高中数学同步-高中数学几何代数一起讲吗

精品教育
第二章 平面向量
2.1平面向量的实际背景及基本概念
练习(P77)
1、略. 2、
. 这两个向量的长度相等
但它们不等.
3、
.
4、(1)它们的终点相同;
(2)它们的终点不同.
习题2.1 A组(P77)
1、
(2).
3、与相等的向量有:;与相等的向量有:;
与相等的向量有:.
4、与相等的向量有:;与相等的向量有:;
与相等的向量有:
-可编辑-
精品教育
5、.
6、(1)×; (2)√; (3)√; (4)×.
习题2.1 B组(P78)
1、海拔和高度都不是向量.
2、相等的向量共有24对.
模为1的向量有18对. 其中与同向的共有6对
与反向的也有6对;与同向的共有3对
与反向的也有6对;模为的向量共有4对;模为2的向量有2对
2.2平面向量的线性运算
练习(P84)
1、图略. 2、图略. 3、(1);
(2).
4、(1); (2); (3); (4).
练习(P87)
1、图略. 2、
.
3、图略.
练习(P90)
1、图略.
2、
.
说明:本题可先画一个示意图
根据图形容易得出正确答案. 值得注意的是与反向.
3、(1); (2); (3); (4).
4、(1)共线; (2)共线.
5、(1); (2); (3).
6、图略.
习题2.2 A组(P91)
1、(1)向东走20 km;
(2)向东走5 km; (3)向东北走km;
(4)向西南走km;(5)向西北走km;(6)向东南走km.
2、飞机飞行的路程为700 km;两次位移的合成是向北偏西53°方向飞行500 km.
3、解:如右图所示:表示船速
表示河水
的流速
以、为邻边作□
则
表示船实际航行的速度.
在Rt△ABC中
所以
因为
由计算器得
所以
实际航行的速度是
-可编辑-
精品教育
船航行的方向与河岸的夹角约为76°.
4、(1); (2); (3); (4); (5); (6); (7).
5、略
6、不一定构成三角形. 说明:结合向量加法的三角形法则
让学生理解
若三个非零向量的和为零向量
且这三个向量不共线时
则表示这三个向量的有向线段一定能构成三角形.
7、略.
8、(1)略; (2)当时
9、(1); (2); (3);
(4).
10、
.
11、如图所示
.
12、
.
13、证明:在中
分别是的中点
所以且
即;
同理
所以.
习题2.2 B组(P92)
1、丙地在甲地的北偏东45°方向
距甲地1400 km.
2、不一定相等
可以验证在不共线时它们不相等.
-可编辑-
精品教育
3、证明:因为
而
所以.
4、(1)四边形为平行四边形
证略
(2)四边形为梯形.
证明:∵
∴且
∴四边形为梯形.
(3)四边形为菱形.
证明:∵
∴且
∴四边形为平行四边形
又
∴四边形为菱形.
5、(1)通过作图可以发现四边形为平行四边形.
证明:因为
而
所以
所以
即∥.
因此
四边形为平行四边形.
2.3平面向量的基本定理及坐标表示
练习(P100)
1、(1)
; (2)
;
(3)
; (4)
.
2、
.
3、(1)
; (2)
;
(3)
; (4)
-可编辑-
精品教育
4、∥. 证明:
所以.所以∥.
5、(1); (2); (3).
6、或
7、解:设
由点在线段的延长线上
且
得
∴ ∴
∴
所以点的坐标为.
习题2.3 A组(P101)
1、(1);
(2);
说明:解题时可设
利用向量坐标的定义解题.
2、
3、解法一:
而
.
所以点的坐标为.
解法二:设
则
由可得
解得点的坐标为.
4、解:
.
.
所以
点的坐标为;
所以
点的坐标为;
所以
点的坐标为.
5、由向量共线得
3).
-可编辑-
(
精品教育
所以
解得.
6、
所以与共线.
7、
所以点的坐标为;
所以点的坐标为; 故
习题2.3 B组(P101)
1、
.
当时
所以;
当时
所以;
当时
所以;
当时
所以.
2、(1)因为
所以
所以、、三点共线;
(2)因为
所以
所以、、三点共线;
(3)因为
所以
所以、、三点共线.
3、证明:假设
则由
得.
所以是共线向量
与已知是平面内的一组基底矛盾
因此假设错误
-可编辑-
精品教育
. 同理.
综上.
4、(1). (2)对于任意向量
都是唯一确定的
所以向量的坐标表示的规定合理.
2.4平面向量的数量积
练习(P106)
1、.
2、当时
为钝角三角形;当时
为直角三角形.
3、投影分别为
0
. 图略
练习(P107)
1、
.
2、
.
3、
.
习题2.4 A组(P108)
1、
.
2、与的夹角为120°
.
3、
.
4、证法一:设与的夹角为.
(1)当时
等式显然成立;
(2)当时
与
与的夹角都为
所以
所以 ;
-可编辑-
精品教育
(3)当时
与
与的夹角都为
则
所以 ;
综上所述
等式成立.
证法二:设
那么
所以 ;
5、(1)直角三角形
为直角.
证明:∵
∴
∴
为直角
为直角三角形
(2)直角三角形
为直角
证明:∵
∴
∴
为直角
为直角三角形
(3)直角三角形
为直角
证明:∵
∴
∴
为直角
为直角三角形
6、.
7、.
-可编辑-
精品教育
于是可得
所以.
8、
.
9、证明:∵
∴
∴为顶点的四边形是矩形.
10、解:设
则
解得
或.
于是或.
11、解:设与垂直的单位向量
则
解得或.
于是或.
习题2.4 B组(P108)
1、证法一:
证法二:设
.
先证
由得
即
而
所以
再证
由得
即
因此
2、.
3、证明:构造向量
.
-可编辑-
精品教育
所以
∴
4、的值只与弦的长有关
与圆的半径无关.
证明:取的中点
连接
则
又
而
所以
5、(1)勾股定理:中
则
证明:∵
∴.
由
有
于是
∴
(2)菱形中
求证:
证明:∵
∴.
∵四边形为菱形
∴
所以
∴
所以
(3)长方形中
求证:
证明:∵ 四边形为长方形
所以
所以
∴.
∴
所以
所以
(4)正方形的对角线垂直平分. 综合以上(2)(3)的证明即可.
2.5平面向量应用举例
习题2.5 A组(P113)
-可编辑-
精品教育
1、解:设
则
由得
即
代入直线的方程得. 所以
点的轨迹方程为.
2、解:(1)易知
∽
所以.
(2)因为
所以
因此三点共线
而且
同理可知:
所以
3、解:(1);
(2)在方向上的投影为.
4、解:设
的合力为
与的夹角为
则
;
与的夹角为150°.
习题2.5 B组(P113)
1、解:设在水平方向的速度大小为
竖直方向的速度的大小为
则
.
设在时刻时的上升高度为
抛掷距离为
则
所以
最大高度为
最大投掷距离为.
2、解:设与的夹角为
合速度为
与的夹角为
-可编辑-
精品教育
行驶距离为.
则
.
∴.
所以当
即船垂直于对岸行驶时所用时间最短.
3、(1)
解:设
则. .
将绕点沿顺时针方向旋转到
相当于沿逆时针方向旋转到
于是
所以
解得
(2)
解:设曲线上任一点的坐标为
绕逆时针旋转后
点的坐标为
则
即
又因为
所以
化简得
第二章
复习参考题A组(P118)
1、(1)√; (2)√; (3)×;
(4)×.
2、(1); (2); (3); (4); (5);
3、
4、略解:
5、(1)
;
(2)
; (3).
6、与共线.
证明:因为
所以. 所以与共线.
-可编辑-
6).
(
精品教育
7、. 8、. 9、.
10、
11、证明:
所以.
12、. 13、
. 14、
第二章 复习参考题B组(P119)
1、(1); (2); (3);
(4); (5); (6); (7).
2、证明:先证.
.
因为
所以
于是.
再证.
由于
由可得
于是
所以.
【几何意义是矩形的两条对角线相等】
3、证明:先证
又
所以
所以
再证.
由得
即
所以 【几何意义为菱形的对角线互相垂直
如图所示】
4、
而
所以
5、证明:如图所示
由于
所以
所以
所以
同理可得
-可编辑-
精品教育
所以
同理可得
所以为正三角形.
6、连接.
由对称性可知
是的中位线
.
7、(1)实际前进速度大小为(千米/时)
沿与水流方向成60°的方向前进;
(2)实际前进速度大小为千米/时
沿与水流方向成的方向前进.
8、解:因为
所以
所以
同理
所以点是的垂心.
9、(1); (2)垂直;
(3)当时
∥;当时
夹角的余弦;
(4)
第三章 三角恒等变换
3.1两角和与差的正弦、余弦和正切公式
练习(P127)
1、.
.
2、解:由
得;
所以.
3、解:由
是第二象限角
得;
所以.
-可编辑-
精品教育
4、解:由
得;
又由
得.
所以.
练习(P131)
1、(1); (2); (3); (4).
2、解:由
得;
所以.
3、解:由
是第三象限角
得;
所以.
4、解:.
5、(1)1; (2); (3)1;
(5)原式=;
(6)原式=.
6、(1)原式=;
(2)原式=;
(3)原式=;
(4)原式=.
7、解:由已知得
即
所以. 又是第三象限角
于是.
因此.
练习(P135)
1、解:因为
所以
又由
得
所以
2、解:由
得
所以
所以
3、解:由且可得
4);
-可编辑-
(
精品教育
又由
得
所以.
4、解:由
得. 所以
所以
5、(1);
(2);
(3)原式=; (4)原式=.
习题3.1
A组(P137)
1、(1);
(2);
(3);
(4).
2、解:由
得
所以.
3、解:由
得
又由
得
所以.
4、解:由
是锐角
得
因为是锐角
所以
又因为
所以
所以
5、解:由
得
又由
得
所以
6、(1); (2);
7、解:由
得.
3).
-可编辑-
(
精品教育
又由
是第三象限角
得.
所以
8、解:∵且为的内角
∴
当时
不合题意
舍去
∴
∴
9、解:由
得.
∴.
∴.
.
10、解:∵是的两个实数根.
∴
.
∴.
11、解:∵
∴
12、解:∵
∴
∴
又∵
∴
13、(1); (2); (3); (4);
(5); (6); (7);
(8);
14、解:由
得
∴
9); (10).
-可编辑-
(
精品教育
15、解:由
得
∴
16、解:设
且
所以.
∴
17、解:
.
18、解:
即
又
所以
∴
∴
19、(1); (2); (3); (4).
习题3.1
B组(P138)
1、略.
2、解:∵是的方程
即的两个实根
∴
∴
由于
所以.
3、反应一般的规律的等式是(表述形式不唯一)
(证明略)
本题是开放型问题
反映一般规律的等式的表述形式还可以是:
其中
等等
思考过程要求从角
三角函数种类
式子结构形式三个方面寻找共同特点
从而作出归纳. 对认识三角函数式特点有帮助
证明过程也会促进推理能力、运算能力的提高.
-可编辑-
精品教育
4、因为
则
即
所以
3.2简单的三角恒等变换
练习(P142)
1、略. 2、略. 3、略.
4、(1). 最小正周期为
递增区间为
最大值为;
(2). 最小正周期为
递增区间为
最大值为3;
(3). 最小正周期为
递增区间为
最大值为2.
习题3.2 A组( P143)
1、(1)略;
(2)提示:左式通分后分子分母同乘以2;
(4)提示:用代替1
用代替;
(5)略; (6)提示:用代替;
(7)提示:用代替
用代替; (8)略.
2、由已知可有......①
......②
(1)②×3-①×2可得
(2)把(1)所得的两边同除以得
注意:这里隐含与①、②之中
3、由已知可解得. 于是
∴
4、由已知可解得
于是.
5、
最小正周期是
递减区间为.
习题3.2 B组(P143)
1、略.
2、由于
所以
即
得
3、设存在锐角使
-可编辑-
3)略; (
精品教育
所以
又
又因为
所以
由此可解得
所以.
经检验
是符合题意的两锐角.
4、线段的中点的坐标为. 过作垂直于轴
交轴于
.
在中
.
在中
.
于是有
5、当时
;
当时
此时有;
当时
此时有;
由此猜想
当时
6、(1)
其中
所以
的最大值为5
最小值为﹣5;
(2)
其中
-可编辑-
精品教育
所以
的最大值为
最小值为;
第三章 复习参考题A组(P146)
1、. 提示:
2、. 提示:
3、1.
4、(1)提示:把公式变形;
(2); (3)2; (4). 提示:利用(1)的恒等式.
5、(1)原式=;
(2)原式=
=;
(3)原式=
=;
(4)原式=
6、(1); (2);
(3). 提示:;
(4).
7、由已知可求得
于是.
8、(1)左边=
=右边
(2)左边=
=右边
(3)左边=
=右边
(4)左边=
=右边
9、(1)
递减区间为
(2)最大值为
最小值为.
10、
(1)最小正周期是;
(2)由得
所以当
即时
的最小值为.
取最小值时的集合为.
11、
(1)最小正周期是
最大值为;
(2)在上的图象如右图:
-可编辑-
精品教育
12、.
(1)由得;
(2).
13、如图
设
则
所以
当
即时
的最小值为.
第三章
复习参考题B组(P147)
1、解法一:由
及
可解得
所以
.
解法二:由 得
所以.
又由
得.
因为
所以.
而当时
;
当时
.
所以
即
所以
.
2、把两边分别平方得
把两边分别平方得
把所得两式相加
得
-可编辑-
精品教育
即
所以
3、由 可得
.
又
所以
于是.
所以
4、
由得
又
所以
所以
所以
5、把已知代入
得.
变形得
本题从对比已知条件和所证等式开始
可发现应消去已知条件中含的三角函数.
考虑
这两者又有什么关系?及得上解法.
5、6两题上述解法称为消去法
6、.
由 得
于是有. 解得.
的最小值为
此时的取值集合由
求得为
7、设
则
-可编辑-
精品教育
于是
又的周长为2
即
变形可得
于是.
又
所以
.
8、(1)由
可得
解得或(由
舍去)
所以
于是
(2)根据所给条件
可求得仅由表示的三角函数式的值
例如
等等.
??
??
??
??
数学必修四答案详解
与其到头来收拾残局,甚至做成蚀本生意,倒不如当时理智克制一些.
-可编辑-
适合高中数学老师的微信头像-高中数学课程标准2014版
高中数学必修二简单几何体-2019全国高中数学联赛获奖
高中数学定积分-高中数学微课制作软件
高中数学集合视频教学-2018天津高中数学课程改革
高中数学什么时候学导数-高中数学绝对值不等式高考题型
高中数学导数的教案设计-高中数学重点知识归纳6
成都简阳高中数学教材版本-高中数学直线与圆难题选填题
Q高中数学-高中数学机动是什么意思
-
上一篇:高一数学人教版必修四复习资料
下一篇:人教版高中数学必修4课后习题答案 (2)