2017年上海市高中数学试卷-高中数学面试试教视频下载

高中数学必修4知识点
第一章 三角函数
?
正角:按逆时针方向旋转形成的角
?
1、任意角
?
负角:
按顺时针方向旋转形成的角
?
零角:不作任何旋转形成的角
?
2、
象限的角:在直角坐标系内,顶点与原点重合,始边与x轴的非负半轴重合,角的终边落
在第几象限,就
是第几象限的角;角的终边落在坐标轴上,这个角不属于任何
象限,叫做轴线角。
??
第二象限角的集合为
?
?
k?360?90?k?360?180,k??
?
第三象限角的集合为
?
?
k?360?180?
??k?360?270,k??
?
第四象限角的集合为
?
?<
br>k?360?270?
?
?k?360?360,k??
?
终边在
x
轴上的角的集合为
?
??
?k?180,k??
?
终边在
y
轴上的角的集合为
?
??
?k?180
?90,k??
?
终边在坐标轴上的角的集合为
?
??
?k?90,k??
?
第一象限角的集合为
?
k?360?
?
?k?360?90,k??
oooo
ooo
oooo
oooo
o
oo
o
3、与角
?
终边相同的角,连同角
?
在内,都可以表示为集合{
?
|
?
?
?
?k?360,k?Z
}
4、弧度制:
(1)定义:等于半径的弧所对的圆心角叫做1弧度的角,用弧度做单位叫弧度制。
半径为<
br>r
的圆的圆心角
?
所对弧的长为
l
,则角
?
的弧度数的绝对值是
?
?
(2)度数与弧度数的换算:
360
?2
?
,
180?
?
rad,1
rad
?(
o?
?
l
.
r
180
?)
?
?57.30
?
?57
?
18
'
注:角度与弧度的相互转化:设一个角的角度为
n
,弧度为
?
;
o
- 1 -
①角度化为弧度:
n
o
?n
o
?
?
180
o
?
n
?
o
180
o
?
180
?
?
?
?<
br>180
,②弧度化为角度:
?
?
?
?
?
<
br>??
??
(3)若扇形的圆心角为
?
(
?
是角的弧度
数),半径为
r
,则:
弧长公式:
?
l?
n
?
(用度表示的),
?
l?|
?
|r(用弧度表示的)
;
180
n
?
r
2
11
(用度表示的)
?
S
扇
?|
?
|r
2
?lr
(用弧度表示的
)
扇形面积:?
s
扇
?
360
22
5、三角函数:
(1)定义①:设
?
是一个任意大小的角,
?的终边上任意一点
?
的坐标
P(x,y)
是
?x,y
?
,它与原点的距离是
rOP?r?
则
sin
?
?
y
?
x
2
?y
2
?0
,
?
yxy
,
cos
?
?
,
tan
?
?
?<
br>x?0
?
rrx
o
y
x
定义②:设
α
是一个任意角,它的终边与单位圆交于点
P
(x,y), 那么v叫做
α
的正弦,记作sin
α
,即sin
α
?<
br>y;u叫做
α
的余
弦,记作cos
α
,即cos
α
=x;
当
α
的终边不在y轴上时,
P(x,y)
o
x
yy
叫做
α
的正切,记作tan
α
,
即tan
α
=
.
xx
(2)三角函数值在各象限的符号:口诀:全正,S正,T正,C正。
y
y
y
_
_
+
+
+
+
_
O
_
x
_
O
x
O
+
+
_
x
口诀:第一象限全为正;
sin
?
cos
?
tan
?
二正三切四余弦.
(3)特殊角的三角函数值
?
的角度
0?
30?
45?
60?
90?
120?
135?
150?
180?
2
?
3
3
?
4
5
?
6
?
的弧度
0
?
6
?
4
?
3
-
2 -
?
2
?
sin
?
cos
?
0
1
2
3
2
3
3
2
2
2
2
3
2
1
0
3
2
2
2
1
2
0
1
0
1
2
?
1
?
2
?
3
2
22
?1
0
tan
?
1
3
不存在
?3
?1
?
3
3
?
的角度
210?
225?
240?
270?
300?
315?
330?
360?
?
的弧度
sin
?
7
?
6
5
?
4
4
?
3
3
?
2
5
?
3
?
7
?
4
11
?
6
2
?
0
1
3
2
?
?
?
2
2
2
?
?1
1
3
2
?
?
2
2
2
cos
?
1
3
2
?
?
2
2
2
3
3
0
1
2
2
2
3
2
?
3
3
1
0
tan
?
1
3
不存在
?3
?1
(4)三角函数线:如下图
(5)同角三角函数基本关系式
(1)
平方关系:
sin
?
?
cos
?
?
1
(2)商数关系:
tan
?
?
22
sin
?
cos
?
6、三角函数的诱导公式:
?
1
?
si
n
?
2k
?
?
?
?
?sin
?
,
cos
?
2k
?
?
?
?
?cos
?
,
tan
?
2k
?
?
?
?
?t
an
?
?
k??
?
.
口诀:终边相同的角的同一三角函数值相等.
?
2
?
sin
?
?
?
?
??sin
?
,
cos
??
?
?
?cos
?
,
tan
?
??
?
??tan
?
.
- 3 -
?
3
?
sin
?
?
?
?
?
?sin
?
,
cos
?
?
?
?
?
??cos
?
,
tan
?
?
?
?
???tan
?
.
?
4
?
sin
?
?
?
?
?
??sin
?
,
cos
?
?
?
?
?
??cos
?
,
tan
?
?
?
?
?
?tan
?
.
?
5
?
sin
?
2
?
?
?
?
??sin
?
,
cos
?
2
?
?
?
?
?c
os
?
,
tan
?
2
?
?
?
?<
br>??tan
?
.
口诀:函数名称不变,正负看象限.
?
6
?
sin
?
?
??
?
??
?
?<
br>?
?
?
?cos
?
,
cos
?
?<
br>?
?
?
sin
?
,
tan
?
??
?
?
cot
?
.
?
2
??
2
??
2
?
??
?
??
?
?
?
?
?
?cos
?
,
cos
?
?
?
?
??
sin
?
,
tan
?
?
?
?
??
cot
?
.
?
2
??
2
??
2
?
?
?
7
?
sin
??
?
口诀:正弦与余弦互换,正负看象限.
?
诱导公式记忆口诀:“奇
变偶不变,符号看象限”。
即将括号里面的角拆成
?
?k?
2
??
的形式。
7、正弦函数、余弦函数和正切函数的图象与性质:
函
数
y?sinx
y?cosx
y?tanx
图
象
定
R
R
?
?
?
xx?k
?
?,k??
??
2
??
- 4 -
义
域
值域:
?
?1,1
?
当
x?
2
k
?
?
值域:
?
?1,1
?
值域:
R
值
域
?
2
?
k??
?
时,
?
2
当
x?2k
?
?
k??
?
时,
既无最大值也无最小值
y
max
?1
;当
x?2k
?
?
y
max
?1
;当
x?2k
?
?<
br>?
?
k??
?
时,
y
min
??1
. 周期为
y?sinx
是周期函数;
?
k??
?
时,y
min
??1
.
y?cosx
是周期函数;周期
周
y?tanx
是周期函数;
周
期
T?2k
?
,k?Z
且
k?0
;
为
T?2k
?
,k?Z
且
k?0
; 期为
T?k
?
,k?Z
且
最小正周期为
2
?
性
最小正周期为
2
?
奇
偶
性
在
?
2
k
?
?
单
调
奇函数
k?0
;最小正周期为
?
偶函数 奇函数
?
?
?
2
,2
k
?
?
?
?
2
?
?
在
?
2k
?
?
?
,2k<
br>?
?
?
k??
?
上
是增函数;在
?
2k
?
,2k
?
?
?
?
在
?<
br>k
?
?
?
k??
?
上是增函数;在
??
?
2
,
k
?
?
?
?
?
2
?
?
3
?
??
2k
?
?
,2k
?
?
?
性
?
22
??
?
k??
?
上是减函数.
?
k??
?
上是增函数.
?
k??
?
上是减函数.
对
称
对称轴
x?k
?
?
性
对称中心对称中心
?
k
?
,0
??
k??
?
对称中心
?
2
?
k??
?
?
?
?
k
?
?,0
?
?
k??
?
?
2
??
对称轴
x?k
?
?
k??
?
?
k
?
?
,0
?
?
k??
?
?
2
??
无对称轴
8、(1)
y??sin<
br>?
?
x?
?
?
?b
的图象与
y?sinx<
br>图像的关系:
图象上每个点的横坐标不变,纵坐标变为原来的A倍
- 5 -
①振幅变换:
y?sinx
y?Asinx
图象上每个点的横坐标变为原来的
1
?
倍,纵坐标不变
②周期变换:
y?sinx
y?sin
?
x
图象整体向左(
?
?
0
)或向右(
?
?0
)平移
?
个单位
③相位变换:
y?sinx
y?sin(x?
?
)
图象整体向上(
b?0
)或向下(
b?0
)
平移
④平移变换:
y?Asin(
?
x?
?
)
y??sin
?
?
x?
?
?
?b
b
个单位
注:函数
y?sinx
的图象怎样变换得到函
数
y?Asin
?
?
x?
?
?
?B
的图象
:(两种方法)
① 先平移后伸缩:
y?sinx
平移
|
?
|
个单位
y?sin
?
x?
?
?
(左加右减)
纵坐标不变
y?sin(
?
x?
?
)
横坐标变为原来的
|
1
?
|
倍
横坐标不变
纵坐标变为原来的A倍
平移
|B|
个单位
(上加下减)
y?Asin
?
?
x?
?
?
y?Asin
?
?
x?
?
?
?B
② 先伸缩后平移:
y?sinx
纵坐标不变
y?sin
?
x
横坐标变为原来的<
br>|
平移
?
?
1
?
|
倍
个单位
y?sin(
?
x?
?
)
y?Asin
?
?
x?
?
?
(左加右减)
横坐标不变
纵坐标变为原来的A倍
平移
|B|
个单位
y?Asin
?
?
x?
?
?
?B
- 6 -
(上加下减)
(2)函数
y?As
in(
?
x?
?
)?b
①振幅:
?
;②周期:??
定义域:
R
值域:
?
?A?b,A?b
?
当
?
x?
?
?
2
k
?
?
当
?
x?
?
?
2
k
?
?
(A?0,
?
?0)
的性质:
;③频率:
f?
2
?
?
1
?
;④相位:
?
x?
?
;⑤初相:
?
.
?
?2
?
?
2
?
k??
?
时,
y
m
ax
?A?b
;
?
k??
?
时,
y
min
??A?b
.
(A?0,
?
?0)
是周期函数;周期为
T?
?
2
周期性:函数
y?Asin(
?
x?
?
)?b
单调
性:
?
x?
?
在
?
2
k
?
?2
?
?
?
?
?
2
,2
k
?
?
?
?
?
k??
?
上时是增函数; <
br>?
2
?
?
x?
?
在
?
2k
?
?
对称性:对称中心为
?
?
?
?
2
,2
k
?
?
3
?
?
?
k??
?
上时是
减函数.
2
?
?
?
?
k
?
?
?
?
,0
?
?
k??
?
;对称轴为
?
x?
?
?k
?
?
?
k??
?
2
?
?
?
第二章 平面向量
1、向量定义:既有大小又有方向的量叫做向量,向量都可用同一平面内的有向线段表示.
2、零向量:长度为0的向量叫零向量,记作
0
;零向量的方向是任意的.
e??
3、单位向量:长度等于1个单位长度的向量叫单位向量;与向量
a
平行的单位
向量:
a
|a|
.
4、平行向量(共线向量):方向相同或相反的非零向量
叫平行向量也叫共线向量,记作
ab
;
规定
0
与任何向量平行.
5、相等向量:长度相同且方向相同的向量叫相等向量,零向量与零向量相等.
注意:
任意两个相等的非零向量,都可以用同一条有向线段来表示,并且与有向线段的起点无关。
- 7
-
6、向量加法运算:
⑴三角形法则的特点:
首尾相接
⑵平行四边形法则的特点:
起点相同
⑶运算性质:
C
r
a
r
rr
r
①交换律:
a?b?b?a
;
r
r
r
rr
rr
r
r
rr
②结合律:
a?
b?c?a?b?c
;③
a?0?0?a?a
.
????
r
b
?
?
ruuuruuur
r
r
uuu
a?b??C?????C
⑷坐标运算:设
a?
?
x
1
,y
1
?r
r
,
b?
?
x
2
,y
2
?
,则
r
r
a?b?
?
x
1
?x
2
,y
1
?y
2
?
.
7、向量减法运算:
⑴三角形法则的特点:共起点,连终点,方向指向被减向量.
r
r
⑵坐标运
算:设
a?
?
x
1
,y
1
?
,
b
?
?
x
2
,y
2
?
,则
r
r<
br>a?b?
?
x
1
?x
2
,y
1
?y
2
?
.
设
?
、
?
两点的坐标分别为?
x
1
,y
1
?
,
?
x
2<
br>,y
2
?
,则
uuur
???
?
x
2
?x
1
,y
2
?y
1
?
.
8、向量数乘运算:
⑴实数
?
与向量
a
的积是一个向量的
运算叫做向量的数乘,记作
?
a
.
①
r
r
?
a?
?
a
;
r
r
rr
②当
?
?0
时,
?
a
的方向与<
br>a
的方向相同;当
?
?0
时,
?
a
的方向与
a
的方向相反;
r
r
r
r
当
?
?0
时,
?
a?0
.
r
r
r
r
rrrrr
⑵运算律:①
?
?
?
a
?
?
?
??
?
a
;②
?
?
?
?
?
a?
?
a?
?
a
;③
?
a?b?
?a?
?
b
.
??
- 8 -
⑶坐标运算:设
a?
?
x,y
?
,则
?
a?<
br>?
?
x,y
?
?
?
?
x,
?
y
?
.
r
r
r
r
r
rr
r<
br>9、向量共线定理:向量
aa?0
与
b
共线,当且仅当有唯一一个实数
?
,使
b?
?
a
.
??
r
r<
br>r
r
r
rr
r
设
a?
?
x
1
,y
1
?
,
b?
?
x
2
,y<
br>2
?
,其中
b?0
,则当且仅当
x
1
y2
?x
2
y
1
?0
时,向量
a
、bb?0
??
共线.
uruur
10、平面向量基本定理:如果
e
1
、
e
2
是同一平面内的两个不共线向量,那么对于这一平面内
uruur
uruur
r
r
的任意向量
a
,有且只
有一对实数
?
1
、
?
2
,使
a?
?
1
e
1
?
?
2
e
2
.(不共线的向量<
br>e
1
、
e
2
作为
这一平面内所有向量的一组基底)
11、分点坐标公式:设点
?
是线段
?
1
?
2上的一点,
?
1
、
?
2
的坐标分别是
?
x
1
,y
1
?
,
?
x
2
,y<
br>2
?
,
uuuruuur
?
x?
?
x
2
y
1
?
?
y
2
?
,
当
?
1
??
?
??
2
时,点
?
的坐标是<
br>?
1
?
.
1?
?
1?
?
??
12、平面向量的数量积:
r
r
r
r
r
r
r
r
oo
⑴定义:<
br>a?b?abcos
?
a?0,b?0,0?
?
?180
.零
向量与任一向量的数量积为
0
.
??
r
r
r
r<
br>r
r
r
r
r
r
r
r
⑵性质:设a
和
b
都是非零向量,则①
a?b?a?b?0
.②当
a
与
b
同向时,
a?b?ab
;
r
r
r<
br>r
r
r
r
r
rrr
2
r
2
rrr
r
r
当
a
与
b
反向时,
a?b??
ab
;
a?a?a?a
或
a?a?a
.③
a?b?ab.
r
r
rr
r
r
r
r
r
r
r
r
rrr
r
r
⑶运算律:①
a?b?b?a;②
?
?
a
?
?b?
?
a?b?a?
?
b
;③
a?b?c?a?c?b?c
.
????
??<
br>r
r
r
r
⑷坐标运算:设两个非零向量
a?
?
x
1
,y
1
?
,
b?
?
x
2<
br>,y
2
?
,则
a?b?x
1
x
2
?
y
1
y
2
.
若
a?
?
x,y
?
,则
a?x?y
,或
a?
22
r
r
2r
x
2
?y
2
.
r
r
r
r
设
a?
?
x
1
,y
1
?
,
b?
?
x
2
,y
2
?
,则
a?b?x<
br>1
x
2
?y
1
y
2
?0
.
r
r
r
r
r
r
设
a
、
b
都是非零向量,
a?
?
x
1
,y
1
?
,
b?
?
x
2
,y
2
?
,
?
是
a
与
b
的夹角,则
r
r
x
1
x
2
?y
1
y
2
a?b
cos
?
?
r
r
?
.
2222
ab
x
1
?y
1
x
2
?y
2
第三章 三角恒等变形
1、同角三角函数基本关系式
- 9 -
(1)平
方关系:
sin
?
?
cos
?
?
1
(2)商数关系:
tan
?
?
22
sin
?
cos
?
(3)倒数关系:
tan
?
cot
?
?1
tan
2
?
1
2
sin
?
?
;
cos
?
?
2<
br>2
1?tan
?
1?tan
?
2
注意:
sin
?
,cos
?
,tan
?
按照以上公式可以“知一求二”
2、两角和与差的正弦、余弦、正切
S
(
?
?
?
)
:
sin(
?
?
?
)?
sin
?
cos
?
?cos
?
sin
?
S
(
?
?
?
)
:
sin(
??
?
)?sin
?
cos
?
?cos
?
sin
?
C
(
?
?
?
)
:<
br>cos(a?
?
)?cos
?
cos
?
?sin?
sin
?
C
(
?
?
?
)
:
cos(a?
?
)?cos
?
cos
??sin
?
sin
?
T
(
?
?
?
)
:
tan(
?<
br>?
?
)?
T
(
?
?
?
)
:
tan(
?
?
?
)?
tan
?
?tan<
br>?
1?tan
?
tan
?
ta
n
?
?tan
?
1?tan
?
tan
?
正切和公式:
tan
?
?tan
?
?tan(
?<
br>?
?
)?(1?tan
?
tan
?
)
3、辅助角公式:
asinx?bcosx?a
2
?b
2
??
??
ab
?
sinx?cosx
?
222
2
a?b
?
a?b
?
?a
2
?b
2
(sinx?cos
?
?cosx?sin
?
)?a
2
?
b
2
?sin(x?
?
)
(其中
?
称为
辅助角,
?
的终边过点
(a,b)
,
tan
?
?<
br>4、二倍角的正弦、余弦和正切公式:
S
2
?
:
sin2
?
?2sin
?
cos
?
b
)
a
C
2
?
:
cos2
?
?cos
2
?
?sin
2
?
?1?2sin
2
?
?2cos
2
?
?1
T
2
?
:
tan2
?
?
2tan
?
1?tan
2
?
2|sin
?
|
,
1?cos2
?
?2|cos
?
|
;
*二倍角公式的常用变形:①、
1?cos2
?
?
- 10 -
②、
1
?
1
cos2
?
?|sin
?
|
,
1
?
1
cos2
?
?|cos
?
|
22
22
4
422
sin
2
2
?
③
sin
?
?cos
?
?1?2sin
?
cos
?
?1?
;
2
cos
4
?
?sin
4
?
?cos2
?
;
*降次公式:
sin
?
cos
?
?
1
1?cos2
?
11
sin2
?
sin
2
?
???cos2
?
?
2222
1?cos2
?
11
cos
2
?
??c
os2
?
?
222
5、*半角的正弦、余弦和正切公式:
sin
?
2
??
1?cos
?
?
1?cos?
;
cos??
,
222
sin
?
1?cos
?
1?cos
?
??
si
n
?
1?cos
?
1?cos
?
tan
?
2
??
6、同角三角函数的常见变形:(活用“1”)
22
①
sin
?
?1?cos
?
;
sin
?
??1?cos
2
?
;
cos
2
?
?1?sin
2
?
;
cos
?
??1?sin
2
?
;
cos
2
?
?sin
2
?
2
?
②
tan
?
?cot
?
?
,
sin
?
cos
?sin2
?
cos
2
?
?sin
2
?
2cos2
?
cot
?
?tan
?
???2cot2
?
sin
?
cos
?
sin2
?
③
(sin
?
?cos
?
)
2
?1?2sin?
cos
?
?1?sin2
?
;
1?sin2
?
?|sin
?
?cos
?
|
7、补充公式:
?
①万能公式
2tan
sin
?
?
1?tan
?
②积化和差公式
?
2
2
1?tan
2
;
cos
?
?
?
?
2
;
tan
?
?
2
2tan
1?tan
?
2
2
?<
br>2
1?tan
2
?
2
- 11 -
1
[sin(
?
?
?
)?sin
(
?
?
?
)]
2
1
co
s
?
sin
?
?
[sin(
?
?
?
)
?
sin(
?
?
?
)]
2
1
cos
?
cos
?
?
[cos(
?
?
?
)
?
cos(
?
??
)]
2
1
sin
?
sin
?
??
[cos(
?
?
?
)
?
c
os(
?
?
?
)]
2
sin
?
cos
?
?
?
③和差化积公式
sin
?
?sin
?
?2sin
?
?
?<
br>2222
?
?
??
?
?
?
?
??<
br>?
?
cos
?
?cos
?
?2cos
;
cos
?
?cos
?
??2sin
cossin
2222
注:带*号的公式表示了解,没带*公式为必记公式
cos
?
?
?
;
sin
?
?sin?
?2cos
?
?
?
sin
?
?
?<
br>
- 12 -
高中数学重点知识梳理-amc10美国高中数学竞赛
高中数学获奖课件 ppt模板-高中数学指对幂
高中数学买什么题来做-高中数学联赛 数列
高中数学靠-中公高中数学说课稿
高中数学学案导学必修四答案-高中数学勾股
北京高中数学知识应用竞赛论文-高中数学 30张
秦皇岛一对一高中数学老师-18年高中数学教材大纲
高中数学考试检讨500字以上-高中数学会考公式常考
-
上一篇:人教版新课标高中数学必修四 全册教案
下一篇:高中数学必修四三角函数重要公式