关键词不能为空

当前您在: 主页 > 数学 >

高中数学必修1-4_知识点总汇

作者:高考题库网
来源:https://www.bjmy2z.cn/gaokao
2020-09-14 17:12
tags:高中数学必修一

高中数学人教必修二教师用书-高中数学课时训练


数学必修1-5常用公式及结论
必修1
: 一、集合1、含义与表示:(1)集合中元素的特征:确定性,互异性,无序性
(2)集合的分类;有限集,无限集 (3)集合的表示法:列举法,描述法,图示法
2、集合间的关系:子集:对任意
x?A
,都有
x?B
,则称A是B的子集。记作
A?B

真子集:若A是B的子集,且在B中至少存在一个元素不属于A,则A是B的真子集,
记作A
?
B 集合相等:若:
A?B,B?A
,则
?
A?B

3. 元素与集合的关系:属于
?
不属于:
?
空集:
?

4、集合的运算:并集:由属于集合A或属于集合B的元素组成的集合叫并集,记为
A?B

交集:由集合A和集合B中的公共元素组成的集合叫交集,记为
A?B

补集:在全集U中,由所有不属于集合A的元素组成的集合叫补集,
记为
C
U
A

5.集合
{a
1
, a
2
,?,a
n
}
的子集个数共有
2
个;真子集有
2
–1个;非空子集有
2
–1
个; 6.常用数集:自然数集:N 正整数集:
N
整数集:Z 有理数集:Q 实数集:R
二、函数的奇偶性
1、定义: 奇函数 <=> f (– x ) = – f ( x ) ,偶函数 <=> f (–x ) = f ( x )(注意定义域)
2、性质:(1)奇函数的图象关于原点成中心对称图形;
(2)偶函数的图象关于y轴成轴对称图形;
(3)如果一个函数的图象关于原点对称,那么这个函数是奇函数;
(4)如果一个函数的图象关于y轴对称,那么这个函数是偶函数.
二、函数的单调性
1、定义:对于定义域为D的函数f ( x ),若任意的x
1
, x
2
∈D,且x
1
< x
2

① f ( x
1
) < f ( x
2
) <=> f ( x
1
) – f ( x
2
) < 0 <=> f ( x )是增函数
② f ( x
1
) > f ( x
2
) <=> f ( x
1
) – f ( x
2
) > 0 <=> f ( x )是减函数
1

*
nnn


2、复合函数的单调性: 同增异减
三、二次函数y = ax
2
+bx + c(
a?0
)的性质
?
b4ac?b
2
?
b
4ac?b
2
1、 顶点坐标公式:
?
?
?
2a
,
4a
?
?< br>, 对称轴:
x??
2a
,最大(小)值:
4a

??
2.二次函数的解析式的三种形式
(1)一般式
f(x)?ax
2
?bx?c(a?0)
; (2)顶点式
f(x)?a(x?h)
2
?k(a?0)
;
(3) 两根式
f(x)?a(x?x
1
)(x?x
2
)(a?0)
.
四、指数与指数函数
1、幂的运算法则:(1)a
m
? a
n
= a
m + n
,(2)
a?a?a
( ab )
n
= a
n
? b
n

?
1
1
a
n
?
a
?
?n
m
n
(5)
??
?
n
(6)a
0
= 1 ( a≠0)(7)
a?
n
(8)
a
m
?a
(9)
a
m
?

n
m
a
b
?
b
?
a
n
n
mnm?n
,(3)( a
m
)
n
= a
m n
(4)
n
2、根式的性质
(1)
(
n
a)
n
?a
.
(2)当
n
为奇数时,
n
a
n
?a
; 当
n
为偶数时,
n
a
n
?|a|?
?
4、 指数函数y = a
x
(a > 0且a≠1)的性质:
(1)定义域:R ; 值域:( 0 , +∞) (2)图象过定点(0,1)





1
0
X
Y
a > 1
1
0
X
Y
0 < a < 1
?
a,a?0
.
?
?a,a?0
5.指数式与对数式的互化:

log
a< br>N?b?a
b
?N
(a?0,a?1,N?0)
.

2


五、对数与对数函数1对数的运算法则:
(1)a
b
= N <=> b = log
a
N(2)log
a
1 = 0(3)log
a
a = 1(4)log
a
a
b
= b(5)a
(6)log
a
(MN) = log
a
M + log
a
N (7)log
a
(
log
a
N

= N
M
) = log
a
M -- log
a
N
N
(8)log
a
N
b
= b log
a
N (9)换底公式:log
a
N =
n
log
b
N

log
b
a
(10)推论
log
a
m
b?
(11)log
a
N =
e
A
n
log
a
b
(
a?0
,且
a?1
,
m,n?0
,且
m?1
,
n?1,

N?0
).
m
1
(12)常用对数:lg N = log
10
N (13)自然对数:ln A = log
log
N
a
(其中 e = 2.71828?) 2、对数函数y = log
a
x (a > 0且a≠1)的性质:
(1)定义域:( 0 , +∞) ; 值域:R (2)图象过定点(1,0)




0
1
X
0
1
Y
a >1
Y
0 < a < 1
X
六、幂函数y = x
a
的图象:(1) 根据 a 的取值画出函数在第一象限的简图 .



例如: y = x
y?
2
a > 1
0 < a < 1 a < 0
x?x

y?
1
2
1
?x
?1

x
七.图 象平移:若将函数
y?f(x)
的图象右移
a
、上移
b
个单 位,
得到函数
y?f(x?a)?b
的图象; 规律:左加右减,上加下减
八. 平均增长率的问题 如果原来产值的基础数为N,平均增长率为
p
,则对于时 间
x

总产值
y
,有
y?N(1?p)
.
3

x


九、函数的零点:1.定义:对于
y?f( x)
,把使
f(x)?0
的X叫
y?f(x)
的零点。即

y?f(x)
的图象与X轴相交时交点的横坐标。
2.函数零点存在性定理:如果函 数
y?f(x)
在区间
?
a,b
?
上的图象是连续不断的一 条
曲线,并有
f(a)?f(b)?0
,那么
y?f(x)
在区间
?
a,b
?
内有零点,即存在
c?
?
a,b
?

使得
f(c)?0
,这个C就是零点。
3.二分法求函数零点的步骤:(给定精确度
?

(1)确定区间
?
a,b
?
,验证
f(a)?f(b)?0
;(2)求
?
a,b
?
的中点
x
1
?
a?b

2
(3)计算
f(x
1
)
①若
f(x
1
)?0
,则
x
1
就是零点;②若
f(a)?f(x
1
)?0
,则零点
x
0
?
?
a,x
1
?
③若
f( x
1
)?f(b)?0
,则零点
x
0
?
?
x
1
,b
?

(4)判断是否达到精确度
?< br>,若
a?b?
?
,则零点为
a

b

?
a,b
?
内任一值。否
则重复(2)到(4)









4


必修4 一、
三角函数与三角恒等变换1、三角函数的图象与性质
函数 正弦函数 余弦函数 正切函数
图象

定义域
值域
周期性
奇偶性
R
[-1,1]

奇函数
增区间[-
单调性
R
[-1,1]

偶函数

{x| x≠

?
+kπ,k∈Z}
2
R
π
奇函数
?
2
+2k
增区间[-π+2kπ, 2kπ]
增区间(-
减区间[2kπ,π+2kπ]
( k∈Z )
π)
对称轴
对称中心
?
π,+2kπ]减区间
2
3
?
?
[+2kπ, +2kπ]
2
2
?
x = + kπ( k∈Z )
2
( kπ,0 ) ( k∈Z )
??
+kπ,+k
22
( k∈Z )
x = kπ ( k∈Z )
(

?
?
+ kπ,0 )( k∈Z ) ( k,0 ) ( k∈Z )
22
sin
?
2、同角三角函数公式 sin
2
α+ cos
2
α= 1
tan
?
?
tanαcotα=1
cos
?
3、二倍角的三角函数公式sin2α= 2sinαcosα cos2α=2cos
2
α-1 = 1-2 sin
2
α= cos
2
α-
2tan
?

2
1?tan
?
1?cos2
?
1?cos2
?
22
4、降幂公式
cos
?
?

sin
?
?

22
2
?
?
sin
2
α
tan
5、升幂公式 1±sin2α= (sinα±cosα)
2
1 + cos2α=2 cos
2
α 1- cos2α= 2 sin
2
α
6、两角和差的三角函数公式sin (α±β) = sinαcosβ土cosαsinβ cos (α±β) = cos
αcosβ干sinαsinβ
tan
?
?
?
?
?
?
tan
?
?tan
?

1
?
tan
?
tan
?
5


7、两角和差正切公式的变形:
tanα±tanβ= tan (α±β) (1干tanαtanβ)
1?tan
?
tan45??tan
?
1?tan
?
tan45??tan
?
??
== tan (+α) == tan (-α)
1?tan
?
1?tan45?tan
?
1?tan
?
1?tan45?tan
?
44
8、两角和差正弦公式 的变形(合一变形)
asin
?
?bcos
?
?a
2?b
2
sin
?
?
?
?
?
(其中
tan
?
?
9、半角公式:
sin
b
) < br>a
?
2
??
1?cos
?
?
1?co
?
s

cos??

222
1?co s
?
sin
?
1?cos
?

??
1?cos
?
1?cos
?
sin
?

tan
?
2
??
10、三角函数的诱导公式 “奇变偶不变,符号看象限。”
sin (π-α) = sinα, cos (π-α) = -cosα, tan (π-α) = -tanα;
sin (π+α) = -sinα cos (π+α) = -cosα tan (π+α) = tanα
sin (2π-α) = -sinα cos (2π-α) = cosα tan (2π-α) = -tanα
sin (-α) = -sinα cos (-α) = cosα tan (-α) = -tanα
???
-α) = cosα cos (-α) = sinα tan (-α) = cotα
222
???
sin (+α) = cosα cos (+α) = -sinα tan (+α) = -cotα
222
sin (
11.三角函数的周期公式 函数
y?sin(
?
x?
?
)
,x∈R及函数
y?cos(
?
x??
)
,x∈R(A,
ω,
?
为常数,且A≠0,ω>0)的周期
T?
2
?
?
?
(x?
?

);函数
y?tan
?
.
?
x?k
?
?
?
2
,k?Z
(A,ω,
?
为常数,且A≠0,ω>0)的周期< br>T?
二、平面向量 (一)、向量的有关概念
1、向量的模计算公式:(1)向量法:|
a
| =
a?a?a

2
22
(2)坐标法:设
a
=(x,y),则|
a
| =
x?y


6


2、单位向量的计算公式:
??
(1)与向量
a
= (x,y)同向的单位向量是
?
xy
?
?
?
x
2< br>?y
2
,
x
2
?y
2
?

?
?
(2)与向量
a
=(x,y)反向的单位向量是
?
x
?
?
22
,?
y
?
?
?

?
x?yx
2
?y
2
?
3、平行向量
规 定:零向量与任一向量平行。设
a
=(x
1
,y
1
),b
=(x
2
,y
2
),λ为实数
向量法:
a

b

b

0
)<=>
a

b

坐标法:
a

b

b

0
)<=> x
x
1
y
2
– x
2
y
1
= 0 <=>
1
x
2
y
?
(y
1
≠0 ,y
2
≠0)
1
y
2
4、垂直向量
规定:零向量 与任一向量垂直。设
a
=(x
1
,y
1
),
b=(x
2
,y
2

向量法:
a

b
<=>
a
·
b
= 0 坐标法:
a

b
<=> x
1
x
2
+ y
1
y
2
= 0
5.平面两点间的距离公式

d
=
|
???
AB
?
|?
???
AB
?
?
???
AB
?
?(x
2
y
2
A,B
2
?x
1
)?(
2
?y
1)
(A
(x
1
,y
1
)
,B
(x2
,y
2
)
).
(二)、向量的加法
(1)向量法 :三角形法则(首尾相接首尾连),平行四边形法则(起点相同连对角)
(2)坐标法:设
a< br>=(x
1
,y
1
),
b
=(x
2
, y
2
),则
a
+
b
=(x
1
+ x
2
,y
1
+ y
2

(三)、向量的减法
(1)向量法:三角形法则(首首相接尾尾连,差向量的方向指向被减向量)
(2)坐标法: 设
a
=(x
1
,y
1
),
b
=(x
2
,y
2
),则
a
-
b
=(x
1
- x
2
,y
1
- y
2

(3)、重要结论:| |
a
| - |
b
| | ≤ |
a
±
b
| ≤ |
a
| + |
b
|

7


(四)、两个向量的夹角计算公式:(1)向量法:cos
?
=
a?b
|a||b|

(2)坐标法:设
a
=(x< br>1
,y
1
),
b
=(x
2
,y
2< br>),则cos
?
=
x
1
x
2
?y
1
y
2
x?y
2
1
2
1
x?y
2
2
2
2

(五)、平面向量的数量积计算公式:(1)向量法:
a
·
b
= |
a
| |
b
| cos
?

(2)坐标法:设
a
=(x
1
,y
1
),
b
=(x
2
,y
2
),则
a
·
b
= x
1
x
2
+ y
1
y
2

(3) a·b的几何意义:
数量积a·b等于a的长度|a|与b在a的方向上的投影|b|cosθ的乘积.
(六).1、实数与向量的积的运算律:设λ、μ为实数,那么
(1) 结合律:λ(μa)=(λμ)a;(2)第一分配律:(λ+μ)a=λa+μa;
(3)第二分配律:λ(a+b)=λa+λb.
2.向量的数量积的运算律:(1)
a
·b= b·
a
(交换律);
(2)(
?
a
)·b=
?

a
·b)=
?
a
·b=
a
·(
?
b);(3)(
a
+b)·c=
a
·c +b·c.
3.平面向量基本定理:如果e
1
、e
2
是同 一平面内的两个不共线向量,那么对于这一
平面内的任一向量,有且只有一对实数λ
1
、λ
2
,使得a=λ
1
e
1

2
e2
.不共线的向量e
1
、e
2
叫做表示这一平面内所有向量的一 组基底.
(七).三角形的重心坐标公式
△ABC三个顶点的坐标分别为
A(x
1
,y
1
)

B(x
2
,y
2< br>)

C(x
3
,y
3
)
,则△ABC的重心 的坐
标是
G(
x
1
?x
2
?x
3
y
1
?y
2
?y
3
,)

33
8

高中数学疫情-如何和6小时学完高中数学


高中数学教师考核优秀表如何填-高中数学奥数图本


高中数学课本北师大-北师版高中数学必修一


高中数学课堂的德育渗透-高中数学30分正常吗


高中数学拟合效果r2-高中数学求点的轨迹


如何避免高中数学计算错误-为什么高中数学会做做不好


菏泽高中数学版本-高中数学的上课顺序


高中数学截面-合作探究式高中数学教学



本文更新与2020-09-14 17:12,由作者提供,不代表本网站立场,转载请注明出处:https://www.bjmy2z.cn/gaokao/394564.html

高中数学必修1-4_知识点总汇的相关文章

  • 余华爱情经典语录,余华爱情句子

    余华的经典语录——余华《第七天》40、我不怕死,一点都不怕,只怕再也不能看见你——余华《第七天》4可是我再也没遇到一个像福贵这样令我难忘的人了,对自己的经历如此清楚,

    语文
  • 心情低落的图片压抑,心情低落的图片发朋友圈

    心情压抑的图片(心太累没人理解的说说带图片)1、有时候很想找个人倾诉一下,却又不知从何说起,最终是什么也不说,只想快点睡过去,告诉自己,明天就好了。有时候,突然会觉得

    语文
  • 经典古训100句图片大全,古训名言警句

    古代经典励志名言100句译:好的药物味苦但对治病有利;忠言劝诫的话听起来不顺耳却对人的行为有利。3良言一句三冬暖,恶语伤人六月寒。喷泉的高度不会超过它的源头;一个人的事

    语文
  • 关于青春奋斗的名人名言鲁迅,关于青年奋斗的名言鲁迅

    鲁迅名言名句大全励志1、世上本没有路,走的人多了自然便成了路。下面是我整理的鲁迅先生的名言名句大全,希望对你有所帮助!当生存时,还是将遭践踏,将遭删刈,直至于死亡而

    语文
  • 三国群英单机版手游礼包码,三国群英手机单机版攻略

    三国群英传7五神兽洞有什么用那是多一个武将技能。青龙飞升召唤出东方的守护兽,神兽之一的青龙。玄武怒流召唤出北方的守护兽,神兽之一的玄武。白虎傲啸召唤出西方的守护兽,

    语文
  • 不收费的情感挽回专家电话,情感挽回免费咨询

    免费的情感挽回机构(揭秘情感挽回机构骗局)1、牛牛(化名)向上海市公安局金山分局报案,称自己为了挽回与女友的感情,被一家名为“实花教育咨询”的情感咨询机构诈骗4万余元。

    语文