关键词不能为空

当前您在: 主页 > 数学 >

重点高中数学必修一函数大题(含详细解答)(1)

作者:高考题库网
来源:https://www.bjmy2z.cn/gaokao
2020-09-14 18:41
tags:高中数学必修一

高中数学有趣的问题-2019年全国高中数学竞赛宁夏


重点高中数学必修一函数大题
(含详细解答)(1)










































———————————————————————————————— 作者:
———————————————————————————————— 日期:




2



高中函数大题专练
2、对定义在
[0,1]
上,并且同时满足以下两个条件的函数
f(x)
称为
G
函数。
① 对任意的
x?[0,1]
,总有
f(x)?0

② 当
x
1
?0,x
2
?0,x
1
?x
2?1
时,总有
f(x
1
?x
2
)?f(x
1< br>)?f(x
2
)
成立。
已知函数
g(x)?x
与< br>h(x)?a?2?1
是定义在
[0,1]
上的函数。
(1)试问函数
g(x)
是否为
G
函数?并说明理由;
(2)若函数
h(x)

G
函数,求实数
a
的值;
(3)在(2)的条件下,讨论方程
g
(2
?
1)
?h(
x
)
?m
(m?R)
解的个数情况。
x
2
x

3.已知函数
f(x)?2
x
?
1
.
2
|x|
(1)若
f(x)?2
,求
x
的值;
(2)若
2
t
f(2t)?mf(t)?0
对于
t?[2,3]
恒成立,求实数
m
的取值范围.

?1
1?,
x?0;
?
4.设 函数
f(x)
是定义在
R
上的偶函数.若当
x?0
时,f(x)?
?

x
?
0,
x?0.
?
(1)求
f(x)

(??,0)
上的解析式.
(2)请你作出函数
f(x)
的大致图像.
(3)当
0?a?b< br>时,若
f(a)?f(b)
,求
ab
的取值范围.
(4)若 关于
x
的方程
f
(
x
)
?bf
(
x
)
?c?
0
有7个不同实数解,求
b,c
满足的条件.
2

5.已知函数
f(x)?a?
b
(x?0)

|x|
(1)若函数
f(x)

(0,??)
上的增 函数,求实数
b
的取值范围;
(2)当
b?2
时,若不等式
f(x)?x
在区间
(1,??)
上恒成立,求实数
a
的取 值范围;
(3)对于函数
g(x)
若存在区间
[m,n](m?n)
,使
x?[m,n]
时,函数
g(x)
的值域也是



[m,n]
,则称
g(x)

[m,n]
上的闭函数。若函数
f(x)
是某区间上的闭函数,试探

a,b< br>应满足的条件。

6、设
f(x)?
求满足下列条件的实数
a
的值:至少有一个正实数
b
,使函数
f(x)
ax
2?bx

的定义域和值域相同。

7.对于函数
f(x)
,若存在
x
0
?R
,使< br>f(x
0
)?x
0
成立,则称点
(x
0
,x
0
)
为函数的不动点。
(1)已知函数
f
(
x< br>)
?ax?bx?b
(
a?
0)
有不动点(1,1)和(-3 ,-3)求
a

b
的值;
2
(2)若对于任意实数
b
,函数
f
(
x
)
?ax?bx?b
(
a?
0)
总有两个相异的不动点,求
a

2
取值范围;
(3)若定义在实数集R上的奇函数
g(x)
存在(有限的)
n
个不动点,求证:
n
必为奇数。

8.设函数
f(x)?x?1
,(x?0)
的图象为
C
1

C
1
关于点A(2,1)的对称的图象为
C
2

x
C
2
对应的函数为
g(x)
.
(1)求函数
y?g(x)
的解析式;
(2)若直线
y?b

C
2
只有一个交点,求
b
的值并求出交点的坐标.

9.设定义在
(0,??)
上的函数
f(x)
满足下面三个条件:
①对于任意正实数
a

b
,都有
f(a?b)?f(a)? f(b)?1


f(2)?0

③当
x?1
时,总有
f(x)?1
.
(1)求
f(1)及f()
的值;
(2)求证:
f(x)在(0,??)
上是减函数.


1
2



10. 已知函数
f(x)
是定义在
?
?2,2
?
上的奇函数,当
x?[?2,0)
时,
f(x)?tx?
常数)。
(1)求函数
f(x)
的解析式;
1
3
x

t

2
(2)当
t?[2,6]
时,求
f(x)

?
?2,0
?
上的最小值,及取 得最小值时的
x
,并猜想
f(x)

?
0,2
?< br>上的单调递增区间(不必证明);
(3)当
t?9
时,证明:函数
y ?f(x)
的图象上至少有一个点落在直线
y?14
上。

11. 记函数
f
?
x
?
?
义域为
B

(1)求
A

(2)若
A?B
,求
a

b
的取值范围



2?
x?7
的定义域为
A

g
?
x
?
?lg
?
?
2x?b
??
ax? 1
?
?
?
b?0,a?R
?
的定
x?2
a
x
?1
?
a?0,a?1
?

12、设
f
?
x
?
?
x
1?a
(1)求
f
?
x
?
的反函数
f
(2)讨论
f
?1
?1
?
x
?

?
x
?

?< br>1.??
?
上的单调性,并加以证明:
?1
(3)令
g?
x
?
?1?log
a
x
,当
?
m, n
?
?
?
1,??
??
m?n
?
时,f
?
x
?

?
m,n
?
上的值域是< br>?
g
?
n
?
,g
?
m
?
?
,求
a
的取值范围。

13.集合A是由具备下列性质的函数
f(x)
组成的:
(1) 函数
f(x)
的定义域是
[0,??)

(2) 函数
f(x)
的值域是
[?2,4)

(3) 函数
f(x)

[0,??)
上是增函数.试分别探究下列两小题:



(Ⅰ)判断函数
f
1
(x)?x?2( x?0)
,及
f
2
(x)?4?6?()
x
(x?0)是否属于集合A?并简
要说明理由.
(Ⅱ)对于(I)中你认为属于集合A的函数
f(x)
,不等式
f(x)?f(x?2)?2f(x?1)

是否对于任 意的
x?0
总成立?若不成立,为什么?若成立,请证明你的结论.

14 、设函数f(x)=ax+bx+1(a,b为实数),F(x)=
?
2
1
2
?
f(x)(x?0)

?
?f(x)(x?0)
(1)若 f(-1)=0且对任意实数x均有f(x)
?0
成立,求F(x)表达式。
(2) 在(1)的条件下,当x
?
?
?2,2
?
时,g(x)=f(x)- kx是单调函数,求实数k的取值范围。
(3)(理)设m>0,n<0且m+n>0,a>0且f( x)为偶函数,求证:F(m)+F(n)>0。

15.函数f(x)=
x
(a,b是非零实常数),满足f(2)=1,且方程f(x)=x有且仅有一个解。
ax?b
(1)求a、b的值;
(2)是否存在实常数m,使得对定义域中任意的x,f(x)+f(m–x)=4恒成立?为什么?
(3)在直角坐标系中,求定点A(–3,1)到此函数图象上任意一点P的距离|AP|的最小值。




函数大题专练答案
2、对定义在
[0,1]
上,并且同时满足以下两个条件的函数
f(x)
称为
G< br>函数。
① 对任意的
x?[0,1]
,总有
f(x)?0

② 当
x
1
?0,x
2
?0,x
1
?x< br>2
?1
时,总有
2
f(x
1
?x
2
)?f(x
1
)?f(x
2
)
成立。
已知函数
g (x)?x

h(x)?a?2?1
是定义在
[0,1]
上的函数。
(1)试问函数
g(x)
是否为
G
函数?并说明理由;
(2)若函数
h(x)

G
函数,求实数
a
的值;
(3)在(2)的条件下,讨论方程
g
(2
?
1)
?h(
x
)
?m
(m?R)
解的个数情况。
x
x
解:(1) 当
x?
?
0,1
?
时, 总有
g(x)?x?0
,满足①,
2

x1
?0,x
2
?0,x
1
?x
2
?1
时,
g(x
1
?x
2
)?x
1
2
?x< br>2
2
?2x
1
x
2
?x
1
2
?x
2
2
?g(x
1
)?g(x
2
)
, 满足
(2)因为h(x)为G函数,由①得,h(0)
?0
,由②得,h(0+ 0)
?
h(0)+h(0)
所以h(0)=0,即a-1=0,所以a=1;
(3)根据(2)知: a=1,方程为
4?2?m

xx
?
0?2
x
?1?1

?

x?[0,1]

?
0?x?1< br>22

2?t?[1,2]
,则
m?t?t?(t?)?
x< br>1
2
1

4
由图形可知:当
m?[0,2]
时,有一解;

m?(??,0)?(2,??)
时,方程无解。


7.对于函数
f(x)
,若存在
x
0
?R
,使< br>f(x
0
)?x
0
成立,则称点
(x
0
,x
0
)
为函数的不动点。
(1)已知函数
f
(
x< br>)
?ax?bx?b
(
a?
0)
有不动点(1,1)和(-3 ,-3)求
a

b
的值;
2
(2)若对于任意实数
b
,函数
f
(
x
)
?ax?bx?b
(
a?
0)
总有两个相异的不动点,求
a

2
取值范围;
(3)若定义在实数集R上的奇函数
g(x)
存在(有限的)
n
个不动点,求证:
n
必为奇数。



解:(1)由 不动点的定义:
f(x)?x?0
,∴
ax?
(
b?
1)< br>x?b?
0

2
代入
x?1

a?1
,又由
x??3

a?1

b?3


a?1

b?3

2

(2)对任意实数b

f
(
x
)
?ax?bx?b
(
a ?
0)
总有两个相异的不动点,即是对任意的实

b
,方程
f(x)?x?0
总有两个相异的实数根。

ax?
(
b?
1)
x?b?
0

??(b?1)?4ab?0

22

b?
(4
a?
2)
b?
1
?
0
恒成立。故
?
1
?(4a?2)?4?0
,∴
0?a?1< br>。
22
故当
0?a?1
时,对任意的实数
b
,方程
f(x)
总有两个相异的不动
点。 ………...................1’
(3)
g(x)
是R上的奇函 数,则
g(0)?0
,∴(0,0)是函数
g(x)
的不动点。

g(x)
有异于(0,0)的不动点
(
x
0
,
x< br>0
)
,则
g(x
0
)?x
0


g(?x
0
)??g(x
0
)??x
0
,∴
(?x
0
,?x
0
)
是函数
g(x)
的不动点。

g(x)
的有限个不动点除原点外,都是成对出现的,
所以有2k
个(
k?N
),加上原点,共有
n?2k?1
个。即
n
必为奇数
8.设函数
f(x)?x?
1

(
x?
0)
的图象为
C
1

C
1
关于点A(2,1)的对称的图象为
C
2

x
C
2
对应的函数为
g(x)
.
(1)求函数
y?g(x)
的解析式;
(2)若直线
y?b

C
2
只有一个交点,求
b
的值并求出交点的坐标.
解. (1)设
p(u,v)

y?x?
11
上任意一点,
?v? u?

xu
设P关于A(2,1)对称的点为
Q(x,y),?< br>?
代入①得
2?y?4?x?
?
u?x?4
?
u?4 ?x

?
?
v?y?2v?2?y
??
11

?y?x?2?
4?xx?4
?g(x)?x?2?

1
(x?(??,4)?(4,??));

x?4



?
y?b
?
2
(2)联立
?
1
?x?(b?6)x?4b?9?0,

y?x?2 ?
?
x?4
?
???(b?6)
2
?4?(4b?9)?b
2
?4b?0?b?0

b?4,

(1)当
b?0
时得交点(3,0); (2)当
b?4
时得交点(5,4).
9.设定义在
(0,??)
上的函数
f(x)
满足下面三个条件:
①对于任意正实数
a

b
,都有
f(a?b)?f(a)? f(b)?1


f(2)?0

③当
x?1
时,总有
f(x)?1
.
(1)求
f(1)及f()
的值;
(2)求证:
f(x)在(0,??)
上是减函数.
解(1)取a=b=1,则
f(1)?2f(1)?1.故f(1)?1


f(1)?f(2?
1
)?f(2)?f(
1
)?1
. 且
f(2)?0
.
22
1
2
得:
f(
1
)?f(1)?f(2)?1?1?1?2

2
(2)设
0?x
1
?x
2
,
则:
f(x
2
)?f(x1
)?f(
x
2
?x
1
)?f(x
1
)?[f(
x
2
)?f(x
1
)?1]
?f(x
1
)

x
1
x
1
?f(
x
x
2
)?1

0?x
1
?x
2
,可得
2
?1

x
1
x
1
x
2
)?1

x1
再依据当
x?1
时,总有
f(x)?1
成立,可得
f (

f
(
x
2
)
?f
(
x
1
)
?
0
成立,故
f(x)在(0,??)
上是减函数。
10. 已知函数
f(x)
是定义在
?
?2,2
?
上的奇函数,当
x?[?2,0)
时,
f(x)?tx?
常数)。
(1)求函数
f(x)
的解析式;
(2)当
t?[2,6]
时,求
f(x)

?
?2,0
?
上的最小值,及取得最小 值时的
x
,并猜想
f(x)
1
3
x

t< br>为
2




?
0,2
?
上的单调递增区间(不必证明);
(3)当
t?9
时,证明:函数
y?f(x)
的图象上至少有一个点落在直线
y?14
上。
11
(?x)
3
??tx?x
3
, ∵函
22
1
3

f(x)
是定义在
?
?2 ,2
?
上的奇函数,即
f
?
?x
?
??f
?
x
?
,∴
?f
?
x
?
??tx?x,即
2
11
f(x)?tx?x
3
,又可知
f?
0
?
?0
,∴函数
f(x)
的解析式为
f(x)?tx?x
3

22
解:(1)
x?
?
0,2
?
时,
?x?
?
?2,0
?
, 则
f(?x)?t(?x)?
x?
?
?2,2
?

(2)
f
?
x
?
?x
?
t?
?
?
1
2
?
1
x
?
,∵
t?[2,6]

x?
?
?2,0
?
,∴
t?x
2
?0

2
?
2
3

?
f
?
x
?
?
2
1
2
1
2
??
22
x?t?x?t?x
??
3
18t
1
??
2 2
22
?
??x
?
t?x
?
?
?
,∴
x
2
?t?x
2

327
?
2?
2
?
?
??
??

x?
2
6t26
2t6t
(??
?
?2,0
?
)
时,< br>f
min
??
tt

,x??
39
33
猜想
f(x)

?
0,2
?
上的单调递增区间为< br>?
0,
?
?
6t
?
?

3
?
(3)
t?9
时,任取
?
2
?x
1
? x
2
?
2
,∵
?
1
22
?
f?
x
1
?
?f
?
x
2
?
?< br>?
x
1
?x
2
?
?
t?x
1
?x
1
x
2
?x
2
?
?0

?
2
?

f
?
x
?

?
?2,2
?
上单调递增,即
f
?
x
?
?
?
f
?
?2
?
,f
?
2
?
?
,即
f
?
x
?
?
?
4?2t,2t? 4
?

t?9


4?2t??14,2t?4?14

14?
?
4?2t,2t?4
?
,∴当
t?9
时,函数
y?f(x)
的图象上至少有一个点落在直线
??
y ?14
上。
11.记函数
f
?
x
?
?
义 域为
B

2?
x?7
的定义域为
A

g
?
x
?
?lg
?
?
2x?b
??
ax?1
?
?
?
b?0,a?R
?
的定
x?2



(1)求
A

(2)若
A?B
,求
a

b
的取值范围
解:(1)
A?
?
x2?

?
?
x?7< br>??
x?3
?
?0
?
?
?
x?0
?
?
?
??
,
?
2
?
?
?
3,
??
?

x?2
??
x?2
?
(2 )
?
2x?b
??
ax?1
?
?0
,由
A ?B
,得
a?0
,则
x?
b1
orx??
,即 < br>2a
b
?
1
0??3
?
?
a?
1b
?
?
????
2
B?
?
??,?
?
?
?
,??
?

?

?
?
2
a
??
2
??
?
?
?2??
1
?0
?
0?b?6
?
a
?
a
x
?1?
a?0,a?1
?

12、设
f
?
x?
?
x
1?a
(1)求
f
?
x
?的反函数
f
(2)讨论
f
解:(1)
f
?1
? 1
?1
?
x
?

?
x
?

?
1.??
?
上的单调性,并加以证明:
x?1
?
x?
1
或x??
1
?

x?1
x
1
?1x
2
?12
?
x
1?x
2
?
???0

x
1
?1x
2< br>?1
?
x
1
?1
??
x
2
?1?
f
?1
?
x
?
?log
a
(2)设
1?x
1
?x
2
,∵

0?a?1
时,< br>f
?1
?
x
1
?
?
?
x
2
?
,∴
f
?1
?
x
?

?
1.??
?
上是减函数:
a?1
时,
f

?1< br>?
x
1
?
?f
?1
?
x
2
?
,∴
f
?1
?
x
?

?
1.? ?
?
上是增函数。
13.集合A是由具备下列性质的函数
f(x)
组成的:
(1) 函数
f(x)
的定义域是
[0,??)

(2) 函数
f(x)
的值域是
[?2,4)

(3) 函数
f(x)

[0,??)
上是增函数.试分别探究下列两小题:
(Ⅰ)判断函数
f
1
(x)?x?2(x?0)
,及
f
2
(x)?4?6?()
x
(x?0)
是否属于集合A?并简
要说明理 由.
(Ⅱ)对于(I)中你认为属于集合A的函数
f(x)
,不等式
f(x )?f(x?2)?2f(x?1)

1
2



是否对于任意的
x?0
总成立?若不成立,为什么?若成立,请证明你的结论. 解:(1)函数
f
1
(
x
)
?x?
2
不属于集合A. 因为
f
1
(x)
的值域是
[?2,??)
,所以函数
f
1
(x)?x?2
不属于集合A.(或
Q当x?49? 0时,f
1
(49)?5?4
,不满足条件.)
1
f
2< br>(x)?4?6?()
x
(x?0)
在集合A中, 因为: ① 函数
f
2
(x)
的定义域是
[0,??)
;② 函
2

f
2
(x)
的值域是
[?2,4)
;③ 函数
f
2
(x)

[0,??)
上是增函数.
( 2)
f(x)?f(x?2)?2f(x?1)?6?()(?
)
?
0

x
1
2
1
4
?不等式f(x)?f(x?2)?2f (x?1)
对于任意的
x?0
总成立



?< br>f(x)(x?0)
14、设函数f(x)=ax+bx+1(a,b为实数),F(x)=?

?f(x)(x?0)
?
2
(1)若f(-1)=0且对任 意实数x均有f(x)
?0
成立,求F(x)表达式。
(2)在(1)的条件下,当 x
?
?
?2,2
?
时,g(x)=f(x)-kx是单调函数,求实 数k的取值范围。
(3)(理)设m>0,n<0且m+n>0,a>0且f(x)为偶函数,求证: F(m)+F(n)>0。
解:(1)
?
f(-1)=0 ∴
b
2
?a?1
由f(x)
?
0恒成立 知△=b
2
-4a=(a+1)
2
-4a=(a-1)
2
?
0 < br>(x?0)
(x?0)
2
?
(x?1)
∴a=1从而f(x) =x
+2x+1 ∴F(x)=
?
2
?
?(x?1)
2

(2)由(1)可知f(x)=x
+2x+1 ∴g(x)=f(x)-kx=x+(2-k) x+1,由于g(x)在
?
?2,2
?
上是单调
函数,知-
2?k2?k
??
2
或-
?
2
,得k
?
- 2或k
?
6 ,
22
(3)
?
f(x)是偶函数,∴f( x)=f(x),而a>0∴
f(x)

?
0,??
?
上为 增函数
对于F(x),当x>0时-x<0,F(-x)=-f(-x)=-f(x)=-F(x), 当x<0时-x>0,F(-x)=f(-x)=f(x)=-F(x),
∴F(x)是奇函数且F( x)在
?
0

??
?
上为增函数,
?
m>0,n<0,由m>-n>0知F(m)>F(-n)∴F(m)>-F(n)
∴F(m)+F(n)>0 。
15.函数f(x)=
x
(a,b是非零实 常数),满足f(2)=1,且方程f(x)=x有且仅有一个解。
ax?b



(1)求a、b的值;
(2)是否存在实常数m,使得对定义域中任意的x,f(x)+f(m–x)=4恒成立?为什么?
(3)在直角坐标系中,求定点A(–3,1)到此函数图象上任意一点P的距离|AP|的最小值。
解 (1)由f(2)=1得2a+b=2,又x=0一定是方程
所以
x
=x的解, ax?b
1
=1无解或有解为0,若无解,则ax+b=1无解,得a=0,矛盾,若有解 为0,则
ax?b
1
b=1,所以a=

2
2x
(2)f(x)=
,设存在常数m,使得对定义域中任意的x,f(x)+f(m–x)=4恒成立,
x?2
2m
取x=0,则f(0)+f(m–0)=4,即
=4,m= –4(必要性),又m= –4时,
m?2
2x2(?4?x)
f(x)+f(–4– x)==……=4成立(充分性) ,所以存在常数m= –4,使得对定
?
x?2?4?x? 2
义域中任意的x,f(x)+f(m–x)=4恒成立,
x?2
2
)
,设x+2=t,t≠0, 则
x?2
8
16t?4
22
164444
|AP|
2
=(t+1)
2
+()=t+2t+2–+
2
=(t
2
+
2
)+2 (t–)+2=(t–)
2
+2(t–)+10=( t–+1)
2
+9t
t
ttttt
t
(3)|AP|
2
=(x+3)2
+(

所以当t–
?1?17?5?17
4
+1 =0时即t=
,也就是x=时,|AP|
min
= 3 。
22
t
16、已知函数
f(x)?
(1)求
m
的值;
21?mx
是奇函数。
?log
2
x1?x
(2)请讨论它的单调性,并给予证明。
解( 1)
?
f(x)
是奇函数,
?f(?x)?f(x)?0

21?mx21?mx

?log
2
)?(?log
2< br>)
?
0
,解得:
m?1
,其中
m??1
(舍 )
x1?xx1?x
21?x
(
x?
?
?
1,0< br>?
?
?
0,1
?
)
确是奇函数。
经验证当
m?1
时,
f(x)??log
2
x1?x

(?
(2)先研究
f(x)
在(0,1)内的单调性,任取x
1
、x2
∈(0,1),且设x
1
2
,则



f(x
1
)?f(x
2
)?
?(

1?x
1
2
1?x
2
2
?log
2
??log
2
x
1
1?x
1
x
21?x
2
2222
?)?[log
2
(?1)?log
2
(?1)],

x
1
x
2
1?x
21?x
1
2222
??0,log
2
(?1)?log
2
(?1)?0,
x
1
x
2
1?x
2
1? x
1

f
(
x
1
)
?f
(
x
2
)
>0,即
f(x)
在(0,1)内单调递减;
由 于
f(x)
是奇函数,其图象关于原点对称,所以函数
f(x)
在(-1,0 )内单调递减。





高中数学乘法-黄冈高中数学讲解视频下载


高中数学公式中的字母-高中数学求外接球面积公式


人教A版高中数学必修3word-高中数学教师评职称述职报告


高中数学视频第1教程-高中数学 教学工作总结


武汉高中数学重难点-高中数学问题类型


全国高中数学赛-高中数学高考难题


高中数学必修1答案第82页-高中数学向量公式cos


学而思 - 高中数学-高中数学关于数列



本文更新与2020-09-14 18:41,由作者提供,不代表本网站立场,转载请注明出处:https://www.bjmy2z.cn/gaokao/394778.html

重点高中数学必修一函数大题(含详细解答)(1)的相关文章

  • 余华爱情经典语录,余华爱情句子

    余华的经典语录——余华《第七天》40、我不怕死,一点都不怕,只怕再也不能看见你——余华《第七天》4可是我再也没遇到一个像福贵这样令我难忘的人了,对自己的经历如此清楚,

    语文
  • 心情低落的图片压抑,心情低落的图片发朋友圈

    心情压抑的图片(心太累没人理解的说说带图片)1、有时候很想找个人倾诉一下,却又不知从何说起,最终是什么也不说,只想快点睡过去,告诉自己,明天就好了。有时候,突然会觉得

    语文
  • 经典古训100句图片大全,古训名言警句

    古代经典励志名言100句译:好的药物味苦但对治病有利;忠言劝诫的话听起来不顺耳却对人的行为有利。3良言一句三冬暖,恶语伤人六月寒。喷泉的高度不会超过它的源头;一个人的事

    语文
  • 关于青春奋斗的名人名言鲁迅,关于青年奋斗的名言鲁迅

    鲁迅名言名句大全励志1、世上本没有路,走的人多了自然便成了路。下面是我整理的鲁迅先生的名言名句大全,希望对你有所帮助!当生存时,还是将遭践踏,将遭删刈,直至于死亡而

    语文
  • 三国群英单机版手游礼包码,三国群英手机单机版攻略

    三国群英传7五神兽洞有什么用那是多一个武将技能。青龙飞升召唤出东方的守护兽,神兽之一的青龙。玄武怒流召唤出北方的守护兽,神兽之一的玄武。白虎傲啸召唤出西方的守护兽,

    语文
  • 不收费的情感挽回专家电话,情感挽回免费咨询

    免费的情感挽回机构(揭秘情感挽回机构骗局)1、牛牛(化名)向上海市公安局金山分局报案,称自己为了挽回与女友的感情,被一家名为“实花教育咨询”的情感咨询机构诈骗4万余元。

    语文