a
a
n?a
1
q
n?1
?
1
?q
n
(n?N
*
)

q
其前n项的和公式为
?
a
1
(1?q
n
)
,q?1
?

s
n
?
?
1?q
?
na,q?1
?
1
?
a
1
?a
n
q
,q?1
?

s
n
?
?
1?q
.
?
na,q?1< br>?
1
log
a
N?b?a
b
?N
(a?0, a?1,N?0)
.

28.对数的换底公式
log
m
N
(
a?0
,且
a?1
,m?0
,且
log
a
N?
log
m
a
m?1
,

N?0
).

34.等比差数列
?< br>a
n
?
:
a
n?1
?qa
n
?d, a
1
?b(q?0)
的通项公式为
收集于网络,如有侵权请联系管理员删除


精品文档
?
b?(n?1)d,q?1
cos2
?
?cos
2
?
?sin
2
?
?2cos
2
?
?1?1?2sin
2
?
a?
?
n
?< br>bq
n
?(d?b)q
n?1
?d
.
?
?
q?1
,q?1

tan2
?
?
2tan
?
其前n项和公式为
1?tan
2
?
.

?
nb?n(n?1)d,(q?1)
40.三角函数的周期公式
s
?
n
?
?
?
d1?q
n
. < br>函数
y?sin(
?
x?
?
)
,x∈R及函数
?
(b??
d
1?q
)
q?11?q
n,(q?1)y?cos(
?
x?
?
)
,x∈R(A,ω,
?
为常数,且A≠

§04. 三角函数
0,ω>0)的周期
T?
2
?
?

35.常见三角不等式
函数
y?tan(
?
x?
?
)

x?k
?
?
?
(1)若
x?
(0,
?
2
,
k?Z
(A,
2
)
,则
s inx?x?tanx
.
ω,
?
为常数,且A≠0,ω>0)的周期
T
?
?
(2) 若
x?(0,
?
?
.
2
)
,则
1?sinx?cosx?2
.
41.正弦定理
(3)
|sinx|?|cosx|?1
.
a
36.同角三角函数的基本关系式
sinA
?
b
si nB
?
c
sinC
?2R
.
sin
2
?
?cos
2
?
?1

tan
?
=
sin
?
42.余弦定理
cos
?

a
2
?b
2
?c
2
?2bccosA
;
tan
?
?cot
?
?1
.
b
2
?c
2
?a
2
?2cacosB
;
37.正弦、余弦的诱导公式(奇变偶不变,
c
2
?a
2
? b
2
?2abcosC
.
符号看象限)
43.面积定理

(1)
S?
111
2
ah
a
?
2
bh
b
?
2
ch
c

h
a、h
b
、h
c
sin(
n
?
?
n?
(?1)
2
2
?
?
)?
?
sin< br>?
,

(n为偶数
分别表示a、b、c边上的高).
?
n?1
)
?
(?1)
2
cos
?
,

(2)
S?
1
2
absinC?
1
bcsinA?
1
c asinB
.

n
?
?
n
?
(? 1)
2
cos(
2
?
?
)?
?
cos?
,
(n为偶
(3)
S
1
uuur
2
uuuruuur
2
2
uuur
2
?OAB
?
?< br>n?1

2
(|OA|?|OB|)?(OA?OB)
.
?
(?1)
2
sin
?
,
44.三角形内角和定理
38.和角与差角公式
数)
在△ABC中,有

sin(
?
?
?
)?sin
?
cos
?
?cos< br>?
sin
?
;
A?B?C?
?
?C?
?
?(A?B)

cos(
?
?
?
)?cos
?
cos
?
msin< br>?
sin
?
;
?
C
tan(
?
?
?
)?
tan
?
?tan
?
2
?
?
2
?
A?B
2
?2C?2
?
?2(A?B).
1
m
tan
?
tan
?
.
45.实数与向量的积的运算律
sin(
?
?
?
)sin (
?
?
?
)?sin
2
?
?sin
2?
(平方正
设λ、μ为实数,那么
弦公式);
(1) 结合律:λ(μa)=(λμ)a;
cos(
?
?
?
)cos(< br>?
?
?
)?cos
2
?
?sin
2
?
.
(2)第一分配律:(λ+μ)a=λa+μa;
asin
?
?bcos
?
=
a
2
?b
2
sin(
?
?
?
)
(辅助角
(3)第二分配律:λ(a+b)=λa+λb.
46.向量的数量积的运算律:
?
所在象限由点
(a,b)
的象限 决定,
tan
?
?
b
a
).
(1)
a
·b= b·
a
(交换律);
39.二倍角公式
(2)(
?
a
)·b=
?

a
·b)=
?
a
·b=
a
·(
?
b)
sin2
?
?sin
?
cos
?
.
(3)(
a
+b)·c=
a
·c +b·c.
47.平面向量基本定理
收集于网络,如有侵权请联系管理员删除
;


精品文档
如果e
1
、e
2
是同一平面内 的两个不共线向
量,那么对于这一平面内的任一向量,有且只
有一对实数λ
1
、λ
2
,使得a=λ
1
e
1

2
e2

不共线的向量e
1
、e
2
叫做表示这一平面内所 有
向量的一组基底.
48.向量平行的坐标表示
设a=
(x
1
,y
1
)
,b=
(x
2
,y
2
)
,且b
?
0,则
a
P
b(b
?
0)
?x
1
y
2
?x
2
y
1
?0
.
49.
a
与b的数量积(或内积)
a
·b=|
a
||b|cosθ.
50. a·b的几何意义
数量积a·b等于a的长度|a|与b在a的方向
上的投影|b|cosθ的乘积.
51.平面向量的坐标运算
(1)设a=
(x
1
,y
1< br>)
,b=
(x
2
,y
2
)
,则
a+ b=
(x
1
?x
2
,y
1
?y
2
)
.
(2)设a=
(x
1
,y
1
)
,b =
(x
2
,y
2
)
,则a-
b=
(x1
?x
2
,y
1
?y
2
)
.
(3)设A
(x
1
,y
1
)
,B
(x
2
,y
2
)
,则
uuuruuuruuur
A B?OB?OA?(x
2
?x
1
,y
2
?y
1)
.
(4)设a=
(x,y),
?
?R
,则
?
a=
(
?
x,
?
y)
.
(5)设a=
(x
1
,y
1
)
,b=
(x
2
, y
2
)
,则
a·b=
(x
1
x
2
?y
1
y
2
)
.
52.两向量的夹角公式
x< br>1
x
2
?y
1
y
2
(
a
=
(x
1
,y
1
)
,b=
cos
?
?
2222
x
1
?y
1
?x
2
?y
2
(x
2
,y
2
)
).
53.平面两点间的距离公式
uuuruuuruuur

d
A,B
=
|AB|?AB?AB

?(x
2?x
1
)
2
?(y
2
?y
1
)
2
(A
(x
1
,y
1
)

B
( x
2
,y
2
)
).
54.向量的平行与垂直
设a=
(x
1
,y
1
)
,b=
(x
2,y
2
)
,且b
?
0,则
A||b
?
b=λa
?x
1
y
2
?x< br>2
y
1
?0
.
a
?
b(a
?0)
?
a
·b=0
?x
1
x
2
?y< br>1
y
2
?0
.
55.线段的定比分公式
设< br>P
1
(x
1
,y
1
)

P
2
(x
2
,y
2
)

P(x,y)
是线段
PP
12
uuuruuur
的分点,
?
是实数,且
PP?
?
PP
2
,则
1
x
1
?
?
x
2
?
uuuruuur
x?
?
uuur
OP
?
1?
?
1
?
?
OP
2

?
OP?
?
y?
?
y
1?
?
2< br>?
y?
1
?
1?
?
?
uuuruuuruu ur
1
t?
().
?
OP?tOP?(1?t)OP
12
1?
?
56.三角形的重心坐标公式
△ABC三个顶点的坐标分别为A(x
1
,y
1
)

B(x
2
,y< br>2
)

C(x
3
,y
3
)
,则△A BC的重心的坐标是
x?x?xy?y?y
3
G(
123
,
12
)
.
33
57.点的平移公式
''
uuuruuu
r
r
uuu
??
?
x?x?h
?
x?x?h
''
?
?
.
?OP?OP?PP
?
''
?
y?y?k
?
y?y?k
??
注:图形F上的任意 一点P(x,y)在平移后
uuur
'''
'
图形
F
上的对 应点为
P(x,y)
,且
PP
'
的坐标为
(h,k)
.
58.“按向量平移”的几个结论
(1)点
P(x,y)
按向量a=
(h,k)
平移后得到点
P
'
(x?h,y?k)
.
(2) 函数
y?f(x)
的图象
C
按向量a=
(h,k)
平移后得到图象
C
'
,则
C
'
的函数解析式为y?f(x?h)?k
.
(3) 图象
C
'
按向量a=
(h,k)
平移后得到图象
C
,若
C
的解析式
y?f(x )
,则
C
'
的函数解析式

y?f(x?h)?k
.
(4)曲线
C
:
f(x,y)?0
按向量a=
(h,k )
平移
后得到图象
C
'
,则
C
'
的方程为
f(x?h,y?k)?0
.
(5) 向量m=
(x,y)
按向量 a=
(h,k)
平移后得
到的向量仍然为m=
(x,y)
.
59. 三角形五“心”向量形式的充要条件

O

?ABC所在平面上一点,角
A,B,C

对边长分别为
a,b,c
,则
(1)
O

?ABC
的外心
uuur
2
u uur
2
uuur
2
?OA?OB?OC
.
(2)
O

?ABC
的重心
uuuruuuruuurr
?OA?OB? OC?0
.
(3)
O

?ABC
的垂心
uuur uuuruuuruuuruuuruuur
?OA?OB?OB?OC?OC?OA
. (4)
O

?ABC
的内心
uuuruuuruuurr
?aOA?bOB?cOC?0
.
收集于网络,如有侵权请联系管理员删除


精品文档
(5)
O

?ABC

?A
的旁心
uuuruuuruuur
?aOA?bOB?cOC.

§06. 不 等 式
60.常用不等式:
(1)
a,b?R
?
a
2
?b
2
?2ab
(当且仅当a
=b时取“=” 号).
a?b
?ab
(当且仅当a=
(2)
a,b
?R
?
?
2
b时取“=”号).
(3)
a
3< br>?b
3
?c
3
?3abc(a?0,b?0,c?0).

(4)柯西不等式
(a
2
?b
2
)(c
2
?d
2
)?(ac?bd)
2
,a,b,c,d?R.

(5)
a?b?a?b?a?b
.
61.极值定理
已知
x,y
都是正数,则有
(1)若积
xy
是定值
p
,则当
x?y
时和
x?y
有最小值
2p
; < br>?
f(x)?0
?
(3)
f(x)?g(x)?
?
g (x)?0
.
?
f(x)?[g(x)]
2
?
64.指数不等式与对数不等式
(1)当
a?1
时,
a
f(x)
?a
g(x)
?f(x)?g(x)
; ?
f(x)?0
?
log
a
f(x)?log
a
g(x)?
?
g(x)?0
.
?
f(x)?g(x)
?
(2)当
0?a?1
时,
a
f(x)
?a
g(x)
?f(x)?g(x)
;
?
f(x)?0
?
log
a
f(x)?log
a
g(x)?
?
g(x)?0

?
f(x)?g(x)
?(2)若和
x?y
是定值
s
,则当
x?y
时积
1
xy
有最大值
s
2
.
4
推广 已知
x ,y?R
,则有
(x?y)
2
?(x?y)
2
?2xy
(1)若积
xy
是定值,则当
|x?y|
最大
时,< br>|x?y|
最大;

|x?y|
最小时,
|x?y|
最小.
(2)若和
|x?y|
是定值,则当
|x?y|
最大
时,
|xy|
最小;

|x?y|
最小时,
|xy|
最大.
62.含有绝对值的不等式
当a> 0时,有
x?a?x
2
?a??a?x?a
.
2

§07. 直线和圆的方程
65.斜率公式
y?y
k?
21< br>(
P
1
(x
1
,y
1
)

P
2
(x
2
,y
2
)
).
x
2
?x
1

66.直线的五种方程
(1)点斜式
y?y
1
?k(x?x
1
)
(直 线
l
过点
P
1
(x
1
,y
1
)< br>,且斜率为
k
).
(2)斜截式
y?kx?b
(b为直线
l
在y轴
上的截距).
(3)两点式
y?y
1
x?x
1
(
y
1
?y
2
)(
P
?
1
(x
1
,y< br>1
)

P
2
(x
2
,y
2
)

y
2
?y
1
x
2
?x
1(
x
1
?x
2
)).
xy
(4)截距式
??1
(
a、b
分别为直线的
ab
横、纵截距,
a 、b?0
)
(5)一般式
Ax?By?C?0
(其中A、B不
同时为0).
67.两条直线的平行和垂直
(1)若
l
1
:y?k
1
x?b
1

l
2
:y?k
2
x?b
2


l
1
||l
2
?k
1
? k
2
,b
1
?b
2
;

l
1< br>?l
2
?k
1
k
2
??1
.
(2 )若
l
1
:A
1
x?B
1
y?C
1
?0
,
l
2
:A
2
x?B
2
y?C2
?0
,且
A
1
、A
2
、B
1
、B
2
都不为零,
x?a?x
2
?a
2
?x? a

x??a
.
63.无理不等式
(1)
(2)
?
f(x)?0
?
f(x)?g(x)?
?
g(x)?0
.
?
f(x)?g(x)
?
?
f(x)?0
?
f (x)?0
?
f(x)?g(x)?
?
g(x)?0

?< br>.
g(x)?0
?
f(x)?[g(x)]
2
?
?
收集于网络,如有侵权请联系管理员删除


精品文档
A
1
B
1
C
1

??
A
2
B
2
C
2

l
1
?l
2?A
1
A
2
?B
1
B
2
?0

68.夹角公式
k?k
(1)
tan
?
?|
21
|
. < br>1?k
2
k
1
(
l
1
:y?k
1< br>x?b
1

l
2
:y?k
2
x?b
2
,
k
1
k
2
??1
)
AB?A
2
B
1
(2)
tan
?
?|
12
|.
A
1
A
2
?B
1
B
2
(
l
1
:A
1
x?B
1
y?C
1
? 0
,
l
2
:A
2
x?B
2
y?C
2
?0
,

l
1
||l
2
?
A< br>1
A
2
?B
1
B
2
?0
). 直线
l
1
?l
2
时,直线l
1
与l
2
的夹角是
?
.
2
69.
l
1

l
2
的角公式
k?k
(1)
tan
?
?
21
.
1?k
2
k
1
(
l
1
:y?k
1
x?b
1

l
2
:y?k
2
x?b
2
,
k
1
k
2
??1
)
AB?A
2
B
1
(2)
tan
?
?
12
.
A
1
A
2
?B
1
B
2
(
l
1:A
1
x?B
1
y?C
1
?0
,
l< br>2
:A
2
x?B
2
y?C
2
?0
,
A
1
A
2
?B
1
B
2
?0
).
A?B
Ax?By?C?0
).

72. 圆的四种方程
(1)圆的标准方程
(x?a)
2
?(y?b)
2
?r
2
.
(2)圆的一般方程
x
2
?y
2
?Dx?Ey?F?0< br>(
D
2
?E
2
?4F
>0).
?
x?a?rcos
?
(3)圆的参数方程
?
.
y?b?rsin
?
?
(4)圆的直径式方程
(x?x
1
)(x?x
2
)?(y?y
1
)(y?y
2
)?0
(圆的直径的
端点是
A(x
1
,y
1
)

B(x
2
,y
2
)
).
73. 圆系方程 (1)过点
A(x
1
,y
1
)
,
B(x
2
,y
2
)
的圆系方程

(x?x
1
)(x?x
2
)?(y?y
1
)(y?y
2
)?
?
[(x?x
1
)(y
1
?y
2
)?(y

d?
|Ax
0
?By
0
?C|
22
(点< br>P(x
0
,y
0
)
,直线
l

?( x?x
1
)(x?x
2
)?(y?y
1
)(y?y
2
)?
?
(ax?by?c)?0
,其中
ax?by?c?0
是直线
AB
的方程,λ是待定的系
数.
(2)过直线
l
:
Ax?By?C?0
与圆
直线
l
1
?l
2
时,直线l
1
到l
2
的角是
70.四种常用直线系方程
?
.
2
C
:
x
2
?y
2
?Dx?Ey?F?0
的交点的圆系方程是
x
2
?y
2
? Dx?Ey?F?
?
(Ax?By?C)?0
,λ是待
定的系数.
22
(3) 过圆
C
1
:
x?y?D
1
x ?E
1
y?F
1
?0
与圆

(1)定点直线系方程 :经过定点
P
0
(x
0
,y
0
)
的直线< br>系方程为
y?y
0
?k(x?x
0
)
(除直线
x?x
0
),其中
k

待定的系数; 经过定点
P
0
(x
0
,y
0
)
的直线系方程为
C
2
:
x
2
?y
2
?D
2
x?E
2< br>y?F
2
?0
的交点的圆系方程是
x
2
?y
2
?D
1
x?E
1
y?F
1
?
?
(x
2
?y
2
?D
2
x?E
2
y?F2
)?0
,λ是待定的系数.
A(x?x
0
)?B(y?y< br>0
)?0
,其中
A,B
是待定的系数.
(2)共点直线系方 程:经过两直线
l
1
:A
1
x?B
1
y?C
1
?0
,
l
2
:A
2
x?B
2
y?C
2
?0
的交点
的直线系方程为
(A
1
x?B
1
y?C
1
)?
?
(A
2
x?B
2
y?C
2
)?0
(除
l
2
),其
中λ是 待定的系数.
74.点与圆的位置关系

P(x
0
,y
0
)
与圆
(x?a)
2
?(y?b)
2
?r
2
的位
置关系有三种

d?(a?x
0
)
2< br>?(b?y
0
)
2
,则
(3)平行直线系方程:直线
y?kx?b

当斜率k一定而b变动时,表示平行直线系
方程.与直线
A x?By?C?0
平行的直线系
方程是
Ax?By?
?
?0
(
?
?0
),λ是参变
量.
(4)垂直直线系方程:与直线
Ax?By?C?0
(A≠0,B≠0)垂直的直线 系
方程是
Bx?Ay?
?
?0
,λ是参变量.
71.点到直线的距离
d?r?

P
在圆外;
d?r?

P
在圆
上;
d?r?

P
在圆内.
75.直线与圆的位置关系
直线
Ax?By?C?0
与圆
(x?a )
2
?(y?b)
2
?r
2
的位置关系有三种:
d?r?相离???0
;
d?r?相切???0
;
d?r?相交???0
.
收集于网络,如有侵权请联系管理员删除


精品文档
其中
d?
Aa?Bb?C
22
A ?B
76.两圆位置关系的判定方法
设两圆圆心分别为O
1
,O
2
,半径分别为r
1

r
2
,O
1
O
2
?d
d?r
1
?r
2
?外离?4条公切线
;
d?r
1
?r
2
?外切?3条公切线
;
.
80.椭圆的的内外部
(1)点
P(x
0
,y
0
)
在椭圆
22
x
0
y
0
x
2
y< br>2
?
2
?1(a?b?0)
的内部
?
2
?< br>2
?1
.
2
abab
(2)点
P(x
0< br>,y
0
)
在椭圆
22
x
0
y
0x
2
y
2
?
2
?1(a?b?0)
的外部?
2
?
2
?1
.
2
abab
81. 椭圆的切线方程
r
1
?r
2
?d?r
1
?r< br>2
?相交?2条公切线
;
d?r
1
?r
2
?内切?1条公切线
;
0?d?r
1
?r
2
?内含?无公切线
.
77.圆的切线方程
(1)已知圆
x
2
?y
2
?Dx?Ey?F?0

①若已知切点
(x
0
,y
0
)
在圆上,则切线只< br>有一条,其方程是
D(x
0
?x)E(y
0
?y)

x
0
x?y
0
y???F?0
.
22

(x
0
,y
0
)
圆外时,
D(x
0
?x)E(y
0
?y)
x
0
x?y0
y???F?0
表示
22
过两个切点的切点弦方程.
②过圆 外一点的切线方程可设为
y?y
0
?k(x?x
0
)
,再利 用相切条件求k,这
时必有两条切线,注意不要漏掉平行于y轴
的切线.
③斜率为k 的切线方程可设为
y?kx?b
,再利用相切条件求b,必有两条
切线.
(2)已知圆
x
2
?y
2
?r
2
①过圆上的
P
0
(x
0
,y
0
)
点的 切线方程为
x
2
y
2
(1)椭圆
2
?
2< br>?1(a?b?0)
上一点
ab
xxyy
P(x
0
, y
0
)
处的切线方程是
0
2
?
0
2
?1
.
ab
x
2
y
2
(2)过椭圆2
?
2
?1(a?b?0)
外一点
ab
P(x
0
,y
0
)
所引两条切线的切点弦方程是
x
0
xy
0
y
?
2
?1
.
a
2
b
x
2
y
2
(3)椭圆
2
?
2
?1(a?b?0)
与直线
ab
Ax?By?C?0
相切的条件是
A
2
a
2
?B
2
b
2
?c
2
.
x
2
y
2
96.双曲线2
?
2
?1(a?0,b?0)
的焦半径
ab
公式 < br>a
2
a
2
PF
1
?|e(x?)|

PF
2
?|e(?x)|
.
cc
82.双曲线的内外部
(1)点
P(x
0
,y
0
)
在双曲线
22
x
0
y
0
x
2
y
2
??1(a?0,b ?0)
的内部
?
2
?
2
?1
.
aba
2
b
2
(2)点
P(x
0
,y
0< br>)
在双曲线
22
x
0
y
0
x
2y
2
?
2
?1(a?0,b?0)
的外部
?
2
?
2
?1
.
2
ab
ab
83.双曲线的方程与渐近线方程的关系
x
0
x?y
0
y?r
;
②斜率为
k
的圆的切线方程为
y?kx?r1?k
2
.

§08. 圆锥曲线方程
x
2
y
2
78.椭圆
2
?
2
?1(a?b?0)
的参数方程是
ab
?< br>x?acos
?
.
?
y?bsin
?
?
x
2
y
2
79.椭圆
2
?
2
?1(a?b? 0)
焦半径公式
ab
a
2
a
2
PF
1
?e(x?)

PF
2
?e(?x)
.
cc< br>2
x
2
y
2
(1)若双曲线方程为
2
?2
?1
?
渐近线
ab
x
2
y
2
b
方程:
2
?
2
?0?
y??x
.
ab
a
(2)若渐近线方程为
xy
b
y??x?
??0
?
双曲线可设为
ab
a
x
2
y
2
?
2
??
.
2
ab
收集于网络,如有侵权请联系管理员删除


精品文档
xy
(3)若双曲线与
2
?
2
?1
有公共 渐近线,
ab
x
2
y
2
可设为
2
?
2
??

??0
,焦点在x轴上,
ab
??0
, 焦点在y轴上).
84. 双曲线的切线方程
22

P(x
0< br>,y
0
)
在抛物线
y
2
?2px(p?0)
的外部
?y
2
?2px(p?0)
.
(2)点
P(x0
,y
0
)
在抛物线
y
2
??2px(p?0 )

内部
?y
2
??2px(p?0)
.
P(x
0
,y
0
)
在抛物线
y
2
?? 2px(p?0)
的外

?y
2
??2px(p?0)
.
(3)点
P(x
0
,y
0
)
在抛物线
x< br>2
?2py(p?0)

内部
?x
2
?2py(p? 0)
.

P(x
0
,y
0
)
在抛物线< br>x
2
?2py(p?0)
的外部
?x
2
?2py(p ?0)
.
xy
??1(a?0,b?0)
上一点
a
2b
2
xxyy
P(x
0
,y
0
)
处的 切线方程是
0
2
?
0
2
?1
.
ab
x
2
y
2
(2)过双曲线
2
?
2
?1(a?0,b?0)
外一点
ab
P(x
0
,y
0
)
所引两条切线的切点弦方程是
x
0
xy
0
y
?
2
?1
.
2
ab
x
2
y
2
(3)双曲线
2< br>?
2
?1(a?0,b?0)
与直线
ab
Ax?By?C?0
相切的条件是
A
2
a
2
?B
2
b
2
?c
2
.
100. 抛物线
y
2
?2px
的焦半径公式
p
抛物线
y< br>2
?2px(p?0)
焦半径
CF?x
0
?
.
2
22
(1)双曲线
(4) 点
P(x
0
,y< br>0
)
在抛物线
x
2
?2py(p?0)

内 部
?x
2
?2py(p?0)
.

P(x
0,y
0
)
在抛物线
x
2
??2py(p?0)
的外

?x
2
??2py(p?0)
.
88. 抛物线的切线方程
(1)抛物线
y
2
?2px
上一点
P( x
0
,y
0
)
处的切
线方程是
y
0
y?p(x?x
0
)
.
(2)过抛物线
y
2?2px
外一点
P(x
0
,y
0
)

引两条切线的切点弦方程是
y
0
y?p(x?x
0
)
.
(3)抛物线
y
2
?2px(p?0)
与直线
Ax? By?C?0
相切的条件是
pB
2
?2AC
.
89.两个常见的曲线系方程
(1)过曲线
f
1
(x,y)?0< br>,
f
2
(x,y)?0
的交点的
曲线系方程是
f< br>1
(x,y)?
?
f
2
(x,y)?0
(
?
为参数).
(2)共焦点的有心圆锥曲线系方程
x
2
y
2
22
??1
k?max{a,b}
.当,其中
22
a?kb ?k
k?min{a
2
,b
2
}
时,表示椭圆; 当
min{a
2
,b
2
}?k?max{a
2
,b
2
}
时,表示双曲线.
90.直线与圆锥曲线相交的弦长公式
过焦点弦长
CD?x
1
?
2
pp
?x
2
??x
1
?x
2
?p
.
22
85.抛物线
y
2
?2px
上的动点可设为
y
P
(
?
,y
?
)

P
(2
pt
2
,2
pt
) 或
P
(x
o
,y
o
)
,其中
2p
2
y
o
?2px
o
.
86.二次函 数
b
2
4ac?b
2
2
y?ax?bx?c?a(x?)?
(a?0)
的图
2a4a
象是抛物线:(1)顶点坐标为
b4ac? b
2
(?,)
;(2)焦点的坐标为
2a4a
b4ac?b
2
?1
(?,)
;(3)准线方程是
2a4a
4ac?b
2
?1
y?
.
4a
87.抛物线的内外部
(1)点
P(x
0
,y
0
)
在抛物线
y
2
?2p x(p?0)

内部
?y
2
?2px(p?0)
.
AB?(x
1
?x
2
)
2
?(y
1
?y
2
)
2

(弦端点A
(
x
1
,
y
1
),
B
(
x
2
,
y
2
)
,由方程
?
y?kx?b
消去y得到
ax
2
?bx?c?0

?
?
F(x,y)?0
??0
,
?
为直线
AB
的倾斜角,
k
为直线的斜
率).
91.圆锥曲线的两类对称问题
(1)曲线
F(x,y)?0
关于点
P(x
0
,y
0
)
成中心对
AB?(1?k
2< br>)(x
2
?x
1
)
2
?|x
1
?x
2
|1?tan
2
?
?|y
1
?y
收集于 网络,如有侵权请联系管理员删除


精品文档
称的曲线是
F(2x
0
-x,2y
0
?y)?0
.
(4)转化为该直线垂直于另一个平行平
面;
(2)曲线
F(x,y)?0
关于直线
Ax?By?C?0
(5)转化为该直线与两个垂直平面的交线
成轴 对称的曲线是
2A(Ax?By?C)2B(Ax?By?C)
垂直.
F(x?, y?)?0
A
2
?B
2
A
2
?B
2
98.证明平面与平面的垂直的思考途径
.
(1)转化为判断二面角是直二面角;
92.“四线”一方程
(2)转化为线面垂直.
对于一般的二次曲线
99.空间向量的加法与数乘向量运算的运算
Ax
2
?Bxy?Cy
2?Dx?Ey?F?0
,用
x
0
x

x
2

x?x
xy?xy
0

y
0
y

y
2
,用
0

xy
,用
0
x
,用
(1)加法交换律:a+b=b+a.
2
2
(2)加法结合律:(a+b)+c=a+(b+c).
y
0
?y

y
即得方程
(3)数乘分配律:λ(a+b)=λa+λb.
2
100.平面向量加法的平行四 边形法则向空
x
0
y?xy
0
x
0
?xy
0
?y
Ax
0
x?B??Cy
0
y?D??E??F?0< br>间的推广
222
始点相同且不在同一个平面内的三个向量
,曲线的切线,切点 弦,中点弦,弦中点方程均是此
方程得到.
之和,等于以这三个向量为棱的平行六面体的

以公共始点为始点的对角线所表示的向量.
§09. 立体几何
101.共线向量定理
93.证明直线与直线的平行的思考途径
对空间任意两个向量a、b(b≠0 ),a∥b
?
(1)转化为判定共面二直线无交点;
存在实数λ使a=λb.
(2)转化为二直线同与第三条直线平行;
P、A、B
三点共线
uuuruuur
(3)转化为线面平行;
?
AP||AB
?
AP?tAB
?
uuuruuuruuur
(4)转化为线面垂直;
OP?(1?t)OA?tOB
.
(5)转化为面面平行.
uuur
uuur
AB||CD
?
AB

CD
共线且
AB、CD
不共
94.证明直线与平面 的平行的思考途径
uuuruuur
线
?
AB?tCD

AB、CD
不共线.
(1)转化为直线与平面无公共点;
102.共面向量定理
(2)转化为线线平行;
(3)转化为面面平行.
向量p与两个不共线的向量a、b共面的
95.证明平面与平面平行的思考途径
?
存在实数对
x,y
,使
p?ax?by

(1)转化为判定二平面无公共点;
推论 空间一点P位于平面MAB内的
?
uuuruuuruuur
(2)转化为线面平行;
在有序实数对
x,y
,使
MP?xMA?yMB

(3)转化为线面垂直.
或对空间任一定点O,有序实数对
x,y
,使uuuruuuuruuuruuur
96.证明直线与直线的垂直的思考途径
OP?OM?xMA?yMB
.
(1)转化为相交垂直;
103.对空间任一点
O
和不共线的三点A、
(2)转化为线面垂直; uuuruuuruuuruuur
B、C,满足
OP?xOA?yOB?zOC
(3)转化为线与另一线的射影垂直;

x?y?z?k
),则当
k?1< br>时,对于空间任一
(4)转化为线与形成射影的斜线垂直.

O
,总 有P、A、B、C四点共面;当
k?1
时,
97.证明直线与平面垂直的思考途径 < br>若
O?
平面ABC,则P、A、B、C四点共面;若
(1)转化为该直线与平面 内任一直线垂
O?
平面ABC,则P、A、B、C四点不共面.
直;
uuuruuur
uuur
A、B、 C、D
四点共面
?
AD

AB

AC
(2)转化为该直线与平面内相交二直线垂
uuuruuuruuur
直;
共面
?
AD?xAB?yAC
?

uuuruuuruuu ruuur
(3)转化为该直线与平面的一条垂线平
OD?(1?x?y)OA?xOB?yO C

O?
平面
行;
ABC).
收集于网络,如有侵权请联系管理员删除


精品文档
104.空间向量基本定理
如果三个向量a、b、c不共面,那么对空
间任一向 量p,存在一个唯一的有序实数组x,
y,z,使p=xa+yb+zc.
推论 设O、A 、B、C是不共面的四点,则
对空间任一点P,都存在唯一的三个有序实数
uuuruuuru uuruuur
x,y,z,使
OP?xOA?yOB?zOC
.

105.向量的直角坐标运算

a

(a
1
,a
2
,a
3
)
,b=
(b
1
,b
2
,b
3
)

(1)
a
+b=
(a
1
?b
1
,a
2
?b
2
,a
3
?b
3
)

(2)
a
-b=
(a
1?b
1
,a
2
?b
2
,a
3
?b3
)

(3)λ
a

(
?
a
1
,
?
a
2
,
?
a
3
)
(λ∈R);
(4)
a
·b=
a
1
b
1?a
2
b
2
?a
3
b
3

106.设A
(x
1
,y
1
,z
1
)
,B
(x
2
,y
2
,z
2
)
,则
uuuruuuruuur
AB?OB?OA
=
(x
2
? x
1
,y
2
?y
1
,z
2
?z
1
)
.
107.空间的线线平行或垂直
rr

a?(x< br>1
,y
1
,z
1
)

b?(x
2< br>,y
2
,z
2
)
,则
uuuruur
|A B?n|
r
r

n
为平面
?
的法向量,
A B

d?
|n|
经过面
?
的一条斜线,
A?
?
).
113.异面直线上两点距离公式
d?h
2
?m2
?n
2
m2mncos
?
.
uuur
uu ur
222'
d?h?m?n?2mncosEA,AF
.
d?h
2
?m
2
?n
2
?2mncos
?

?< br>?E?AA
'
?F
).
(两条异面直线a、b所成的角为θ,其公 垂线

AA
'
的长度为h.在直线a、b上分别取两点
E、F,A
'
E?m
,
AF?n
,
EF?d
).


已知斜棱柱的侧棱长是
l
,侧面积和体积分别是
S
斜棱柱侧

V
斜棱柱
,它的直截面的周长和面积分别
是< br>c
1

S
1
,则

S
斜棱柱侧
?c
1
l
.

V
斜棱柱
?S
1
l
.

114.球的半径是R,则
4
其体积
V?
?
R
3
,
3
其表面积
S?4
?
R
2

115.球的组合体
(1)球与长方体的组合体:
长方体的外接球的直径是长方体的体对角
线长.
(2)球与正方体的组合体:
正方体的内切球的直径是正方体的棱长,
正方体的棱切球的直径是正方体的面对角线长,
正方体的外接球的直径是正方体的体对角线长.
(3) 球与正四面体的组合体:
棱长为
a
的正四面体的内切球的半径为
?
x
1
?< br>?
x
2
rr
rrrr
?
a
P
b?
a?
?
b(b?0)
?
?
y
1
?< br>?
y
2

?
z?
?
z
2
?
1
rr
rr
a?b
?
a?b?0
?
x< br>1
x
2
?y
1
y
2
?z
1
z
2
?0
.

109.空间两点间的距离公式
若 A
(x
1
,y
1
,z
1
)
,B
( x
2
,y
2
,z
2
)
,则

u uuruuuruuur
d
A,B
=
|AB|?AB?AB
?(x< br>2
?x
1
)
2
?(y
2
?y
1)
2
?(z
2
?z
1
)
2
.
110.点
Q
到直线
l
距离
1
h?(|a||b |)
2
?(a?b)
2
(点
P
在直线
l
| a|
uuur
uuur
上,直线
l
的方向向量a=
PA,向量b=
PQ
).
111.异面直线间的距离
uuuruur< br>|CD?n|
r
d?
(
l
1
,l
2
是两异面直线,其公垂向
|n|
r
量为
n

C、D
分别是
l
1
,l
2
上任一点,
d

l1
,l
2

的距离).
112.点
B
到平面
?
的距离
66
a
,外接球的半径为
a
.
124
116.柱体、锥体的体积
1
V
柱体
?Sh

S
是柱体的底面积、
h
是柱体
3
的高).
收集于网络,如有侵权请联系管理员删除


精品文档
1
V
锥体
?Sh

S
是锥体的底面积、
h
是锥体
3
的高).

§10. 排列组合二项定理
117.分类计数原理(加法原理)
N?m
1
?m
2
?L?m
n
.
1
负整数解有
C
n
n
?
?
个.
m?1
124.二项式定理
0n1n?12n?22rn?rr
(a?b )
n
?C
n
a?C
n
ab?C
n
ab?? ?C
n
ab???

二项展开式的通项公式
rn?rr
1,2?,n)
.
T
r?1
?C
n
ab
(r?0,

§11、12. 概率与统计
125.等可能性事件的概率
m
P(A)?
.
n
126.互斥事件A,B分别发生的概率的

P(A+B)=P(A)+P(B).
127.
n
个互斥事件分别发生的概率的和
P(A
1
+A
2
+…+A
n
)=P(A
1
)+P(A
2
)+…
+P(A
n
).
128.独立事件A,B同时发生的概率
P(A·B)= P(A)·P(B).
129.n个独立事件同时发生的概率

P(A
1
· A
2
·…· A
n
)=P(A
1
)· P(A
2
)·…· P(A
n
).
130.n次独立重复试验中某事件恰好发生k
次的概率
kkn?k
P.

n
(k)?C
n
P(1?P)< br>131.离散型随机变量的分布列的两个性质
(1)
P
i
?0(i?1,2,L)
;
(2)
P
1
?P
2
?L?1
.
132.数学期望
118.分步计数原理(乘法原理)
N?m
1
?m
2
?L?m
n
.
119.排列数公式
A
n
m
=
n(n?1)?(n?m ?1)
=
∈N
*
,且
m?n
).
n!
. (
n

m
(n?m)!
注:规定
0!?1
.
120.排列恒等式
mm?1
(1)
A
n
;
?(n?m?1)A
n
n
mm
?A
n
(2)
An?1
;
n?m
mm?1
(3)
A
n
?nA
n?1
;
nn?1n
(4)
nA
n
?A
n?1
?A
n
;
mmm?1
(5)
A
n
.
?1
?A
n
?mA
n
(6)
1!?2?2!?3?3!?L?n?n!?(n?1)!?1
.
121.组合数公式
A
n
m
n(n?1)?(n?m?1)n!
m
=
C
n
=
m
=
m!?(n?m )!
1?2???m
A
m
(
n
∈N
*
,< br>m?N
,且
m?n
).
122.组合数的两个性质
m
n?m
(1)
C
n
=
C
n

(2)
C
+
C
m
n
m?1
n
=
C
m
n?1
.
0
注:规定
C
n
?
1
.
123.组合恒等式
n?m?1
m?1m
?C
n
;
(1 )
C
n
m
n
mm
?C
n
(2)
C
n?1
;
n?m
n
m?1m
?C
n
(3 )
C
n?1
;
m
E
?
?x
1
P
1
?x
2
P
2
?L?x
n
P< br>n
?L

133.数学期望的性质
(1)
E(a
?
?b)?aE(
?
)?b
. (2)若
?

B(n,p)
,则
E
?
?np< br>.
(3)


?
服从几何分布,且
P(
?
?k)?g(k,p)?q
k?1
p
,则
E
?
?
1
.

p
2
134.方差
22
(4)
?
C
=
2
;
r
n
n
rr ?1
?C
n
(5)
C?C
r
r
?1
?C< br>r
r
?2
???C
n?1
.
n
D
?
?
?
x
1
?E
?
?
?p
1?
?
x
2
?E
?
?
?p
2
? L?
?
x
n
?E
?
?
?p
n
?L
r?0
r
r

135.标准差
(6)
012rn
C
n
?C
n
?C
n
???C
n
? ??C
n
?2
n

??
=
D
?
.
136.方差的性质
收集于网络,如有侵权请联系管理员删除


精品文档
(1)
D
?
a
?
?b
?
?aD
?

2
(2)
(2)若
?

B(n,p)
,则
D
?
?np(1?p)
.
(3)

?
服从几何分布,且
P(
?
?k)?g(k,p)?q
k?1
p
,则
D
?
?
137.方差与期望的关系
q
.

2
p
?
0(k?t)
?
a
k
n
k
?ak?1
n
k?1
?
L
?a
0
?
at
lim?
?
(k?t)
.
n??
bn
t< br>?bn
t?1
?
L
?b
tt?10
?
bk
?
不存在 (k?t)
?
(3)
S?lim
n??< br>D
?
?E
?
?
?
E
?
?
.
2
2
a
1
1?q
n
1?q
??
?
138.正态分布密度函数
a
1

S
无穷等比数
1?q
1
f
?
x
?
?e
2
?
6< br>?
?
x?
?
?
2
26
2
,x??
??,??
?
,式中的

a
1
q
?
n?1
?
(
|q|?1
)的和)
.
x?x
0
x?x
0
143. 函数的极限定理
x?x0
实数μ,
?

?
>0)是参数,分别表示个体的平均数
与标准差.
139.标准正态分布密度函数
limf(x)?a
?
li m
?
f(x)?lim
?
f(x)?a
.
144.函数的夹逼性定理
如果函数f(x),g(x),h(x)在点x
0
的附近满足:
(1)
g(x)?f(x)?h(x)
;
(2)
limg(x)? a,limh(x)?a
(常数),则
x?x
0
x?x
0
f
?
x
?
?
1
e
2
?
6
?
x
2
2
,x?
?
??,??
?
.
.

140.回归直线方程
$$
y?a?bx
,其中< br>nn
?
?
x
i
?x
??
y
i
?y
?
?
x
i
y
i
?nxy
?
?
?
b?
i?1
n
?
i?1
n
2
.
?
x
i
?x
?
x
i
2
?nx
2
?
??
?
i?1i?1
?
?
a?y?b x
x?x
0
limf(x)?a
.
本定理对于单侧极限和
x??
的情况仍然成立.
145.几个常用极限 < br>1
?0

lima
n
?0

|a|?1);
n??
n
n??
11
(2)
limx?x
0

lim?
.
x?x
0
x?x
0
x x
0
(1)
lim
146.两个重要的极限
(1)
lim
141.相关系数

r?
?
?< br>x?x
??
y?y
?
ii
i?1
n
sinx
?1

x?0
x
x
?
(x?x)
?(y?y)
2
ii
i?1i?1
nn

2
?< br>1
?
(2)
lim
?
1?
?
?e
( e=2.718281845…).
x??
?
x
?
147.函数极限的四则运算法则

limf(x)?a

limg(x)?b
,则
x?x
0
x?x
0
?
?
?
x?x
??
y ?y
?
ii
i?1
n
(
?
x
i
? nx)(
?
y
i
?ny)
2222
i?1i?1
n n
.
(1)
lim
?
?
f
?
x
?
?g
?
x
?
?
?
?a?b

x?x
0
|r|≤1,且|r|越接近于1,相关程度越大;|r|
越接近于0,相关 程度越小.

(2)
lim
?
?
f
?
x
?
?g
?
x
?
?
?
?a?b
;
x?x
0
(3)
lim
x?x
0
§13. 极 限
142.特殊数列的极限
f
?
x
?
a
?
?
b?0
?
.
g
?
x
?
b
n ??
?
0
?
n
(1)
limq?
?
1n??
?
不存在
?
|q|?1
q?1
|q|?1或q? ?1
.
148.数列极限的四则运算法则

lima
n
?a,limb
n
?b
,则
n??
(1)
lim
?
a
n
?b
n
?< br>?a?b

n??
(2)
lim
?
a
n< br>?b
n
?
?a?b

n??
(3)
lim
a
n
a
?
?
b?0
?

n??< br>bb
n
n??n??n??
(4)
lim
?
c?a< br>n
?
?limc?lima
n
?c?a
( c是常数).
收集于网络,如有侵权请联系管理员删除


精品文档

§14. 导 数 §15. 复 数
149.
f(x)

x0
处的导数(或变化率或微157.复数的相等
a?bi?c?di?a?c,b?d
.
商)
f(x
0
? ?x)?f(x
0
)

a,b,c,d?R

?y
f
?
(x
0
)?y
?
x?x
0
?lim ?lim
?x?0
?x
?x?0
158.复数
z?a?bi
的模(或绝对值)
?x
.
|z|
=
|a?bi|
=a
2
?b
2
.
150.瞬时速度
159.复数的四则运算法则
?ss(t??t)?s(t)
.
?
?s
?
(t)?lim?lim
(1)
(a?bi)?(c?di)?(a?c)?(b?d)i
;
?t?0
?t
?t?0
?t
(2)
(a?bi)?(c?di)?(a?c)?(b ?d)i
;
151.瞬时加速度
(3)
(a?bi)(c?di)?(ac?bd)?(bc?ad)i
;
?vv(t??t)?v(t)
.
a?v
?
(t)?lim?li m
(4)
?t?0
?t
?t?0
?t
ac?bdbc?ad
152.
f(x)

(a,b)
的导数
(a?bi)?( c?di)?
2
?
2
i(c?di?0)
.
22
c?dc?d
dydf
f
?
(x)?y
?
??
16 0.复数的乘法的运算律
dxdx
对于任何
z
1
,z
2< br>,z
3
?C
,有
?yf(x??x)?f(x)
.
?lim?lim
交换律:
z
1
?z
2
?z
2< br>?z
1
.
?x?0
?x
?x?0
?x
153. 函数
y?f(x)< br>在点
x
0
处的导数的几何
结合律:
(z
1
? z
2
)?z
3
?z
1
?(z
2
?z
3
)
.
意义
分配律:
z
1
?(z
2
?z
3
)?z
1
?z
2
?z
1
? z
3
.
函数
y?f(x)
在点
x
0
处 的导数是曲线
161.复平面上的两点间的距离公式
y?f(x)

P( x
0
,f(x
0
))
处的切线的斜率
f
?
(x
0
)

d?|z
1
?z
2
|?(x< br>2
?x
1
)
2
?(y
2
?y
1)
2
相应的切线方程是
y?y
0
?f
?
(x
0
)(
x?x
0
)
.

z?x?yi

z?x?yi
).
154.几种常见函数的导数
(1)
C
?
?0
(C为常数).
(2)
(x
n
)
'
?nx
n?1
(n?Q)
.
(3)
(sinx)
?
?cosx
.
(4)
(cosx)
?
??sinx
.
11
e
(5)
(lnx)
?
?

(loga
x
)
?
?log
a
.
xx
(6)
(e
x
)
?
?e
x
;
(a
x
)
?
?a
x
lna
.
155.导数的运算法则
(1)
(u?v)
'
?u
'
?v
'
.
(2)
(uv)
'
?u
'
v?uv
'
.
111222
162.向量的垂直
非零复数
z
1
? a?bi

z
2
?c?di
对应的向量
uuuur
uuuur
分别是
OZ
1

OZ
2
,则
uuuuruuuur
z

OZ
1
?OZ
2< br>?
z
1
?z
2
的实部为零
?
2
为纯 虚
z
1

?
|z
1
?z
2
|2
?|z
1
|
2
?|z
2
|
2

?
|z
1
?z
2
|
2
?|z
1
|
2
?|z
2
|
2
?
|z
1< br>?z
2
|?|z
1
?z
2
|
?
ac ?bd?0
?
z
1
?
?
iz
2

(λ为非零实数).
163.实系数一元二次方程的解
实系数一元二次方程
ax
2
?bx?c?0

?b?b< br>2
?4ac
①若
??b?4ac?0
,则
x
1,2< br>?
;
2a
b
②若
??b
2
?4ac?0< br>,则
x
1
?x
2
??
;
2a
③若
??b
2
?4ac?0
,它在实数集
R
内没有
实数 根;在复数集
C
内有且仅有两个共轭复数
2
u
'
u
'
v?uv
'
(v?0)
.
(3)
()?
2
vv
156.复合函数的求导法则
设 函数
u?
?
(x)
在点
x
处有导数
u
x< br>'
?
?
'
(x)

函数
y?f(u)
在点
x
处的对应点U处有导数
y
u
'
?f
'(u)
,则复合函数
y?f(
?
(x))
在点
x
处有
导数,且
y?y?u
,或写作
'
x
'
u'
x
f
x
'
(
?
(x))?f
'(u)
?
'
(x)
.

?b??(b
2< br>?4ac)i
2

x?(b?4ac?0)
.
2a

收集于网络,如有侵权请联系管理员删除

日本高中数学内容-2017年浙江省高中数学学业水平


高中数学必修一基础题-高中数学物理偏科怎么办


高中数学函数奇偶性秒杀技巧-2018年高中数学竞赛山东预赛


高中数学教案设计参考书-高中数学教材答案及解析


高中数学 说课ppt-疫情过后高中数学教学


全国高中数学联赛 2011-高中数学 教师技能大赛 试题


高中数学抛物线视频-宁波高中数学竞赛培训


家教高中数学-高中数学 抛物线说课



本文更新与2020-09-14 14:14,由作者提供,不代表本网站立场,转载请注明出处:https://www.bjmy2z.cn/gaokao/394174.html

高中理科数学公式大全(完整版)培训资料的相关文章

  • 爱心与尊严的高中作文题库

    1.关于爱心和尊严的作文八百字 我们不必怀疑富翁的捐助,毕竟普施爱心,善莫大焉,它是一 种美;我们也不必指责苛求受捐者的冷漠的拒绝,因为人总是有尊 严的,这也是一种美。

    小学作文
  • 爱心与尊严高中作文题库

    1.关于爱心和尊严的作文八百字 我们不必怀疑富翁的捐助,毕竟普施爱心,善莫大焉,它是一 种美;我们也不必指责苛求受捐者的冷漠的拒绝,因为人总是有尊 严的,这也是一种美。

    小学作文
  • 爱心与尊重的作文题库

    1.作文关爱与尊重议论文 如果说没有爱就没有教育的话,那么离开了尊重同样也谈不上教育。 因为每一位孩子都渴望得到他人的尊重,尤其是教师的尊重。可是在现实生活中,不时会有

    小学作文
  • 爱心责任100字作文题库

    1.有关爱心,坚持,责任的作文题库各三个 一则150字左右 (要事例) “胜不骄,败不馁”这句话我常听外婆说起。 这句名言的意思是说胜利了抄不骄傲,失败了不气馁。我真正体会到它

    小学作文
  • 爱心责任心的作文题库

    1.有关爱心,坚持,责任的作文题库各三个 一则150字左右 (要事例) “胜不骄,败不馁”这句话我常听外婆说起。 这句名言的意思是说胜利了抄不骄傲,失败了不气馁。我真正体会到它

    小学作文
  • 爱心责任作文题库

    1.有关爱心,坚持,责任的作文题库各三个 一则150字左右 (要事例) “胜不骄,败不馁”这句话我常听外婆说起。 这句名言的意思是说胜利了抄不骄傲,失败了不气馁。我真正体会到它

    小学作文