关键词不能为空

当前您在: 主页 > 数学 >

高中数学必修四教案

作者:高考题库网
来源:https://www.bjmy2z.cn/gaokao
2020-09-15 14:51
tags:高中数学必修4

高中数学资料书推荐-高中数学试卷讲评的意义


第一章 三角函数
1.1任意角和弧度制
1.1.1任意角
一、 教学目标:
1、知识与技能
(1)推广角的概念、引入大于
360
?
角和负角;(2)理解并掌握正
角、负角、零角的定义;(3)理解任意角以及象限 角的概念;(4)掌
握所有与
?
角终边相同的角(包括
?
角)的表示 方法;(5)树立运动
变化观点,深刻理解推广后的角的概念;(6)揭示知识背景,引发学
生 学习兴趣.(7)创设问题情景,激发学生分析、探求的学习态度,
强化学生的参与意识.
2、过程与方法
通过创设情境:“转体
720
?
,逆(顺)时针旋 转”,角有大于
360
?
角、
零角和旋转方向不同所形成的角等,引入正角、 负角和零角的概念;
角的概念得到推广以后,将角放入平面直角坐标系,引入象限角、非
象限角 的概念及象限角的判定方法;列出几个终边相同的角,画出终
边所在的位置,找出它们的关系,探索具有 相同终边的角的表示;讲
解例题,总结方法,巩固练习.
3、情态与价值
通过本节 的学习,使同学们对角的概念有了一个新的认识,即有
正角、负角和零角之分.角的概念推广以后,知道 角之间的关系.理解
掌握终边相同角的表示方法,学会运用运动变化的观点认识事物.
二、教学重、难点
重点: 理解正角、负角和零角的定义,掌握终边相同角的表示法.
难点: 终边相同的角的表示.


三、学法与教学用具
之前的学习使 我们知道最大的角是周角,最小的角是零角.通过
回忆和观察日常生活中实际例子,把对角的理解进行了 推广.把角放
入坐标系环境中以后,了解象限角的概念.通过角终边的旋转掌握终
边相同角的表 示方法.我们在学习这部分内容时,首先要弄清楚角的
表示符号,以及正负角的表示.另外还有相同终边 角的集合的表示等.
教学用具:电脑、投影机、三角板
四、教学设想
【创设情境】
思考:你的手表慢了5分钟,你是怎样将它校准的?假如你的手表
快了1.25
小时,你应当如何将它校准?当时间校准以后,分针转了多少度?
[取出一个钟表,实 际操作]我们发现,校正过程中分针需要正向或
反向旋转,有时转不到一周,有时转一周以上,这就是说 角已不仅仅
局限于
0
?
?360
?
之间,这正是我们这节课 要研究的主要内容——任意
角.
【探究新知】
1.初中时,我们已学习了
0
?
?360
?
角的概念,它是如何定义的呢?
[展示投影]角可 以看成平面内一条射线绕着端点从一个位置旋
转到另一个位置所成的图形.如图1.1-1,一条射线由 原来的位置
OA

绕着它的端点
O
按逆时针方向旋转到终止位置OB
,就形成角
?
.旋转
开始时的射线
OA
叫做角的始 边,射线的端点
O
叫做叫
?

OB
叫终边,
顶点.
2.如上述情境中所说的校准时钟问题以及在体操比赛中我们经
常听到这样的术语:“转体720
?
” (即转体2周),“转体
1080
?
”(即


转体3周)等,都是遇到大于
360
?
的角以及按不同方向旋转而成 的角.
同学们思考一下:能否再举出几个现实生活中“大于
360
?
的角或按 不
同方向旋转而成的角”的例子,这些说明了什么问题?又该如何区分和
表示这些角呢?
[展示课件]如自行车车轮、螺丝扳手等按不同方向旋转时成不同
的角, 这些都说明了我们研究推广角概念的必要性. 为了区别起见,
我们规定:按逆时针方向旋转所形成的角叫正角(positive angle),
按顺时针方向旋转所形成的角叫负角(negative angle).如果一条射
线没有做任何旋转,我们称它形成了一个零角(zero angle).
[展示课件]如教材图1.1.3(1)中的角是一个正角,它等于
750
?

图1.1.3(2)中,正角
?
?210
?
,负角
???150
?
,
?
??660
?
;这样,我们就
把角的概念推广到了任意角(any angle),包括正角、负角和零角. 为
了简单起见,在不 引起混淆的前提下,“角
?
”或“
?
?
”可简记为
?
.
3.在今后的学习中,我们常在直角坐标系内讨论角,为此我们必
须了解象限角这个概念. < br>角的顶点与原点重合,角的始边与
x
轴的非负半轴重合。那么,
角的终边(除端 点外)在第几象限,我们就说这个角是第几象限角
(quadrant angle).如教材图1.1 -4中的
30
?
角、
?210
?
角分别是第一象
限 角和第三象限角.要特别注意:如果角的终边在坐标轴上,就认为这
个角不属于任何一个象限,称为非象 限角.
4.[展示投影]练习:
(1)(口答)锐角是第几象限角?第一象限角一定是锐角 吗?再分别


就直角、钝角来回答这两个问题.
(2)(回答)今天是星期三那么
7k(k?Z)
天后的那一天是星期几?
7k(k?Z)
天前的那一天是星期几?100天后的那一天是星期几?
5.探究: 将角按上述方法放在直角坐标系中后,给定一个角,就有
唯一的一条终边与之对应.反之,对于直角坐标 系中任意一条射线
OB
(如图1.1-5),以它为终边的角是否唯一?如果不惟一,那么终边 相
同的角有什么关系?请结合4.(2)口答加以分析.
[展示课件]不难发现,在教材图1 .1-5中,如果
?32
?
的终边是
OB
,
那么
3 28
?
,?392
?
角的终边都是
OB
,而
328
?
??32
?
?1?360
?
,
?392
?
??32
?
?(?1)?360
?
.

S?{
?
|
?
??32
?
?k?360
?
,k? Z}
,则
328
?
,?392
?
角都是
S
的元素,
?32
?
角也是
S
的元素.因此,所有与
?32< br>?
角终边相同的角,连同
?32
?
角在内,
都是集合
S
的元素;反过来,集合
S
的任一元素显然与
?32
?
角终 边相
同.
一般地,我们有:所有与角
?
终边相同的角,连同角
?< br>在内,可构
成一个集合
S?{
?
|
?
?
?
?k?360
?
,k?Z}
,即任一与角
?
终边相同的角, 都可以表示成

?
与整数个周角的和.
6.[展示投影]例题讲评
例1. 例1在
0
?
?360
?
范围内,找出与
- 950?12'
角终边相同的角,
并判定它是第几象限角.(注:
0
?
-360
?
是指
0
?
?
?
?360
?< br>)
例2.写出终边在
y
轴上的角的集合.


例3.写 出终边直线在
y?x
上的角的集合
S
,并把
S
中适合不等式
?360
?
?
?

?720
?
的元素
?
写出来.
7.[展示投影]练习
教材
P
6
第3、4、5题.
注意: (1)
k?Z
;(2)
?
是任意角(正角、负角、零角);(3)
终边相同的角不一定相等;但相 等的角,终边一定相同;终边相同的
角有无数多个,它们相差
360
?
的整数 倍.
8.学习小结
(1) 你知道角是如何推广的吗?
(2) 象限角是如何定义的呢?
(3) 你熟练掌握具有相同终边角的表示了吗?会写终边落在
x
轴、
y
轴、直
线
y?x
上的角的集合.
五、评价设计
1.作业:习题1.1 A组第1,2,3题.
2.多举出一些日常生活中的“大于
360
?
的角 和负角”的例子,熟
练掌握他们的表示,
进一步理解具有相同终边的角的特点.




1.1任意角和弧度制
1.1.2弧度制
一、教学目标:
1、知识与技能
(1)理解并掌握弧度制的定义;(2)领会弧度 制定义的合理性;
(3)掌握并运用弧度制表示的弧长公式、扇形面积公式;(4)熟练
地进行 角度制与弧度制的换算;(5)角的集合与实数集
R
之间建立的
一一对应关系.(6) 使学生通过弧度制的学习,理解并认识到角度制
与弧度制都是对角度量的方法,二者是辨证统一的,而不 是孤立、割
裂的关系.
2、过程与方法
创设情境,引入弧度制度量角的大小,通过 探究理解并掌握弧度
制的定义,领会定义的合理性.根据弧度制的定义推导并运用弧长公
式和扇 形面积公式.以具体的实例学习角度制与弧度制的互化,能正
确使用计算器.
3、情态与价值
通过本节的学习,使同学们掌握另一种度量角的单位制---弧度
制,理解并认识到角度制与弧 度制都是对角度量的方法,二者是辨证
统一的,而不是孤立、割裂的关系.角的概念推广以后,在弧度制 下,
角的集合与实数集
R
之间建立了一一对应关系:即每一个角都有唯一
的一 个实数(即这个角的弧度数)与它对应;反过来,每一个实数也都
有唯一的一个角(即弧度数等于这个实 数的角)与它对应,为下一节
学习三角函数做好准备.
二、教学重、难点


重点: 理解并掌握弧度制定义;熟练地进行角度制与弧度制地互
化换算;弧度制的运用.
难点: 理解弧度制定义,弧度制的运用.
三、学法与教学用具
在我们所掌握的知识中,知道角的度 量是用角度制,但是为了以
后的学习,我们引入了弧度制的概念,我们一定要准确理解弧度制的
定义,在理解定义的基础上熟练掌握角度制与弧度制的互化.
教学用具:计算器、投影机、三角板
四、教学设想
【创设情境】
有人问:海口到三亚有多远时,有人回答约250公 里,但也有人
回答约160英里,请问那一种回答是正确的?(已知1英里=1.6公
里) < br>显然,两种回答都是正确的,但为什么会有不同的数值呢?那是
因为所采用的度量制不同,一个是 公里制,一个是英里制.他们的长
度单位是不同的,但是,他们之间可以换算:1英里=1.6公里.
在角度的度量里面,也有类似的情况,一个是角度制,我们已经
不再陌生,另外一个就是我们这 节课要研究的角的另外一种度量制
---弧度制.
【探究新知】
1.角度制规定: 将一个圆周分成360份,每一份叫做1度,故
一周等于360度,平角等于180度,直角等于90度 等等.
弧度制是什么呢?1弧度是什么意思?一周是多少弧度?半周
呢?直角等于多少弧度? 弧度制与角度制之间如何换算?请看课本
P
6
?P
7
,自行解决上述 问题.
2.弧度制的定义


[展示投影]长度等于半径长的圆弧所对的圆心角 叫做1弧度角,
记作1
rad
,或1弧度,或1(单位可以省略不写).
3 .探究:如图,半径为
r
的圆的圆心与原点重合,角
?
的终边与
x< br>轴的正半轴重合,交圆于点
A
,终边与圆交于点
B
.请完成表格.


AB


?
r

2
?
r

r

y
OB
旋转的方< br>?AOB
的弧度
?AOB
的度
B
?
O
Ax

逆时针方向
逆时针方向









1

?2

?
?







180
?
2r






0





180
?
我们知道 ,角有正负零角之分,它的弧度数也应该有正负零之分,
如-π,-2π等等,一般地, 正角的弧度数 是一个正数,负角的弧度
数是一个负数,零角的弧度数是0,角的正负主要由角的旋转方向来
决 定.
4.思考:如果一个半径为
r
的圆的圆心角
?
所对的弧长是< br>l
,那么
a
的弧度数是多少?

?
的弧度数的绝对 值是:
?
?
,其中,l是圆心角所对的弧长,
l
r

< br>r
是半径.
5.根据探究中
180
?
?
?
rad
填空:
1
?
?___rad
,
1rad?___

显然,我们可以由此角度与弧度的换算了.
6.例题讲解
例1.按照下列要求,把
67
?
30
'
化成弧度:
(1) 精确值;
(2) 精确到0.001的近似值.
例2.将3.14
rad
换算成角度(用度数表示,精确到0.001).
注意:角度制与弧度制的换算主要抓住
180
?
?
?
rad
,另外注意计算
器计算非特殊角的方法.
7. 填写特殊角的度数与弧度数的对应表:





0
?

30
?

45
?

?


3

?

2
120
?

120
?

120
?

3
?

2
120
?


?


角的 概念推广以后,在弧度制下,角的集合与实数集
R
之间建立了
一一对应关系:即每一个 角都有唯一的一个实数(即这个角的弧度数)
与它对应;反过来,每一个实数也都有唯一的一个角(即弧 度数等于
这个实数的角)与它对应.
8.例题讲评
例3.利用弧度制证明下列关于扇形的公式:
(1)
l?
?
R
; (2)
S?
?
R
2
; (3)
S?lR
.
1
2
1
2


其中
R
是半径,
l
是弧长,
?
(0?
?
?2< br>?
)
为圆心角,
S
是扇形的面积.
例4.利用计算器比较< br>sin1.5

sin85
?
的大小.
注意:弧度制定义的理解与应用,以及角度与弧度的区别.
9.练习
教材
P
10
.
9.学习小结
(1)你知道角弧度制是怎样规定的吗?
(2)弧度制与角度制有何不同,你能熟练做到它们相互间的转化
吗?
五、评价设计
1.作业:习题1.1 A组第7,8,9题.
2.要熟练掌握弧度制与角度制间的换算,以及异同.能够使用计
算器求某角的各三角函数值.
1.2 任意角的三角函数
1.2.1任意角的三角函数(一)
一、教学目标:
1、知识与技能
(1)掌握任意角的正弦、余弦、正切的定义(包括这三种三角函
数 的定义域和函数值在各象限的符号);(2)理解任意角的三角函数
不同的定义方法;(3)了解如何利 用与单位圆有关的有向线段,将任
意角α的正弦、余弦、正切函数值分别用正弦线、余弦线、正切线表< br>示出来;(4)掌握并能初步运用公式一;(5)树立映射观点,正确理
解三角函数是以实数为自 变量的函数.


2、过程与方法
初中学过:锐角三角函数就是以锐角为自变量 ,以比值为函数值
的函数.引导学生把这个定义推广到任意角,通过单位圆和角的终边,
探讨任 意角的三角函数值的求法,最终得到任意角三角函数的定义.
根据角终边所在位置不同,分别探讨各三角 函数的定义域以及这三种
函数的值在各象限的符号.最后主要是借助有向线段进一步认识三角
函 数.讲解例题,总结方法,巩固练习.
3、情态与价值
任意角的三角函数可以有不同的定义 方法,而且各种定义都有自
己的特点.过去习惯于用角的终边上点的坐标的“比值”来定义,这
种定义方法能够表现出从锐角三角函数到任意角的三角函数的推广,
有利于引导学生从自己已有认知基础 出发学习三角函数,但它对准确
把握三角函数的本质有一定的不利影响,“从角的集合到比值的集合”< br>的对应关系与学生熟悉的一般函数概念中的“数集到数集”的对应关
系有冲突,而且“比值”需要 通过运算才能得到,这与函数值是一个
确定的实数也有不同,这些都会影响学生对三角函数概念的理解.
本节利用单位圆上点的坐标定义任意角的正弦函数、余弦函数.
这个定义清楚地表明了正弦、余 弦函数中从自变量到函数值之间的对
应关系,也表明了这两个函数之间的关系.
二、教学重、难点
重点: 任意角的正弦、余弦、正切的定义(包括这三种三角函数
的定义域和函数值在各象限的符号);终边相同的角的同一三角函数
值相等(公式一).
难点: 任意角的正弦、余弦、正切的定义(包括这三种三角函数


的定义域和函 数值在各象限的符号);三角函数线的正确理解.
三、学法与教学用具
任意角的三角函数可 以有不同的定义方法,本节利用单位圆上点
的坐标定义任意角的正弦函数、余弦函数.表明了正弦、余弦 函数中
从自变量到函数值之间的对应关系,也表明了这两个函数之间的关
系.
另外, 这样的定义使得三角函数所反映的数与形的关系更加直
接,数形结合更加紧密,这就为后续内容的学习带 来方便,也使三角
函数更加好用了.
教学用具:投影机、三角板、圆规、计算器
四、教学设想
第一课时 任意角的三角函数(一)
【创设情境】
提问:锐角O的正弦、余弦、正切怎样表示?
借助右图直角三角形,复习回顾.
y
P(a,b)
r

?

O M
引入:锐角三角函数就是以锐角为自变量,以比值为函数值的函
数。
数,你能用直角坐标系中角的终边上点的坐标来表示锐角三角函数
吗?
如图,设锐角
?
的顶点与原点
O
重合,始边与
x
轴的正半轴重合,

a的终边
y
P(x,y
么它的终边在第一象限.在
?的终边上任
取一点
P(a,b)
,它与原点的距离
O
r?a? b?0
.过
P

x
轴的垂线,垂足为
22
x


M
,则线段
OM
的长度为
a
,线段
MP
的长度为
b
.则
sin
?
?
cos
??
OMaMPb
?
;
tan
?
??
.
OPrOMa
MPb
?
;
OPr
思考:对于确定的角?
,这三个比值是否会随点
P

?
的终边上
的位置的改 变而改变呢?
显然,我们可以将点取在使线段
OP
的长
r?1
的特 殊位置上,这样
就可以得到用直角坐标系内的点的坐标表示锐角三角函数:
sin
?
?
MPOMMPb
?b
;
cos
?
??a
;
tan
?
??
.
OPOPOMa
思考:上述锐角
?
的三角函数值可以用终边上一点的坐标表示 .那
么,角的概念推广以后,我们应该如何对初中的三角函数的定义进行
修改,以利推广到任意 角呢?本节课就研究这个问题――任意角的三
角函数.
【探究新知】
1.探究:结 合上述锐角
?
的三角函数值的求法,我们应如何求解
任意角的三角函数值呢? 显然,我们只需在角的终边上找到一个点,使这个点到原点的距离
为1,然后就可以类似锐角求得该 角的三角函数值了.所以,我们在此
引入单位圆的定义:在直角坐标系中,我们称以原点
O为圆心,以单位
长度为半径的圆.
2.思考:如何利用单位圆定义任意角的三角函数的定义?
如图,设
?
是一 个任意角,它的终边与单位圆交于点
P(x,y)
,那么:
(1)
y
叫做
?
的正弦(sine),记做
sin
?
,即
sin< br>?
?y

(2)
x
叫做
?
的余弦(cos sine),记做
cos
?
,即
cos
?
?x


(3)叫做
?
的正切(tangent),记做
tan
?
,即
tan
?
?(x?0)
.
注意:当α是锐角时, 此定义与初中定义相同(指出对边,邻边,
斜边所在);当α不是锐角时,也能够找出三角函数,因为, 既然有
角,就必然有终边,终边就必然与单位圆有交点
P(x,y)
,从而就必然能够最终算出三角函数值.
3.思考:如果知道角终边上一点,而这个点不是终边与单位圆的交< br>点,该如何求它的三角函数值呢?
前面我们已经知道,三角函数的值与点
P
在 终边上的位置无关,仅
与角的大小有关.我们只需计算点到原点的距离
r?x
2
?y
2
,那么
sin
?
?
tan
?
?< br>y
x
y
x
y
x?y
22
,
cos< br>?
?
x
x?y
22
,
y
.所以,三角函数 是以为自变量,以单位圆上点的坐标或坐标
x
的比值为函数值的函数,又因为角的集合与实数集 之间可以建立一一
对应关系,故三角函数也可以看成实数为自变量的函数.
4.例题讲评
例1.求
5
?
的正弦、余弦和正切值.
3
例2.已知角< br>?
的终边过点
P
0
(?3,?4)
,求角
?
的正弦、余弦和正切
值.
教材给出这两个例题,主要是帮助理解任意角的三角函数定义.
我也可以尝试其他方法: 如例2:设
x??3,y??4,

r?(?3)
2
?(?4)
2
?5
.
于是
sin
?
?
y4x3y 4
??
,
cos
?
???
,
tan
???
.
r5r5x3
5.巩固练习
P
17
第1,2,3题


6.探究:请根据任意角的三角函数定义,将正弦、余弦和正切函数
的定义域填入下表;再将这 三种函数的值在各个象限的符号填入表格
中:
三角函

sin
?

cos
?

定义域
角度制 弧度制






第一象




第二象




第三象




第四象




tan
?

7.例题讲评
例3.求证:当且仅当不等式组
{
角.
8.思考:根据三角函数的定义,终边相同的角的同一三角函数值
有和关系?
显然: 终边相同的角的同一三角函数值相等.即有公式一:
sin(
?
?2k
?
)?sin
?

cos(
?
?2k
?
)?cos
?
(其中
k?Z
)
tan(
?
?2k
?
)?tan
?

si n
?
?0
成立时,角
?
为第三象限
tan
?
?0
9.例题讲评
例4.确定下列三角函数值的符号,然后用计算器验证:
(1)
cos250
?
; (2)
sin(?)
; (3)
tan(?672
?
)
; (4)
tan3
?

4
?
例5.求下列三角函数值:



(1)
sin1480
?
10
'
; (2)
cos
9
?
11
?
; (3)
tan(?)

46
利用公式一,可以把求任意角的三角函数值, 转 化为求
0

2
?
(或
0
?

36 0
?
)角的三角函数值. 另外可以直接利用计算器求三角
函数值,但要注意角度制的问题.
10.巩固练习
P
17
第4,5,6,7题
11.学习小结
(1)本章的三角函数定义与初中时的定义有何异同?
(2)你能准确判断三角函数值在各象限内的符号吗?
(3)请写出各三角函数的定义域;
(4)终边相同的角的同一三角函数值有什么关系?你在解题时会准
确熟练应用公式一吗?
五、评价设计
1.作业:习题1.2 A组第1,2题.
2.比较角概念推广以 后,三角函数定义的变化.思考公式一的本
质是什么?要做到熟练应用.另外,关于三角函数值在各象限 的符号要
熟练掌握,知道推导方法.


第二课时 任意角的三角函数(二)
【复习回顾】
1、 三角函数的定义;


2、
3、
4、
5、
三角函数在各象限角的符号;
三角函数在轴上角的值;
诱导公式(一):终边相同的角的同一三角函数的值相等;
三角函数的定义域.
要 求:记忆.并指出,三角函数没有定义的地方一定是在轴上角,
所以,凡是碰到轴上角时,要结合定义进 行分析;并要求在理解的基
础上记忆.
【探究新知】
1.引入:角是一个图形概念 ,也是一个数量概念(弧度数).作
为角的函数——三角函数是一个数量概念(比值),但它是否也是一
个图形概念呢?换句话说,能否用几何方式来表示三角函数呢?
2.[边描述边画]以坐标原 点为圆心,
以单位长度1为半径画一个圆,这个圆
就叫做单位圆(注意:这个单位长度不
一定就是1厘米或1米).当角
?
为第一
象限角时,则其终边与单位圆必有一个交点
P(x,y)
,过点
P

PM?x
轴交
x
轴于

M
,则请你观察:
根据三角函数的定义:
|MP| ?|y|?|sin
?
|

|OM|?|x|?|cos
?
|

随着
?
在第一象限内转动,
MP

OM
是否也跟着变化?
3.思考:(1)为了去掉上述等式中的绝对值符号,能否给线段
MP

OM
规定一个适当的方向,使它们的取值与点
P
的坐标一致?
O
y
a角的终
P T
M A
x

< br>(2)你能借助单位圆,找到一条如
MP

OM
一样的线段来表示
?
的正切值吗?
我们知道,指标坐标系内点的坐标与坐标轴的方向有关.当角
?
的终边不在坐标轴时,以
O
为始点、
M
为终点,规定:
当线段
OM

x
轴同向时,
OM
的方向为正向,且 有正值
x
;当线

OM

x
轴反向时,
O M
的方向为负向,且有正值
x
;其中
x

P
的横坐标.这样,无论那种情况都有
OM?x?cos
?

同理,当角
?
的终边不在
x
轴上时,以
M
为始点、
P
为终点,规定:
当线段
MP

y
轴同向时,
MP
的方向为正向,且有正值
y
;当线

MP

y
轴反 向
时,
MP
的方向为负向,且有正值
y
;其中
y

P
点的横坐标.这样,
无论那种情况都有
MP?y?sin
?

4.像
MP、OM
这种被看作带有方向的线段,叫做有向线段
(direct line segment).
5.如何用有向线段来表示角
?
的正切呢?
如上图,过点
A(1,0)
作单位圆的切线,这条切线必然平行于轴,设
它与
?
的终边交于点
T
,请根据正切函数的定义与相似三角形的知识,
借助有向 线段
OA、AT
,我们有
tan
?
?AT?
y

x
我们把这三条与单位圆有关的有向线段
MP、OM、AT
,分别叫做

?
的正弦线、余弦线、正切线,统称为三角函数线.


6.探究: (1)当角
?
的终边在第二、第三、第四象限时,你能分
别作出它们的正弦线、余弦线 和正切线吗?
(2)当
?
的终边与
x
轴或
y
轴重 合时,又是怎样的情形呢?

7.例题讲解
例1.已知
?
??
4
??
2
,试比较
?
,tan
?
, sin
?
,cos
?
的大小.
处理:师生共同分析解答,目的体会三角函数线的用处和实质.
8.练习
P
19
第1,2,3,4题
9学习小结
(1)了解有向线段的概念.
(2)了解如何利用与单位圆有关的有向线段,将任意角
?
的正弦、
余弦、正切函数值分别用正弦线、余弦线、正切线表示出来.
(3)体会三角函数线的简单应用.
【评价设计】
1. 作业:


比较下列各三角函数值的大小(不能使用计算器)
(1)
sin15
?

tan15
?
(2)
cos150
?
18
'

cos121
?
(3)、
tan

5
?
5
?
2.练习三角函数线的作图.




1.2任意角的三角函数
1.2.2同角三角函数的基本关系
一、教学目标:
1、知识与技能
(1) 使学生掌握同角三角函数的基本关系;( 2)已知某角的一个
三角函数值,求它的其余各三角函数值;(3)利用同角三角函数关系
式化 简三角函数式;(4)利用同角三角函数关系式证明三角恒等式;
(5)牢固掌握同角三角函数的三个关 系式并能灵活运用于解题,提
高学生分析,解决三角问题的能力;(6)灵活运用同角三角函数关系式的不同变形,提高三角恒等变形的能力,进一步树立化归思想方法;
(7)掌握恒等式证明的一般 方法.
2、过程与方法
由圆的几何性质出发,利用三角函数线,探究同一个角的不同三角函数之间的关系;学习已知一个三角函数值,求它的其余各三角函
数值;利用同角三角函数关系式 化简三角函数式;利用同角三角函数
关系式证明三角恒等式等.通过例题讲解,总结方法.通过做练习, 巩


固所学知识.
3、情态与价值
通过本节的学习,牢固掌握同角三 角函数的三个关系式并能灵活
运用于解题,提高学生分析,解决三角问题的能力;进一步树立化归
思想方法和证明三角恒等式的一般方法.
二、教学重、难点
重点:公式
sin
2
?
?cos
2
?
?1

sin
?
(1)已
?tan
?
的推导及运用:
cos
?
知 某任意角的正弦、余弦、正切值中的一个,求其余两个;(2)化简
三角函数式;(3)证明简单的三角 恒等式.
难点: 根据角α终边所在象限求出其三角函数值;选择适当的方
法证明三角恒等式.
三、学法与教学用具
利用三角函数线的定义, 推导同角三角函数的基本关系式:
sin
2
?
?cos
2
?
?1

sin< br>?
?tan
?
,并灵活应用求三角函数值,化减三角函
cos
?
数式,证明三角恒等式等.
教学用具:圆规、三角板、投影
四、教学设想
【创设情境】
与初中学习锐角三角函数一样,本节课我
们来研究同角三角函数之间关 系,弄清同角各
不同三角函数之间的联系,实现不同函数值之
间的互相转化.
【探究新知】
1. 探究:三角函数是以单位圆上点的坐标
来定义的,你能从圆的几何性质出发,讨论一
下同一个角不同三角函数之间的关系吗?
P
1
M O A(1,
x
y


如图:以正弦线
MP
,余弦线OM
和半径
OP
三者的长构成直角三
角形,而且
OP?1
.由勾股定理由
MP
2
?OM
2
?1
,因此
x< br>2
?y
2
?1
,即
sin
2
?
?c os
2
?
?1
.
根据三角函数的定义,当
a?k
?
?(k?Z)
时,有
2
?
sin
?
?tan?
.
cos
?
这就是说,同一个角
?
的正弦、余弦的 平方等于1,商等于角
?

正切.
2. 例题讲评
例6.已知< br>sin
?
??
,求
cos
?
,tan
?的值.
sin
?
,cos
?
,tan
?
三者 知一求二,熟练掌握.
3
5
3. 巩固练习
P
23
页第1,2,3题
4.例题讲评
例7.求证:
cosx1?sinx
.
?
1?sinxcosx
通过本例题,总结证明一个三角恒等式的方法步骤.
5.巩固练习
P
23
页第4,5题
6.学习小结
(1) 同角三角函数的关系式的前提是“同角”,因此
sin
2
?
?cos
2
?
?1

tan
?
?
sin
?

cos
?
(2)利用平方关系时,往往要开方,因此要先根据角所在象限
确定符号,即要就角所在象限进行分类讨论.
五、评价设计
(1)
(2)
作业:习题1.2A组第10,13题.
熟练掌握记忆同角三角函数的关系式,试将关系式变 形等,


得到其他几个常用的关
系式;注意三角恒等式的证明方法与步骤.







第二章 平面向量
本章内容介绍
向量这一概念是由物理学和工程技术抽象出来的,是近代数学中
重要和 基本的数学概念之一,有深刻的几何背景,是解决几何问题的
有力工具.向量概念引入后,全等和平行( 平移)、相似、垂直、勾股
定理就可转化为向量的加(减)法、数乘向量、数量积运算,从而把
图形的基本性质转化为向量的运算体系.
向量是沟通代数、几何与三角函数的一种工具,有着极其丰富 的
实际背景.在本章中,学生将了解向量丰富的实际背景,理解平面向
量及其运算的意义,学习 平面向量的线性运算、平面向量的基本定理
及坐标表示、平面向量的数量积、平面向量应用五部分内容. 能用向
量语言和方法表述和解决数学和物理中的一些问题.


本节从物理上的 力和位移出发,抽象出向量的概念,并说明了向量与
数量的区别,然后介绍了向量的一些基本概念. (让学生对整章有个
初步的、全面的了解.)

第1课时
§2.1 平面向量的实际背景及基本概念
教学目标:
1. 了解向量的实际背景,理解平面向量的概 念和向量的几何表示;
掌握向量的模、零向量、单位向量、平行向量、相等向量、共线
向量等概 念;并会区分平行向量、相等向量和共线向量.
2. 通过对向量的学习,使学生初步认识现实生活中的向量和数量的
本质区别.
3. 通过学生对向量与数量的识别能力的训练,培养学生认识客观事
物的数学本质的能力.
教学重点:理解并掌握向量、零向量、单位向量、相等向量、共线向
量的概念,会表示向量.
教学难点:平行向量、相等向量和共线向量的区别和联系.
学 法:本节是本章的入门课 ,概念较多,但难度不大.学生可根据
在原有的位移、力等物理概念来学习向量的概念,结合图形实物区 分
平行向量、相等向量、共线向量等概念.


教 具:多媒体或实物投影仪,尺规
授课类型:新授课
教学思路:
一、情景设置:
如图,老鼠由A向西北逃窜,猫在B处向东追去,
设问:猫能否追到老鼠?(画图)
结论:猫的速度再快也没用,因为方向错了.
分析:老鼠逃窜的路线AC、猫追逐的路线BD实际上都是有方
向、有长短的量.
引言:请同学指出哪些量既有大小又有方向?哪些量只有大小没
有方向?
二、新课学习:
(一)向量的概念:我们把既有大小又有方向的量叫向量
(二)请同学阅读课本后回答:(可制作成幻灯片)
1、数量与向量有何区别?
2、如何表示向量?
3、有向线段和线段有何区别和联系?分别可以表示向量的什
么?
4、长度为零的向量叫什么向量?长度为1的向量叫什么向量?
5、满足什么条件的两个向量是相等向量?单位向量是相等向量
C
A
B
D


吗?
6、有一组向量,它们的方向相同或相反,这组向量有什么关系?
7、如果把一组平行向量的 起点全部移到一点O,这是它们是不
是平行向量?这时各向量的终点之间有什么关系?
(三)探究学习
1、数量与向量的区别:
数量只有大小,是一个代数量,可以进行代数运算、比较大小;
向量有方向,大小,双重性,不能比较大小.
2.向量的表示方法:
①用有向线段表示;
②用字母a、b
(黑体,印刷用)等表示;
③用有向线段的起点与终点字母:
AB

④向量
AB
的大小――长度称为向量的模,记作|
AB
|.
3.有向线段:具有方向的线段就叫做有向线段,三个要素:起点、
方向、长度.
向量与有向线段的区别:
(1)向量只有大小和方向两个要素,与起点无关,只要大小和方< br>向相同,则这两个向量就是相同的向量;
(2)有向线段有起点、大小和方向三个要素,起点不同,尽管大
a
A(起点)

B
(终点)


小和方向相同,也是不同的有向线段.
4、零向量、单位向量概念:
①长度为0的向量叫零向量,记作0. 0的方向是任意的.
注意0与0的含义与书写区别.
②长度为1个单位长度的向量,叫单位向量.
说明:零向量、单位向量的定义都只是限制了大小.
5、平行向量定义:
①方向相同或相反的非零向量叫平行向量;②我们规定0与任一
向量平行.
说明:( 1)综合①、②才是平行向量的完整定义;(2)向量




c< br>平行,记作





.
6、相等向量定义:
长度相等且方向相同的向量叫相等向量.
说明:(1)向量< br>a


相等,记作



;(2)零向量与 零
向量相等;
(3)任意两个相等的非零向量,都可用同一条有向线段来
表示,并且与有向线段的起点无关.
..........
7、共线向量与平行向量关系:
平行向量就是共线向量,这是 因为任一组平行向量都可移到同一
直线上(与有向线段的起点无关).
.......... .


说明:(1)平行向量可以在同一直线上,要区别于两平行线的位
置关系;( 2)共线向量可以相互平行,要区别于在同一直线上的线段
的位置关系.
(四)理解和巩固:
例1 书本86页例1.
例2判断:
(1)平行向量是否一定方向相同?(不一定)
(2)不相等的向量是否一定不平行?(不一定)
(3)与零向量相等的向量必定是什么向量?(零向量)
(4)与任意向量都平行的向量是什么向量?(零向量)
(5)若两个向量在同一直线上,则这两个向量一定是什么向量?
(平行向量)
(6)两个非零向量相等的当且仅当什么?(长度相等且方向相同)
(7)共线向量一定在同一直线上吗?(不一定)
例3下列命题正确的是( ) A.



共线,



共线,则< br>a
与c也共
线
B.任意两个相等的非零向量的始点与终点是
一平行四边形的四顶点
C.向量a与b不共线,则a与b都是非零向量


D.有相同起点的两个非零向量不平行
解:由于零向量与任一向量都共线,所 以A不正确;由于数学中研
究的向量是自由向量,所以两个相等的非零向量可以在同一直线上,
而此时就构不成四边形,根本不可能是一个平行四边形的四个顶点,
所以B不正确;向量的平行只要方向 相同或相反即可,与起点是否
相同无关,所以D不正确;对于C,其条件以否定形式给出,所以可
从其逆否命题来入手考虑,假若a与b不都是非零向量,即a与b至
少有一个是零向量,而由零向量与 任一向量都共线,可有a与b共线,
不符合已知条件,所以有a与b都是非零向量,所以应选C.
例4 如图,设O是正六边形ABCDEF的中心,分别写出图中与
向量
OA

OB

OC
相等的向量.
变式一:与向量长度相等的向量有多少个?(11个)
变式二:是否存在与向量长度相等、方向相反的向量?(存在)
变式三:与向量共线的向量有哪些?(
CB,DO,FE

课堂练习:
1.判断下列命题是否正确,若不正确,请简述理由.
①向量
AB

CD
是共线向量,则A、B、C、D四点必在一直线上;

②单位向量都相等;
③任一向量与它的相反向量不相等;


④四边形ABCD是平行四边形当且仅当
AB

DC

⑤一个向量方向不确定当且仅当模为0;
⑥共线的向量,若起点不同,则终点一定不同. < br>解:①不正确.共线向量即平行向量,只要求方向相同或相反即可,
并不要求两个向量
A B

AC
在同一直线上.
②不正确.单位向量模均相等且为1,但方向并不确定.
③不正确.零向量的相反向量仍是零向量,
但零向量与零向量是相等的. ④、⑤正确.⑥不正 确.如图
AC

BC

线,虽起点不同,但其终点却相同.
2.书本88页练习
三、小结 :
1、
2、
3、
描述向量的两个指标:模和方向.
平行向量不是平面几何中的平行线段的简单类比.
向量的图示,要标上箭头和始点、终点.
四、课后作业:
书本88页习题2.1第3、5题

(吴春霞)

第2课时


§2.2.1 向量的加法运算及其几何意义
教学目标:
1、 掌握向量的加法运算,并理解其几何意义;
2、 会用向量加法的三角形法则和平行四边形法则作两个向量的
和向量,培养数形结合解决问题的能力;
3、 通过将向量运算与熟悉的数的运算进行类比,使学生掌握向量
加法运算的交换律和结合律 ,并会用它们进行向量计算,渗透类
比的数学方法;
教学重点:会用向量加法的三角形法则和平行四边形法则作两个向量
的和向量.
教学难点:理解向量加法的定义.
学 法:
数能进行运算,向量是否也能进行 运算呢?数的加法启发我们,
从运算的角度看,位移的合成、力的合成可看作向量的加法.借助于
物理中位移的合成、力的合成来理解向量的加法,让学生顺理成章接
受向量的加法定义.结合图形掌握 向量加法的三角形法则和平行四边
形法则.联系数的运算律理解和掌握向量加法运算的交换律和结合律.
教 具:多媒体或实物投影仪,尺规
授课类型:新授课
教学思路:


一、设置情景:
1、复习:向量的定义以及有关概念
强调:向量是 既有大小又有方向的量.长度相等、方向相同的向
量相等.因此,我们研究的向量是与起点无关的自由向 量,即任何
向量可以在不改变它的方向和大小的前提下,移到任何位置
2、 情景设置:
A B C
(1)某人从A到B,再从B按原方向到C,
则两次的位移和:
AB?BC?AC

(2)若上题改为从A到B,再从B按反方向到C,
则两次的位移和:
AB?BC?AC

C
C A B
(3)某车从A到B,再从B改变方向到C,
则两次的位移和:
AB?BC?AC

A B
C
(4)船速为
AB
,水速为
BC
,则两速度和:
AB?BC?AC

二、探索研究:
A B
1、向量的加法:求两个向量和的运算,叫做向量的加法.
2、三角形法则(“首尾相接,首尾连”)
如图,已知向量a、b.在平面内任取一点
A
,作
AB
=a,
BC
=b,
则向量
AC
叫做a与b的和,记作a+b,即 a+b
?AB?BC?AC

规定: a + 0-= 0 + a



a
a
C

b
a+b
a

B
a
b
a+b





A
探究:(1)两相向量的和仍是一个向量;
(2)当向量
a

b< br>不共线时,
a
+
b
的方向不同向,且|
a
+
b
|<|
a
|+|
b
|;
(3)当
a

b
同向时,则
a
+
b

a

b< br>同向,且|
a
+
b
|=|
a
|+|
b
|,当
a

b

b
a
O
b
a
a
A
b
B
向时,若|
a
|> |
b
|,则
a
+
b
的方向与
a

同,且|
a
+
b
|=|
a
|-|
b
|;若 |
a
|<|
b
|,则
a
+
b
的方向与b
相同,且|
a
+b|=|
b
|-|
a
|.
(4)“向量平移”(自由向量):使前一个向量的终点为后一个向
量的起点,可以推广到n个 向量连加
3.例一、已知向量
a

b
,求作向量
a
+
b

作法:在平面内取一点,作
OA?a

AB?b
,则
OB?a?b
.
4.加法的交换律和平行四边形法则
问题:上题中
b
+
a
的结果与
a
+
b是否相同? 验证结果相同
从而得到:1)向量加法的平行四边形法则(对于两个向量共线不
适应)
2)向量加法的交换律:
a
+
b
=
b
+
a


5.向量加法的结合律:(
a
+
b
) +
c
=
a
+ (
b
+
c
)
证:如图:使
AB?a

BC?b

CD?c

则(
a
+
b
) +
c
=
AC?CD?AD

a
+ (
b
+
c
)
=
AB?BD?AD

∴(
a
+
b
) +
c
=
a
+ (
b
+
c
)
从而,多个向量的加法运算可以按照任意的次序、任意的组合来进行.
三、应用举例:
例二(P94—95)略
练习:P95
四、小结
1、向量加法的几何意义;
2、交换律和结合律;
3、注意:|
a
+
b
| ≤ |
a
| + |
b
|,当且仅当方向相同时取等号.
五、课后作业:
P103第2、3题
六、板书设计(略)
七、备用习题
1、一艘船从A 点出发以
23kmh
的速度向垂直于对岸的方向行驶,
船的实际航行的速度的大小为< br>4kmh
,求水流的速度.


2、一艘船距对岸
43km
,以
23kmh
的速度向垂直于对岸的方向行
驶,到达对岸时,船的实际航程为8k m,求河水的流速.
3、一艘船从A点出发以
v
1
的速度向垂直于对岸的方 向行驶,同时
河水的流速为
v
2
,船的实际航行的速度的大小为
4k mh
,方向与水流
间的夹角是
60?
,求
v
1
和< br>v
2
.
4、一艘船以5kmh的速度在行驶,同时河水的流速为2kmh,则
船的实际航行速度大小最大是kmh,最小是kmh
5、已知两个力F
1
, F
2
的夹角是直角,且已知它们的合力F与F
1
的夹角是60
?,|F|=10N求F
1
和F
2
的大小.
6、用向量加法证明:两条对角线互相平分的四边形是平行四边形

(吴春霞)
第3课时
§2.2.2 向量的减法运算及其几何意义
教学目标:
1. 了解相反向量的概念;
2. 掌握向量的减法,会作两个向量的减向量,并理解其几何意义;
3. 通过阐述向量的减法运算可以转化成向量的加法运算,使学生理
解事物之间可以相互转化的辩证思想.
教学重点:向量减法的概念和向量减法的作图法.


教学难点:减法运算时方向的确定.
学 法:减法运算是加法运算的逆运 算,学生在理解相反向量的基
础上结合向量的加法运算掌握向量的减法运算;并利用三角形做出减
向量.
教 具:多媒体或实物投影仪,尺规
授课类型:新授课
教学思路:
一、 复习:向量加法的法则:三角形法则与平行四边形法则
向量加法的运算定律:
例:在四边形中,
CB?BA?BA?
.
解:
CB?BA?BA?CB?BA?AD?CD

二、 提出课题:向量的减法
1. 用“相反向量”定义向量的减法
(1) “相反向量”的定义:与a长度相同、方向相反的向
量.记作 ?a
(2) 规定:零向量的相反向量仍是零向量.?(?a) = a.
任一向量与它的相反向量的和是零向量.a + (?a) = 0
如果a、b互为相反向量,则a = ?b, b = ?a, a + b
= 0
(3) 向量减法的定义:向量a加上的b相反向量,叫做a
A B
D C


与b的差.
即:a ? b = a + (?b) 求两个向量差的运算叫做向量的减
法.
2. 用加法的逆运算定义向量的减法:
向量的减法是向量加法的逆运算:
若b + x = a,则x叫做a与b的差,记作a ? b
a
3. 求作差向量:已知向量a、b,求作向量
b
∵(a?b) + b = a + (?b) + b = a + 0 = a
B
b
a?b
O
a
作法:在平面内取一点O,

OA
= a,
AB
= b

BA
= a ? b
即a ? b可以表示为从向量b的终点指向向量a的终
点的向量.
注意:1?
AB
表示a ? b.强调:差向量“箭头”指向被减数
2?用“相反向量”定义法作差向量,a ? b = a + (?b)
B
.
a
显然,此法作图较繁,但最后作图可统一
B’
?
b
a+ (?b)

b
b
B
O
a
b
A




4. 探究:
1) 如果从向量a的终点指向向量b的终点作向量,那么所
得向量是b ? a.






2)若a∥b

如何作出a ? b


三、 例题:
例一、(P97 例三)已知向量a、b、c、d,求作向量a?b、
c?d.
解:在平面上取一点O,作
OA
= a,
OB
= b,
OC
= c,
OD
=
d,

BA

DC
, 则
BA
= a?b,
DC
= c?d



a
b
A
d
c
O
C
B
D
a
b
a
b
O
a
?
b
A
?
b
B
B
a
?
b
O B
a
?
b
A
B A
B’
O
a
?
b
O
A





D C
例二、平行四边形
ABCD
中,
AB?
a,
AD?
b,
用a、b表示向量
AC

DB
.
解:由平行四边形法则得:

AC
= a + b


DB
=
AB?AD
= a?b
变式一:当a, b满足什么条件时,a+b与a?b垂直?(|a| = |b|)
变式二:当a, b满足什么条件时,|a+b| = |a?b|?(a, b互
相垂直)
变式三:a+b与a?b可能是相当向量吗?(不可能,∵ 对角
线方向不同)
练习:P98
四、 小结:向量减法的定义、作图法|
五、 作业:P103第4、5题
六、 板书设计(略)
七、 备用习题:
1.在△ABC中,
BC
=a,
CA
=b,则
AB
等于( )
A.a+b B.-a+(-b)
D.b-a

A B
C.a-b


第3题
2.O为 平行四边形ABCD平面上的点,设
OA
=a,
OB
=b,
OC
=c,
OD
=d,则
A.a+b+c+d=0 B.a-b+c-d=0 C.a+b-c-d=0
D.a-b-c+d=0
3.如图,在四边形ABCD中,根据图示填空:
a+b= ,b+c= ,c-d= ,a+b+c-d= .
4、如图所示,O是四边形ABCD内任 一点,试根据图中给出的
向量,确定a、b、c、d的方向(用箭头表示),使a+b=
AB< br>,c-d=
DC

并画出b-c和a+d.

(吴春霞)














2.3平面向量的基本定理及坐标表示
第4课时
§2.3.1 平面向量基本定理
教学目的:
(1)了解平面向量基本定理;
(2)理解平面里的任何一个向量都可以用两个不共线的向量 来表示,
初步掌握应用向量解决实际问题的重要思想方法;
(3)能够在具体问题中适当地选取基底,使其他向量都能够用基底
来表达.
教学重点:平面向量基本定理.
教学难点:平面向量基本定理的理解与应用.
授课类型:新授课
教 具:多媒体、实物投影仪
教学过程:
一、 复习引入:
1.实数与向量的积:实数λ与向量
a
的积是一个向量,记作:λ
a

??


(1)|λ
a
|=|λ||
a
|;(2 )λ>0时λ
a

a
方向相同;λ<0时λ
a

a

向相反;λ=0时λ
a
=
0

2.运算定律
??????
?
结合律:λ(μ
a
)=(λμ)
a
;分配律:(λ+μ)
a

a

a
, λ(
a
+
b
)=
?
?
λ
a

b
?
?
3. 向量共线定理 向量
b
与非零向量
a
共线的充要条件是:有且只有
?
?
一个非零实数λ,使
b

a
.
??????
?
二、讲解新课:
平面 向量基本定理:如果
e
1

e
2
是同一平面内的两个不共线 向量,
那么对于这一平面内的任一向量
a
,有且只有一对实数λ
1
, λ
2
使
a
=
λ
1
e
1

2
e
2
.
探究:
(1) 我们把不共线向量





叫做表示这一平面内所有向量的一组
基底;
(2) 基底不惟一,关键是不共线;
(3) 由定理可将任一向量a在给出基底





的条件下进行分解;
(4) 基底给定时,分解形式惟一. λ
1
,λ
2
是被
a

e
1

e
2
唯一确定的
数量
三、讲解范例:
例1 已知向量
e
1

e
2
求作向量?2.5
e
1
+3
e
2
.
?
??


例2 如图
?
??
ABCD的两 条对角线交于点M,且
AB
=
a

AD
=
b
,用
a

?
b
表示
MA

MB

MC

MD

例3已知 ABCD的两条对角线AC与BD
交于E,O是任意一点,求证:
OA+
OB
+
OC
+
OD
=4
OE
例4(1)如图,
OA

OB
不共线,
AP
=t
AB
(t?R)

OA

OB
表示
OP
.
OB
不共线,点P在O、A、B所在的 (2)设
OA、
平面内,且
OP?(1?t)OA?tOB(t?R)
.求证:A、B、P三点共线.
例5 已知 a=2e
1
-3e
2
,b= 2e
1
+3e
2,其中e
1
,e
2
不共线,向量c=2e
1
-9e2

问是否存在这样的实数
?

?
,使d?
?
a?
?
b
与c共线.
四、课堂练习:
1.设e
1
、e
2
是同一平面内的两个向量,则有( )
A.e
1
、e
2
一定平行
B.e
1
、e
2
的模相等
C.同一平面内的任一向量a都有a =
λ
e
1
+
μ
e
2
(
λ

μ
∈R)
D.若e
1
、e
2
不共线,则同一平面内的任一向量a都有a =< br>λ
e
1
+ue
2
(
λ

u∈R)
2.已知矢量a = e
1
-2e
2
,b =2e
1
+e
2
,其中e
1
、e
2
不共线,则a+b与c =6e
1
-2e
2
的关系


A.不共线 B.共线 C.相等 D.无法确定
3.已知向量e
1
、 e
2
不共线,实数x、y满足(3x-4y)e
1
+(2x-3y)e
2
=6e
1
+3e
2

则x-y的值等于( )
A.3 B.-3 C.0 D.2
4.已知a、b不共线,且c =
λ
1
a+
λ
2
b (
λ
1

λ
2
∈R),若c与b共线,

λ
1
= .
5.已知
λ
1
>0,
λ
2
>0,e
1
、e
2
是一组基底,且a =
λ
1
e
1
+
λ
2
e
2
,则a
与e1
_____,a与e
2
_________(填共线或不共线).
五、小结(略)
六、课后作业(略):
七、板书设计(略)
八、课后记:
第5课时
§2.3.2—§2.3.3 平面向量的正交分解和坐标表示及运算
教学目的:
(1)理解平面向量的坐标的概念;
(2)掌握平面向量的坐标运算;
(3)会根据向量的坐标,判断向量是否共线.
教学重点:平面向量的坐标运算
教学难点:向量的坐标表示的理解及运算的准确性.


授课类型:新授课
教 具:多媒体、实物投影仪
教学过程:
一、复习引入:
1.平面向量基本定理:如果
e
1

e< br>2
是同一平面内的两个不共线向量,
那么对于这一平面内的任一向量
a
,有且只有一对实数λ
1
,λ
2
使
a
=
λ
1
e
1

2
e
2

(1)我们把不共线 向量





叫做表示这一平面内所有向量的一组
基底;
(2)基底不惟一,关键是不共线;
(3)由定理可将任一向量

在给出基底





的条件下进行分解;
(4)基底给定时,分解形式惟一. λ
1
,λ
2
是被
a< br>,
e
1

e
2
唯一确定的
数量
二、讲解新课:
1.平面向量的坐标表示
如图,在直角坐标系内,我们分别 取与
x
轴、
y
轴方向相同的两个
单位向量
i
j
作为基底.任作一个向量
a
,由平面向量基本定理知,
有且只有一对实 数
x

y
,使得
1

a?xi?yj
… ………○
我们把
(x,y)
叫做向量
a
的(直角)坐标,记作
?
??


2

a?(x,y)
…………○其中
x
叫做
a

x
轴上的坐标,
y
叫 做
a

y
轴上的坐
2
式叫做向量的坐标表示.与标,○
a
相等的向量的坐标
........
也为
..
(x ,y)
.
特别地,
i?(1,0)

j?(0,1)
,< br>0?(0,0)
.
如图,在直角坐标平面内,以原点O为起点作
OA?a,则点
A
的位置

a
唯一确定.

OA?x i?yj
,则向量
OA
的坐标
(x,y)
就是点
A
的坐标;反过来,点
A

坐标
(x,y)
也就是向量
OA< br>的坐标.因此,在平面直角坐标系内,每一个
平面向量都是可以用一对实数唯一表示.
2.平面向量的坐标运算
(1) 若
a?(x
1
,y
1< br>)

b?(x
2
,y
2
)
,则
a? b
?(x
1
?x
2
,y
1
?y
2
)

a?b
?(x
1
?x
2
,y
1
?y
2
)

两个向量和与差的坐标分别等于这两个向量相应坐标的和与差.
设基底为
i

j
,则
a?b
?(x
1i?y
1
j)?(x
2
i?y
2
j)?(x
1
?x
2
)i?(y
1
?y
2
)j


a?b
?(x
1
?x
2
,y
1
?y< br>2
)
,同理可得
a?b
?(x
1
?x
2,y
1
?y
2
)

(2) 若
A(x
1
,y
1
)

B(x
2
,y
2
)
,则
AB?
?
x
2
?x
1
,y
2
?y
1
?

一个向量的坐标等于表示此向量的有向线段的终点坐标减去始点的
坐标.
AB
=
OB
?
OA
=( x
2


y
2
) ? (x
1
,y
1
)= (x
2
? x
1
, y
2
? y
1
) < /p>


(3)若
a?(x,y)
和实数
?
,则
?a?(
?
x,
?
y)
.
实数与向量的积的坐标等于用这个实数乘原来向量的相应坐标.
设基底为
i

j
,则
?
a
?
?
(xi?yj)?
?< br>xi?
?
yj
,即
?
a?(
?
x,
?
y)

三、讲解范例:
例1 已知A(x
1
,y
1
),B(x
2
,y
2
),求
AB
的坐标.
例2 已知
a
=(2,1),
b
=(-3,4),求
a< br>+
b

a
-
b

3
a
+4
b
的坐标.
例3 已知平面上三点的坐标分别为A(?2, 1), B(?1, 3), C(3,
4),求点D的坐标使这四点构成平行四边形四个顶点.
解:当平行四边形为ABCD时,由
AB?DC
得D
1
=(2, 2)
当平行四边形为ACDB时,得D
2
=(4, 6),当平行四边形为DACB
时,得D
3
=(?6, 0)
例4已知三个力
F
1
(3, 4),
F
2
(2, ?5),
F
3
(x, y)的合力
F
1
+
F
2
+
F
3
=
0
,求
F
3
的坐标.
解:由题设
F
1
+
F
2
+
F
3
=
0
得:(3, 4)+ (2, ?5)+(x, y)=(0, 0)
即:
?
?
3?2?x?0
?
x??5

?

F
3
(?5,1)
4?5?y?0y?1
??
四、课堂练习:
1.若M(3, -2) N(-5, -1) 且
MP?
1
MN
, 求P点的坐标
2


2.若A(0, 1), B(1, 2), C(3, 4) , 则
AB
?2
BC
= .
3.已知:四点A(5, 1), B(3, 4), C(1, 3), D(5, -3) , 求
证:四边形ABCD是梯形.
五、小结(略)
六、课后作业(略)
七、板书设计(略)
八、课后记:


第6课时
§2.3.4 平面向量共线的坐标表示
教学目的:
(1)理解平面向量的坐标的概念;
(2)掌握平面向量的坐标运算;
(3)会根据向量的坐标,判断向量是否共线.
教学重点:平面向量的坐标运算
教学难点:向量的坐标表示的理解及运算的准确性
授课类型:新授课
(王海)


教 具:多媒体、实物投影仪
教学过程:
一、复习引入:
1.平面向量的坐标表示
分别取与
x
轴、
y
轴方向相同的两个单位向量
i

j
作为基底.任作
一个 向量
a
,由平面向量基本定理知,有且只有一对
实数
x

y
,使得
a?xi?yj


(x,y)
叫做向量
a
的(直角)坐标,记作
a?(x,y)

其中
x
叫做
a

x
轴上的坐标,
y
叫做
a

y轴上的坐标, 特别地,
i?(1,0)

j?(0,1)

0 ?(0,0)
.
2.平面向量的坐标运算

a?(x
1
,y
1
)

b?(x
2
,y
2
)


a?b
?(x
1
?x
2
,y
1?y
2
)

a?b
?(x
1
?x
2< br>,y
1
?y
2
)

?
a?(
?x,
?
y)
.

A(x
1
,y
1< br>)

B(x
2
,y
2
)
,则
AB?
?
x
2
?x
1
,y
2
?y
1?

二、讲解新课:
??
?
a

b
(
b
?
0
)的充要条件是x
1
y
2
-x< br>2
y
1
=0
??
??

a
=(x
1
, y
1
) ,
b
=(x
2
, y
2
) 其中
b
?
a
.
?
?
x
1
??
x
2
?

a

b
得, (x
1
, y
1
) =λ(x
2
, y
2
)
?
?
消去λ,
y?
?
y
2
?
1
x
1
y
2
-x
2
y
1
=0


?
探究:(1)消去λ时不能两式相除,∵y
1
, y
2
有可能为0, ∵
b
?
0

x
2
, y
2
中至少有一个不为0
(2)充要条件不能写成
y
1
y
2
?
∵x
1
, x
2
有可能为0
x
1
x
2< br>?
?
(3)从而向量共线的充要条件有两种形式:
a

b
?
(
b
?
0
)
?
a?
?< br>b

x
1
y
2
?x
2
y
1
?0
三、讲解范例:
??
??
例1已知
a
=(4,2),
b
=(6, y),且
a

b
,求y.
例2已知A(-1, -1), B(1,3), C(2,5),试判断A,B,C三点
之间的位置关系.
例3设点P是线段P
1
P
2
上的一点, P
1
、P
2
的坐标分别是(x
1
,y
1
),
(x
2
,y
2
).
(1) 当点P是线段P
1
P
2
的中点时,求点P的坐标;
(2) 当点P是线段P
1
P
2
的一个三等分点时,求点P的坐标.
?
?
例4若向量
a
=(-1,x)与
b
=(-x, 2)共线且方向相同,求x
?
?
解:∵
a
=(-1,x)与
b
=(-x, 2) 共线 ∴(-1)×2- x?(-x)=0
?
?
∴x=±
2

a

b
方向相同 ∴x=
2

例5 已知A(-1, -1), B(1,3), C(1,5) ,D(2,7) ,向量
AB

CD
平行吗?直线AB与平行于直线CD吗?
解:∵
AB
=(1-(-1), 3-(-1))=(2, 4) ,
CD
=(2-1,7-5)=(1,2)


又 ∵2×2-4×1=0 ∴
AB

CD

又 ∵
AC
=(1-(-1), 5-(-1))=(2,6) ,
AB
=(2, 4),2×4-2
×6?0 ∴
AC

AB
不平行
∴A,B,C不共线 ∴AB与CD不重合 ∴AB∥
CD
四、课堂练习:
1.若a=(2,3),b=(4,-1+y),且a∥b,则y=( )
A.6 B.5 C.7 D.8
2.若A(x,-1),B(1,3),C(2,5)三点共线,则x的值为( )
A.-3 B.-1 C.1 D.3
3.若
AB
=i+2j,
DC
=(3-x)i+(4-y )j(其中i、j的方向分别与x、y轴正方
向相同且为单位向量).
AB

DC
共线,则x、y的值可能分别为( )
A.1,2 B.2,2 C.3,2 D.2,4
4.已知a=(4,2),b=(6,y),且a∥b,则y= .
5.已知a=(1,2),b=(x,1),若a+2b与2a-b平行,则x的值为 .
6.已知□ABCD四个顶点的坐标为A(5,7),B(3,x),C(2,3),D(4,x),则x= .
五、小结 (略)
六、课后作业(略)
七、板书设计(略)


八、课后记:
(王海)



§2.4平面向量的数量积
第7课时
一、 平面向量的数量积的物理背景及其含义
教学目的:
1.掌握平面向量的数量积及其几何意义;
2.掌握平面向量数量积的重要性质及运算律;
3.了解用平面向量的数量积可以处理有关长度、角度和垂直的问
题;
4.掌握向量垂直的条件.
教学重点:平面向量的数量积定义
教学难点:平面向量数量积的定义及运算律的理解和平面向量数量积
的应用
授课类型:新授课
教 具:多媒体、实物投影仪
内容分析:


本节学习的关键是启发学生理解平面向量数量积的定义,理解定
义之后 便可引导学生推导数量积的运算律,然后通过概念辨析题加深
学生对于平面向量数量积的认识.主要知识 点:平面向量数量积的定
义及几何意义;平面向量数量积的5个重要性质;平面向量数量积的
运 算律.
教学过程:
一、复习引入:
?
?
1. 向量共线定理 向量
b
与非零向量
a
共线的充要条件是:有且只
?
?
有一个非零实数λ,使
b

a
.
2.平面向量基本定理:如果
e
1

e
2
是同一平面内的两个不共线向量,
那么 对于这一平面内的任一向量
a
,有且只有一对实数λ
1
,λ
2
使
a
=
λ
1
e
1

2
e2

3.平面向量的坐标表示
分别取与
x
轴、
y
轴方向相同的两个单位向量
i

j
作为基底.任作一
个向量
a
,由平面向量基本定理知,有且只有一对实数
x

y
,使 得
a?xi?yj

??

(x,y)
叫做向量
a
的(直角)坐标,记作
a?(x,y)

4.平面向量的坐标运算
b?(x
2
,y
2
)
,若
a?(x
1
,y
1
)
,则
a?b
?(x
1
?x
2
,y
1
?y
2
)

a?b
?(x
1
?x
2
,y
1
?y
2
)

?
a ?(
?
x,
?
y)
.

A(x
1
,y
1
)

B(x
2
,y
2
)
,则
AB?
?
x
2
?x
1
,y
2
?y
1
?


??
?
5.
a

b
(
b
?
0
)的充要条件是x
1
y
2
-x
2y
1
=0
6.线段的定比分点及λ
P
1
, P
2
是直线l上的两点,P是l上不同于P
1
, P
2
的任一点,存
在实数λ,
使
P
1
P

PP
2
,λ叫做点P分
P
1
P
2
所 成的比,有三种情况:

λ>0(内分) (外分) λ<0 (λ<-1) ( 外分)λ<0 (-1<
λ<0)
7. 定比分点坐标公式:
若点P

(x
1
,y
1
) ,


(x
2
,y
2
),
λ
为实数,且
P1
P

λ
PP
2
,则点
P的坐标为(
x
1
?
?
x
2
y
1
?
?
y
2
,
),我们称
λ
为点P分
P
1
P2
所成的比.
1?
?
1?
?
8. 点P的位置与
λ
的范围的关系:
①当
λ
>0时,
P
1
P

PP
2
同向共线,这时称点P为
P
1P
2
的内分点.
②当
λ
<0(
?
??1)时,
P
1
P

PP
2
反向共线,这时称点P 为
P
1
P
2
的外
分点.
9.线段定比分点坐标公式的向量形式:
在平面内任取一点O,设
OP
1< br>=


OP
2



可得
OP
=
a?
?
b1
?
?a?b
.
1?
?
1?
?
1?
?
10.力做的功:W = |F|?|s|cos?,?是F与s的夹角.


二、讲解新课:
1.两个非零向量夹角的概念
已知非零向量



,作< br>OA



OB


,则∠
AOB

θ
(0

θ

π
)叫



的夹角.
说明:(1)当
θ
=0时,



同向;
(2)当
θ

π
时,



反向; < br>(3)当
θ
=时,



垂直,记




(4)注意在两向量的夹角定义,两向量必须是同起点的.范围0?
≤?≤180?
?
2
C

2.平面向量数量积(内积)的定义:已知两个非零向量



,它
们的夹角是
θ
,则数量|a||b|c os?叫



的数量积,记作a?b,即有
a?b = |a||b|cos?,
(0≤
θ

π
).并规定0与任何向量的数量积为0.
?探究:两个向量的数量积与向量同实数积有很大区别
(1)两个向量的数量积是一个实数,不是向量,符号由cos?的符号
所决定.
( 2)两个向量的数量积称为内积,写成a?b;今后要学到两个向量的


外积a×b,而a ?b是两个向量的数量的积,书写时要严格区分.符号
“· ”在向量运算中不是乘号,既不能省略,也不能用“×”代替.
(3)在实数中,若a?0,且a?b =0,则b=0;但是在数量积中,若a?0,
且a?b=0,不能推出b=0.因为其中cos?有可 能为0.
(4)已知实数a、b、c(b?0),则ab=bc
?
a=c.但是a?b =
b?c a = c
如右图:a?b = |a||b|cos? = |b||OA|,b?c = |b||c|cos? =
|b||OA|
? a?b = b?c 但a ? c
(5)在实数中,有(a?b)c = a(b?c),但是(a?b)c ? a(b?c)
显然,这是因为左端是与c共线的向量,而右端是与a共线
的向量,而一般a与c不共线.
3.“投影”的概念:作图


定义:|b|cos?叫做向量b在a方向上的投影.
投影也是一个数量,不是向量;当?为 锐角时投影为正值;当?为钝角
时投影为负值;当?为直角时投影为0;当? = 0?时投影为 |b|;当? =


180?时投影为 ?|b|.
4.向量的数量积的几何意义:
数量积a?b等于a的长度与b在a方向上投影|b|cos?的乘积.
5.两个向量的数量积的性质:
设a、b为两个非零向量,e是与b同向的单位向量.
1? e?a = a?e =|a|cos?
2? a?b ? a?b = 0
3? 当a与b同向时,a?b = |a||b|;当a与b反向时,a?b = ?|a||b|. 特
别的a?a = |a|
2

|a|?a?a

4? cos? =
a?b

|a||b|
5? |a?b| ≤ |a||b|
三、讲解范例:
例1 已知|a|=5, |b|=4, a与b的夹角θ=120
o
,求a·b.
例2 已知|a|=6, |b|=4, a与b的夹角为60
o
求(a+2b)·(a-3b).
例3 已知|a|=3, |b|=4, 且a与b不共线,k为何值时,向量a+kb
与a-kb互相垂直.
例4 判断正误,并简要说明理由.


·0=0;②0·

=0;③0 -
AB

BA
;④|

·

|=|

||

|;⑤若

≠0,则对任一非零

有< br>a
·

≠0;⑥

·


=0 ,则



中至少有一个为0;⑦对任意向量




с
都有


·


с




·
с
);⑧


b< br>是两个单位向量,则





.
解:上述8个命题中只有③⑧正确;
对于①:两个向量的数量积是一个实数,应有0·

=0;对于
②:应有0·

=0;
对于④:由数量积定义有|

·

|=|

|·|

|·|cos< br>θ
|≤|

||

|,这里
θ




的夹角,只有
θ
=0或
θ

π
时,才有|

·

|=|

|·|

| ;
对于⑤:若非零向量



垂直,有

·
=0;
对于⑥:由

·

=0可知


可以都非零;
对于⑦:若


с
共线, 记


λс
.


·

=(< br>λс
)·


λ

с
·

)=
λ


·
с
),
∴(

·

)·
с

λ


·
с

с
=(

·
с

λс
=(
b< br>·
с






с
不共 线,则(

·

)
с
≠(

·
с


.
评述:这一类型题,要求学生确实把握好数量积的定义、性质、
运算律.
例6 已知 |

|=3,|

|=6,当①



, ②



,③



的夹角是60°时, 分别求

·

.


解:①当

∥< br>b
时,若



同向,则它们的夹角
θ
=0 °,


·

=|

|·|

|cos0°=3×6×1=18;




反向,则它们的夹角
θ
=180°, < br>∴

·

=|

||

|cos1 80°=3×6×(-1)=-18;
②当



时,它们的夹角
θ
=90°,


·

=0;
③当



的夹角是60°时,有

·

=|

||

|cos60°=3×6×=9
评述:两 个向量的数量积与它们的夹角有关,其范围是[0°,
180°],因此,当


时,有0°或180°两种可能.
四、课堂练习:
1.已知|a|=1,|b|=
2
,且(a-b)与a垂直,则a与b的夹角是( )
A.60° B.30° C.135° D.45°
2.已知|a|=2,|b|=1,a与b之间的夹角为,那么向量m=a-4b的模为
( )
A.2 B.2
3
C.6 D.12
3.已知a、b是非零向量,则|a|=|b|是(a+b)与(a-b)垂直的( )
A.充分但不必要条件 B.必要但不充分条件
C.充要条件 D.既不充分也不必要条件
?
3
1
2


4.已知向量a、b的夹角为,|a|=2,|b| =1,则|a+b|·|a-b|= .
5.已知a+b=2i-8j,a- b=-8i+16j,其中i、j是直角坐标系中x轴、y轴
正方向上的单位向量,那么a·b= .
6.已知a⊥b、c与a、b的夹角均为60°,且|a|=1,|b|=2,|c|=3,则(a +2b-c)

?
3
=______.
7.已知|a|=1,|b |=
2
,(1)若a∥b,求a·b;(2)若a、b的夹角为60°,
求|a+b| ;(3)若a-b与a垂直,求a与b的夹角.
8.设m、n是两个单位向量,其夹角为60°,求向 量a=2m+n与
b=2n-3m的夹角.
9.对于两个非零向量a、b,求使|a+tb| 最小时的t值,并求此时b与
a+tb的夹角.
五、小结(略)
六、课后作业(略)
七、教学后记:

(王海)


第8课时
二、平面向量数量积的运算律


教学目的:
1.掌握平面向量数量积运算规律;
2.能利用数量积的5个重要性质及数量积运算规律解决有关问
题;
3.掌握两个向量共线、垂直的几何判断,会证明两向量垂直,以
及能解决一些简单问题.
教学重点:平面向量数量积及运算规律.
教学难点:平面向量数量积的应用
授课类型:新授课
教 具:多媒体、实物投影仪
内容分析:
启发学生在理解数量积的运算特点的基础上,逐步把握数量积的
运算律,引导学生注意数量积性质的相关 问题的特点,以熟练地应用
数量积的性质.
教学过程:
一、复习引入:
1.两个非零向量夹角的概念
已知非零向量



,作< br>OA



OB


,则∠
AOB

θ
(0

θ

π
)叫



的夹角.
2.平面向量数量积(内积)的定义:已知两个非零向量



,它


们的夹角是
θ
,则数量|a||b |cos?叫



的数量积,记作a?b,即有
a?b = |a||b|cos?,
(0≤
θ

π
).并规定0与任何向量的数量积为0.
3.“投影”的概念:作图
C


定义:|b|cos?叫做向量b在a方向上的投影.
投影也是一个数量,不是向 量;当?为锐角时投影为正值;当?为钝角
时投影为负值;当?为直角时投影为0;当? = 0?时投影为 |b|;当? =
180?时投影为 ?|b|.
4.向量的数量积的几何意义:
数量积a?b等于a的长度与b在a方向上投影|b|cos?的乘积.
5.两个向量的数量积的性质:
设a、b为两个非零向量,e是与b同向的单位向量.
1? e?a = a?e =|a|cos?; 2? a?b ? a?b = 0
3? 当a与b同向时,a?b = |a||b|;当a与b反向时,a?b = ?|a||b|. 特
别的a?a = |a|
2

|a|?a?a


4?cos? =
a?b
;5?|a?b| ≤ |a||b|
|a||b|
二、讲解新课:
平面向量数量积的运算律
1.交换律:a ? b = b ? a
证:设a,b夹角为?,则a ? b = |a||b|cos?,b ? a = |b||a|cos?
∴a ? b = b ? a
2.数乘结合律:(
?
a)?b =
?
(a?b) = a?(
?
b)
证:若
?
> 0,(
?
a)?b =
?
|a||b|cos?,
?
(a?b) =
?
|a||b|cos?,a?(
?
b)
=
?
|a||b|cos?,

?
< 0,(
?
a)?b =|
?
a||b|cos(???) = ?
?
|a||b|(?cos?) =
?
|a||b|cos?,
?
(a?b) =
?
|a||b|cos?,
a?(
?
b) =|a||
?
b|cos(???) = ?
?
|a||b|(?cos?) =
?
|a||b|cos?.
3.分配律:(a + b)?c = a?c + b?c
OC
= c, 在平面内取一点O,作
OA
= a,
AB
= b, ∵a + b (即
OB

在c方向上的投影等于a、b在c方向上的投影和,即 |a + b| cos? =
|a| cos?
1
+ |b| cos?
2

∴| c | |a + b| cos? =|c| |a| cos?
1
+ |c| |b| cos?
2
, ∴c?(a + b) = c?a + c?b
即:(a + b)?c = a?c + b?c
说明 :(1)一般地,(

·

)
с


(< br>b
·
с


(2)

·
с< br>=

·
с

с
≠0




(3)有如下常用性质:


=|








)(
с

)=

·
с


·


b< br>·
с


·


(

+< br>b
)




+2

·





三、讲解范例:
例1 已知a、b都是非零向量,且a + 3b与7a ? 5b垂直,a ? 4b与
7a ? 2b垂直,求a与b的夹角.
解:由(a + 3b)(7a ? 5b) = 0 ? 7a
2
+ 16a?b ?15b
2
= 0 ①
(a ? 4b)(7a ? 2b) = 0 ? 7a
2
? 30a?b + 8b
2
= 0 ②
两式相减:2a?b = b
2

代入①或②得:a
2
= b
2

a?bb
2
1
设a、b的夹角为?,则cos? = ∴? = 60?
??
2
|a||b|
2|b|
2
例2 求证:平行四边形两条对角线平方和等于四条边的平方和.
解:如图:平行四边形ABCD中,
AB?DC

AD?BC

AC
=
AB?AD

∴|
AC
|=
|AB?AD|?AB?AD?2AB?AD

2
2
22

BD
=
AB?AD
∴|
BD
|
2
=
|AB?AD|
2
?AB?A D?2AB?AD

∴|
AC
|+ |
BD
|= 2
AB?2AD
=
|AB|
2
?|BC|
2
?| DC|
2
?|AD|
2

2 2
22
22


BC



CD

с

AB



DA


,例3 四边形ABCD中, 且

·



·
с

с
·



·

,试问四边形ABCD是什么图形?
分析:四边形的形状由边角关系确定,关键是由题设条件演变、
推算该四边形的边角量.
解:四边形ABCD是矩形,这是因为:
一方面:∵




с


=0,∴



=-(
с


),∴(



)

= (
с





即|



+2

·

+|



=|
с


+2
с
·

+|




由于

·


с
·
,∴|



+|



=|
с


+|




同理 有|



+|



=|
с< br>|

+|




由①②可得|

|=|
с
|,且|

|=|

|即四边形ABC D
两组对边分别相等.
∴四边形ABCD是平行四边形
另一方面,由
a< br>·



·
с
,有




с
)=0,而由平行
四边形ABCD可得

=-
с
,代入上式得

·(2

)=0,即

·

=0,∴



也即AB⊥BC.
综上所述,四边形ABCD是矩形.
评述:(1)在四边形中,
AB
BC

CD

DA
是顺次首尾相接向量,
则其和向量是 零向量,即




с


=0,应注意 这一隐含条件


应用;
(2)由已知条件产生数量积的关键是构造数量积,因为 数量积的
定义式中含有边、角两种关系.
四、课堂练习:
1.下列叙述不正确的是( )
A.向量的数量积满足交换律 B.向量的数量积满足分配律
C.向量的数量积满足结合律 D.a·b是一个实数
2.已知|a|=6,|b|=4,a与b的夹角为60°,则(a+2b)·(a-3b)等于( )
A.72 B.-72 C.36 D.-36
3.|a|=3,|b|=4,向量a+b与a-b的位置关系为( )
A.平行 B.垂直 C.夹角为 D.不平行也不垂直
4.已知|a|=3,|b|=4,且a与b的夹角为150°,则(a+b)

= .
5.已知|a|=2,|b|=5,a·b=-3,则|a+b|=______,|a-b|= .
6.设|a|=3,|b|=5,且a+
λ
b与a-
λ
b垂直, 则
λ
= .
五、小结(略)
六、课后作业(略)
七、板书设计(略)
八、课后记:
(王海)
?
3
3
4
3
4




第9课时
三、平面向量数量积的坐标表示、模、夹角
教学目的:
⑴要求学生掌握平面向量数量积的坐标表示
⑵掌握向量垂直的坐标表示的充要条件,及平面内两点间的距离公
式.
⑶能用所学知识解决有关综合问题.
教学重点:平面向量数量积的坐标表示
教学难点:平面向量数量积的坐标表示的综合运用
授课类型:新授课
教 具:多媒体、实物投影仪
教学过程:
一、复习引入:
1.两个非零向量夹角的概念
已知非零向量



,作< br>OA



OB


,则∠
AOB

θ
(0

θ

π
)叫



的夹角.
2.平面向量数量积(内积)的定义:已知两个非零向量



,它
们的夹角是
θ
,则数量|a||b|cos?叫< br>a


的数量积,记作a?b,即有
C


a?b = |a||b|cos?,
(0≤
θ

π
).并规定0与任何向量的数量积为0.
3.向量的数量积的几何意义:
数量积a?b等于a的长度与b在a方向上投影|b|cos?的乘积.
4.两个向量的数量积的性质:
设a、b为两个非零向量,e是与b同向的单位向量.
1? e?a = a?e =|a|cos?; 2? a?b ? a?b = 0
3? 当a与b同向时,a?b = |a||b|;当a与b反向时,a?b = ?|a||b|. 特
别的a?a = |a|
2

|a|?a?a

4? cos? =
a?b
;5?|a?b| ≤ |a||b|
|a||b|
5.平面向量数量积的运算律
交换律:a ? b = b ? a
数乘结合律:(
?
a)?b =
?
(a?b) = a?(
?
b)
分配律:(a + b)?c = a?c + b?c
二、讲解新课:
⒈ 平面两向量数量积的坐标表示
已知两个非零向量
a? (x
1
,y
1
)

b?(x
2
,y
2
)
,试用
a

b
的坐标表示
a?b
.

i

x
轴上的单位向量,
j

y
轴上的单位向量,那么
a?x
1
i?y
1
j

< p>
b?x
2
i?y
2
j

所以
a?b? (x
1
i?y
1
j)(x
2
i?y
2
j)
?x
1
x
2
i
2
?x
1
y
2
i?j?x
2
y
1
i?j?y
1
y
2
j
2


i?i?1

j?j?1
i?j?j?i?0
,所以
a?b
?x
1
x
2
?y
1
y
2

这就是说:两个向量的数量积等于它们对应坐标的乘积 的和.即
a?b
?x
1
x
2
?y
1
y2

2. 平面内两点间的距离公式
八、 设
a?(x,y)
,则
|a|
2
?x
2
?y
2

|a|?x
2
?y
2
.
(2)如果表示向量
a
的有向线段的 起点和终点的坐标分别为
(x
1
,y
1
)

(x< br>2
,y
2
)
,那么
|a|?(x
1
?x2
)
2
?(y
1
?y
2
)
2
(平面内两点间的距离公式)
九、 向量垂直的判定


a?(x
1
,y
1
)

b?(x
2
,y
2
)
,则
a?b
?
x
1
x
2
?y
1
y
2
?0

十、 两向量夹角的余弦(
0?
?
?
?

cos? =< br>a?b
?
|a|?|b|
x
1
x
2
?y1
y
2
x
1
?y
1
22
x
2
?y
2
22

十一、 讲解范例:
十二、 设a = (5, ?7),b = (?6, ?4),求a·b及a、b间的夹角
θ(精确到1
o
)
例2 已知A(1, 2),B(2, 3),C(?2, 5),试判断△ABC的形状,
并给出证明.


例3 已知a = (3, ?1),b = (1, 2),求满足x?a = 9与x?b = ?4的向
量x.
解:设x = (t, s),

?
3t?s?9
?
t?2
∴x = (2, ?3) ?
?
?
?
x?b??4
?
t?2s??4
?< br>s??3
x?a?9
例4 已知a=(1,
3
),b=(
3< br>+1,
3
-1),则a与b的夹
角是多少?
分析:为求a与b夹角, 需先求a·b及|a|·|b|,再结合夹角
θ
的范围确定其值.
解:由a=(1,
3
),b=(
3
+1,
3
-1)
有a·b=
3
+1+
3

3
-1)=4,|a|= 2,|b|=2
2

记a与b的夹角为
θ
,则cos
θ< br>=
又∵0≤
θ

π
,∴
θ

评述:已知三角形函数值求角时,应注重角的范围的确定.
例5 如图,以原点和A(5, 2)为顶点作等腰直角△OAB,使?B = 90?,
求点B和向量
AB
的坐标.
解:设B点坐标(x, y),则
OB
= (x, y),
AB
= (x?5, y?2)

OB
?
AB
∴x(x?5) + y(y?2) = 0即:x
2
+ y
2
?5x ? 2y = 0
又∵|
OB
| = |
AB
| ∴x
2
+ y
2
= (x?5)
2
+ (y?2)
2
即:10x + 4y = 29
?
4
a?b2
?

a?b2


?
73
?
x?x?
?
x?y?5x?2y?0
?
?
2
2
?
1
2

?

?
?

?
37
?
10x?4y?29
?
y
1
??
?
y
2
?
?
2
?
2
?
22
∴B点坐标
(,?)

(,)

AB
=
(?,?)

(?,)

例6 在△ABC中,
AB
=(2, 3),
AC
=(1, k),且△ABC的一个内角
为直角,
求k值.
解:当A = 90?时,
AB
?
AC
= 0,∴2×1 +3×k = 0 ∴k =
?

当B = 90?时,
AB
?
BC
= 0,
BC
=
AC
?
AB
= (1?2, k?3) = (?1, k?3)
∴2×(?1) +3×(k?3) = 0 ∴k =
11

3
3?13

2
7
23
2
37
22
3
2
7
2
73
22
3
2
当C = 90?时,
AC
?
BC
= 0,∴?1 + k(k?3) = 0 ∴k =
十三、 课堂练习:
1.若a=(-4,3),b=(5,6),则3|a|

-4a·b=( )
A.23 B.57 C.63 D.83
2.已知A(1,2),B(2,3),C(-2,5),则△ABC为( )
A.直角三角形 B.锐角三角形 C.钝角三角形 D.不等边三角

3.已知a=(4,3),向量b是垂直a的单位向量,则b等于( )
A.
(,)

(,)
C.
(,?)

(?,)
3
5
4
5
43
55
34
55
43
55 B.
(,)

(?,?)

D.
(,?)

(?,)

3
5
4
534
55
34
55
3
5
4
5

< br>4.a=(2,3),b=(-2,4),则(a+b)·(a-b)= .
5.已知A(3,2),B(-1,-1),若点P(x,-)在线段AB的中垂线上,则
x= .
6.已知A(1,0),B(3,1),C(2,0),且a=
BC
,b=
CA
,则a与b的夹
角为 .
十四、 小结(略)
十五、 课后作业(略)
十六、 板书设计(略)
十七、 课后记:
(王海)


第12课时
复习课
一、教学目标
1. 理解向量.零向量.向量的模.单位向量.平行向量.反向量.相等向
量.两向量的夹角等概念。
2. 了解平面向量基本定理.
3. 向量的加法的平行四边形法则(共起点)和三角形法则(首尾
相接)。
4. 了解向量形式的 三角形不等式:||
a
|-|
b
|≤|
a
±
b|≤
1
2


|
a
|+|
b
|(试 问:取等号的条件是什么?)和向量形式的平行四边形定
理:2(|
a
|
2< br>+|
b
|
2
)=|
a

b
|
2
+|
a
+
b
|
2
.
5. 了解实数与向量的乘法(即数乘的意义):
6. 向量的坐标概念和坐标表示法
7. 向量的坐标运算(加.减.实数和向量的乘法.数量积)
8. 数量积(点乘或内积)的概念,
a
·
b
=|
a
||
b
|cos
?
=x
1
x
2
+y
1
y
2

意区 别“实数与向量的乘法;向量与向量的乘法”
二、知识与方法
向量知识,向量观点在数学. 物理等学科的很多分支有着广泛的
应用,而它具有代数形式和几何形式的“双重身份”能融数形于一体,
能与中学数学教学内容的许多主干知识综合,形成知识交汇点,所以
高考中应引起足够的重视. 数量积的主要应用:①求模长;②求夹角;
③判垂直
三、典型例题
例1.对于任意 非零向量
a

b
,求证:||
a
|-|
b
||≤|
a
±
b

≤|
a
|+|
b

证明:(1)两个非零向量
a

b
不共线时,
a+
b
的方向与
a

b

方向都不同,并且|< br>a
|-|
b
|<|
a
±
b
|<|
a
|+|
b

(3)两个非零向量
a

b
共线时,①
a

b
同向,则
a
+
b
的方向 与
a
.
b
相同且|
a
+
b
|=|
a
|+|
b
|.②
a

b
异向时,则
a< br>+
b
的方向
与模较大的向量方向相同,设|
a
|>|
b
|,则|
a
+
b
|=|
a
|-|
b|.同理
可证另一种情况也成立。


例2 已知O为△ABC内部一点,∠ AOB=150°,∠BOC=90°,设
OA
=
a

OB
=
b

OC
=
c

且|
a
|=2,|
b
|=1,|
c
|=3,用
a

b
表示
c

i

j

解:如图建立平面直角坐标系xoy,其中
i
,
j
是单位正交基底向量,
则B(0,1),C(-3,0),设A(x,y),则条 件知x=2cos(150°
-90°),y=-2sin(150°-90°),即A(1,-
3
),也就是
a
=
i

3
j
,
b
=
j

c
=-3
i
所以-3
a
=3
3
b
+
c
|即
c
=3
a< br>-3
3
b

例3.下面5个命题:①|
a
·
b
|=|
a
|·|
b
|②(
a
·
b
)
2
=
a
2
·
b
2

a
⊥(
b

c
),则
a
·
c
=
b
·
c

a
·
b
=0,则|
a
+
b
|=|
a

b
|⑤
a
·
b< br>=0,则
a
=
0

b
=
0
,其中真 命题是( )
A①②⑤ B ③④ C①③ D②④⑤
四、 巩固训练
1.下面5个命题中正确的有( )
c
=
b
·
c
c
=
b
·
c
?
a
=
b
c
+
b
·
c
;①
a
=
b< br>?
a
· ②
a
·③
a
·(
b
+c
)=
a
·

a
·(
b
·
c
)=(
a
·
b
)·
c
; ⑤
a?b
a
2
?
a
b
.
A..①②⑤ B.①③⑤ C. ②③④ D. ①③
2.下列命题中,正确命题的个数为( A )
①若
a

b
是非零向量 ,且
a

b共线时,则
a

b
必与
a

b
中之一
a
·
a
=|
a
|
3
④方向相同;②若
e
为单位向量,且
a

e

a
=|
a
|
e

a
·

a

b< br>共线,
a

c
共线,则
c

b
共线 ;⑤若平面内四点A.B.C.D,
必有
AC
+
BD
=
BC
+
AD

A 1 B 2 C 3 D 4


3.下列5个命题中正确的是
①对于实数p ,q和向量
a
,若p
a
=q
a
则p=q②对于向量
a

b
,若
|
a
|
a
=|
b|
b

a
=
b
③对于两个单位向量
a

b
,若|
a
+
b
|=2则
a
=
b
④对
于两个单位向量
a

b
,若k
a
=
b
,则
a
=
b

4.已知四边形ABCD的顶点分 别为A(2,1),B(5,4),C(2,7),D(-1,4),
求证:四边形ABCD为正方形。




第三章 三角恒等变换

一、课标要求:
本章学习的主要内容是两角和与差的正弦、余弦、和正切公式,
以及 运用这些公式进行简单的恒等变换.
三角恒等变换位于三角函数与数学变换的结合点上.通过本章学< br>习,要使学生在学习三角恒等变换的基本思想和方法的过程中,发展
推理能力和运算能力,使学生 体会三角恒等变换的工具性作用,学会
它们在数学中的一些应用.
1. 了解用向量的数量积推导出两角差的余弦公式的过程,进一步体
会向量方法的作用;


2. 理解以两角差的余弦公式导出两角和与差的正弦、余弦、正切公
式,二倍 角的正弦、余弦、正切公式,了解它们的内在联系;
3. 运用上述公式进行简单的恒等变换,以引导 学生推导半角公式,
积化和差、和差化积公式(不要求记忆)作为基本训练,使学生进
一步提高 运用转化的观点去处理问题的自觉性,体会一般与特殊的
思想,换元的思想,方程的思想等数学思想在三 角恒等变换中的应
用.
二、编写意图与特色
1. 本章的内容分为两节:“两角和 与差的正弦、余弦和正切公式”,
“简单的三角恒等变换”,在学习本章之前我们学习了向量的相关知< br>识,因此作者的意图是选择两角差的余弦公式作为基础,运用向量的
知识来予以证明,降低了难度 ,使学生容易接受;
2. 本章是以两角差的余弦公式作为基础来推导其它的公式;
3. 本章在内容的安排上有明暗两条线,明线是建立公式,学会变换,
暗线是发展推理和运算的能力,因此在 本章全部内容的安排上,特别
注意恰时恰点的提出问题,引导学生用对比、联系、化归的观点去分
析、处理问题,强化运用数学思想方法指导设计变换思路的意识;
4. 本章在内容的安排上贯彻“ 删减繁琐的计算、人为技巧化的难题
和过分强调细枝末叶的内容”的理念,严格控制了三角恒等变换及其
应用的繁、难程度,尤其注意不以半角公式、积化和差、和差化积公
式作为变换的依据,而只把 这些公式的推导作为变换的基本练习.


三、教学内容及课时安排建议
本章教学时间约8课时,具体分配如下:
3.1两角和与差的正弦、余弦、和正切公式 约3课

3.2简单的恒等变换 约3课

复习 约2
课时


§3.1 两角和与差的正弦、余弦和正切公式
一、课标要求:
本节的中心内容是建立相关的十一个公式,通过探索证明和初步
应用 ,体会和认识公式的特征及作用.
二、编写意图与特色
本节内容可分为四个部分,即引入, 两角差的余弦公式的探索、
证明及初步应用,和差公式的探索、证明和初步应用,倍角公式的探
索、证明及初步应用.
三、教学重点与难点
1. 重点:引导学生通过独立探索和讨论交流 ,导出两角和差的三角


函数的十一个公式,并了解它们的内在联系,为运用这些公式进行 简
单的恒等变换打好基础;
2. 难点:两角差的余弦公式的探索与证明.

3.1.1 两角差的余弦公式

一、教学目标
掌握用向量方法建立两角 差的余弦公式.通过简单运用,使学生
初步理解公式的结构及其功能,为建立其它和(差)公式打好基础 .
二、教学重、难点
1. 教学重点:通过探索得到两角差的余弦公式;
2. 教学难点:探索过程的组织和适当引导,这里不仅有学习积极
性的问题,还有探索过程必用的基础知识是 否已经具备的问题,运用
已学知识和方法的能力问题,等等.
三、学法与教学用具
1. 学法:启发式教学
2. 教学用具:多媒体
四、教学设想:
(一)导入:我们在初中时就知道
cos45?
23

cos30 ?
,由此我
22


们能否得到
cos15?cos
?< br>45?30
?
??
大家可以猜想,是不是等于
cos45?cos30
呢?
根据我们在第一章所学的知识可知我们的猜想是错误的!下面我
们就一起探讨两 角差的余弦公式
cos
?
?
?
?
?
??

(二)探讨过程:
在第一章三角函数的学习当中我们知道,在设角
?
的终边 与单位
cos
?
等于角
?
与单位圆交点的横坐标,圆的交点为
P
1
,也可以用角
?

余弦线来表示,大家思考:怎样构造角?
和角
?
?
?
?(注意:要与它
们的正弦线、余弦线联 系起来.)
展示多媒体动画课件,通过正、余弦线及它们之间的几何关系探

cos
?
?
?
?
?

cos
?

cos
?

sin
?

sin
?
之间的 关系,由此得到
cos(
?
?
?
)?cos
?
co s
?
?sin
?
sin
?
,认识两角差余弦公式的结构.
思考:我们在第二章学习用向量的知识解决相关的几何问题,两角差
余弦公式我们能否用向量的 知识来证明?
提示:1、结合图形,明确应该选择哪几个向量,它们是怎样表示的?
2、怎样利用向量的数量积的概念的计算公式得到探索结果?
展示多媒体课件
比较用几何知识和向量知识解决问题的不同之处,体会向量方法的作
用与便利之处.
思考:
cos
?
?
?
?
?
??

cos
?
?
?
?
?
?cos
?
?
?
?
?
?
?
?
?
?
,再利用两角差的余弦
公式得出


cos
?
?
?
?
??cos
?
?
?
?
?
?
?
?
?
?
?cos
?
cos
?
?
?
?
?sin
?
sin
?
?
?
?
?cos
?< br>cos
?
?sin
?
sin
?

(三)例题讲解
例1、利用和、差角余弦公式求
cos75

cos15
的值.
解:分析:把
75

15
构造成两个特殊角的和、差.
c os75?cos
?
45?30
?
?cos45cos30?sin45si n30?
23216?2
????
22224

cos15?co s
?
45?30
?
?cos45cos30?sin45sin30?
23216?2
????
22224

点评:把一个具体角构造成两个角的 和、差形式,有很多种构造方
法,例如:
cos15?cos
?
60?45< br>?
,要学会灵活运用.
?
例2、已知
sin
?
?< br>,
?
?
?
?
,
?
?
,cos
?
??,
?
是第三象限角,求
13
5
?
2
?
4
?
5
cos
?
?
?
?
?< br>的值.
3
?
?
4
?
4
?
2
,
?
cos
?
??1?sin
?
??1???
解 :因为
?
?
?
,由此得
sin
?
?
?? ??
2
55
5
??
??
2
又因为
cos< br>?
??
5
,
?
13

2
第三象限角 ,所以
12
?
5
?
sin
?
??1?cos
2
?
??1?
?
?
?
??

13
?
13
?
3
??
5
?
4
?
12
?
33
????????
所以
cos(
?
?
?
)?cos
?
cos
?
?sin
?
sin?
?
?

??????
51351365
??????
点评:注意角
?

?
的象限,也就是符号问题.
(四)小 结:本节我们学习了两角差的余弦公式,首先要认识公式结
构的特征,了解公式的推导过程,熟知由此衍 变的两角和的余弦公式.


在解题过程中注意角
?

?
的象限,也就是符号问题,学会灵活运用.
(五)作业:
P
150
.T
1
?T
2

(胡仕伟)

§3.1.2 两角和与差的正弦、余弦、正切公式

一、教学目标
理解以两角差的余弦公式为基础,推导两角和、差正弦和正切公
式的方 法,体会三角恒等变换特点的过程,理解推导过程,掌握其应
用.
二、教学重、难点
1. 教学重点:两角和、差正弦和正切公式的推导过程及运用;
2. 教学难点:两角和与差正弦、余弦和正切公式的灵活运用.
三、学法与教学用具
学法:研讨式教学
四、教学设想:
(一)复习式导入:大家首先回顾一下两角和与差的余弦公式:
cos
?
?
?
?
?
?cos
?
cos
?
?sin?
sin
?

cos
?
?
?
?
?
?cos
?
cos
?
?sin
?
sin
?

这是两角和与差的余弦公式,下面大家思考一下两角和与差的正
弦公式是怎样的呢?


提示:在第一章我们用诱导公式五(或六)可以实现正弦、余弦的互
化,这对我们解决今 天的问题有帮助吗?
让学生动手完成两角和与差正弦和正切公式.
?
?
?
?
?
?
???
?
??
?
?
sin
?
?
?
?
?
?cos
?
?
??
?
?
?
?
?cos
?
?
?
?
?
?
?
?
?cos
?
?
?
?< br>cos
?
?sin
?
?
?
?
sin
?
?
2
???
2
??
2
?
?
?< br>2
?
?sin
?
cos
?
?cos
?
sin
?

sin
?
?
?
?
?
?sin
?
?
?
?
?
?
?
?
?
?
?sin
?
cos
?
?
?
?
? cos
?
sin
?
?
?
?
?sin
?cos
?
?cos
?
sin
?
让学生观察认识两角和与 差正弦公式的特征,并思考两角和与差正切
公式.(学生动手)
sin
?
?
?
?
?
sin
?
cos
?
?cos
?
sin
?

tan
?
?
?
?
?
??
cos
?
?
?
?
?
cos
?
cos
?
?sin
?
sin
?
通过什么途径可 以把上面的式子化成只含有
tan
?

tan
?
的形式呢?(分式分子、分母同时除以
cos
?
cos
?
,得到
tan
?
?
?
?
?
?
tan
?
?tan
?

1?tan
?
tan
?
注意:?
?
?
?
?
2
?k
?
,
?< br>?
?
2
?k
?
,
?
?
?
2
?k
?
(k?z)

以上我们得到两角和的正切公式,我们能否推倒出两角差的正切公式
呢?
tan?
?
?
?
?
?tan
?
?
?
?
?
?
?
?
?
?
?
tan
??tan
?
?
?
?
tan
?
?tan
?

?
1?tan
?
tan
?
?
?
?
1?tan
?
tan
?
?k
?
,
?< br>?
注意:
?
?
?
?
?
2
?k
?
,
?
?
?
2
?
2
?k
?(k?z)

(二)例题讲解


?????
?
?
,cos?
?
,tan
?
?
例1、已知
sin< br>?
??,
?
是第四象限角,求
sin
?
??????
444
5
??????
3
???
的值.
3
?
4
3
??
解:因为
sin
?
??,
?
是第四象限角,得
cos
?
?1?sin
2
?
?1 ?
?

??
5
5
?
5
?
23
sin
?
3
tan
?
??
5
??< br> ,
4
cos
?
4
5
?
???
于是有
sin
?

?
?
?sincos
?
?co ssin
?
????
???
?
?
?
44252?
5
?
10
?
4
?
???
24237 2
??
242
?
3
?
72
?
?
?

cos
?
?
?
?
?coscos
??sinsin
?
????
?
?
?
?
4442 52510
????
两结果一样,我们能否用第一章知识证明?
3
??1< br>?
??
4
?
4
tan
?
?
?
?
???7

?
3
4
?
1?tan
?< br>tan
??
?
1?
?
?
?
4
?4
?
tan
?
?tan
?
例2、利用和(差)角公式计 算下列各式的值:
(1)、
sin72cos42?cos72sin42
;(2) 、
cos20cos70?sin20sin70
;(3)、
1?tan15

1?tan15
解:分析:解此类题首先要学会观察,看题目当中所给的式子与我们
所学的两角和与差正弦、余弦和正切公式中哪个相象.
(1)、
sin72cos42?c os72sin42?sin
?
72?42
?
?sin30?
; < br>(2)、
cos20cos70?sin20sin70?cos
?
20?70
?
?cos90?0

1
2


(3)、1?tan15tan45?tan15
??tan
?
45?15
??tan60?3

1?tan151?tan45tan15
例3、化简2cosx?6sinx

解:此题与我们所学的两角和与差正弦、余弦和正切公式不相象,但
我们能否发现规律呢?
?
1
?
3
2cosx?6sinx?22
?
cos x?sinx?22
?
sin30cosx?cos30sinx
?
?22s in
?
30?x
?
?
?
2
?
2
? ?
思考:
22
是怎么得到的?
22?
它的正、余弦分别等于和
1
2
?
2
?
?
?
6
?
22,我们是构造一个叫使
3
的.
2
小结:本节我们学习了两角和与差正弦 、余弦和正切公式,我们要熟
记公式,在解题过程中要善于发现规律,学会灵活运用.
作业:
2
?
?
1
?
?
3
?
?
? ?,tan
?
?
1、 已知
tan
?
?
?
?
?
?,tan
?
求的值.()
????
5
?< br>4
?
4
?
4
?
22
2、 已知
0?
?
?
?
4
?
?
??
?
3
?
?
?
?
3
?
3
?
?
5
,cos
?
?
?
?
?,sin
?
?
??
?
4
?
4
?
5
?
4
?13
,求
sin
?
?
?
?
?
的值.

(胡仕伟)
§3.1.3 二倍角的正弦、余弦和正切公式

一、教学目标


以两角和正弦、余弦和正切公式为基础,推导二倍角正弦、余弦
和正切公式,理解推导过程,掌握其应用.
二、教学重、难点
教学重点:以两角和的正弦、余弦和正切公式为基础,推导二倍角正
弦、余弦和正切公式;
教学难点:二倍角的理解及其灵活运用.
三、学法与教学用具
学法:研讨式教学
四、教学设想:
(一)复习式导入:大家首先回顾一下两角和的正弦、余弦和正切公
式,
sin?
?
?
?
?
?sin
?
cos
??cos
?
sin
?

cos
?
?
?
?
?
?cos
?
cos
?
?sin
?< br>sin
?

tan
?
?
?
?
?< br>?
tan
?
?tan
?

1?tan
?< br>tan
?
我们由此能否得到
sin2
?
,cos2
?
,tan2
?
的公式呢?(学生自己动手,
把上述公式中
?
看成
?
即可),
(二)公式推导:
sin2
?
?sin
?
?
?
?
?
?sin
?
cos
?
?cos
?
sin
?
?2sin
?
cos
?

cos2
?
?cos
?
?
?
??
?cos
?
cos
?
?sin
?
sin?
?cos
2
?
?sin
2
?

< p>
思考:把上述关于
cos2
?
的式子能否变成只含有
sin?

cos
?
形式
的式子呢?
cos2
??cos
2
?
?sin
2
?
?1?sin
2< br>?
?sin
2
?
?1?2sin
2
?
; < br>cos2
?
?cos
2
?
?sin
2
??cos
2
?
?(1?cos
2
?
)?2cos
2
?
?1

tan2
?
?tan
?
?
?
?
?
?
tan
?
?tan
?
2 tan
?

?
2
1?tan
?
tan
?
1?tan
?
注意:
2
?
?
?
2
?k
?
,
?
?
?
2
?k
?

?
k?z
?

(三)例题讲解
例1、已知
sin 2
?
?
??
42
5
??
,?
?
? ,

sin4
?
,cos4
?
,tan4
?
的值.
1342
解:由
?
?
?,

?2
?
?
?

2
5
?
12
5
??
又因为
sin2
?
?,
cos2
?
??1?sin
2
2
?
??1?
?

??
131313
??
2
?
于是
sin4
?
?2sin2< br>?
cos2
?
?2?
5
?
12
?
1 20
?
?
?
?
??

13
?
1 3
?
169
120
sin4
?
120
?
5
?
119

tan4
?
?

?
169
??
cos4
?
?1?2sin
2
2
??1?2?
??
?
119
cos4
?
119
1 3169
??
169
2
?
例2、已知
tan2
?< br>?,

tan
?
的值.
解:
tan2
?< br>?
2tan
?
1
,由此得
tan
2
?
?6tan
?
?1?0

?
2
1?tan
?3
1
3
解得
tan
?
??2?5

t an
?
??2?5

(四)小结:本节我们学习了二倍角的正弦、余弦和正 切公式,我们
要熟记公式,在解题过程中要善于发现规律,学会灵活运用.
(五)作业:
P
150
.T
3
?T
4


(胡仕伟)
3.2 简单的三角恒等变换(3个课时)
一、课标要求:
本节主要包括利用已有的十一个公式进行简单的恒等变换,以及
三角恒等变换在数学中的应用.
二、编写意图与特色
本节内容都是用例题来展现的.通过例题的解答,引导学生对变
换对象目标进行对比、分析,促使学生形成对解题过程中如何选择公
式,如何根据问题的条件进行公式变 形,以及变换过程中体现的换元、
逆向使用公式等数学思想方法的认识,从而加深理解变换思想,提高< br>学生的推理能力.
三、教学目标
通过例题的解答,引导学生对变换对象目标进行对比 、分析,促
使学生形成对解题过程中如何选择公式,如何根据问题的条件进行公
式变形,以及变 换过程中体现的换元、逆向使用公式等数学思想方法
的认识,从而加深理解变换思想,提高学生的推理能 力.
四、教学重点与难点
教学重点:引导学生以已有的十一个公式为依据,以推导积化和差 、
和差化积、半角公式的推导作为基本训练,学习三角变换的内容、思
路和方法,在与代数变换 相比较中,体会三角变换的特点,提高推理、
运算能力.


教学难点:认识三角 变换的特点,并能运用数学思想方法指导变换
过程的设计,不断提高从整体上把握变换过程的能力.
五、学法与教学用具
学法:讲授式教学
六、教学设想:
学习和(差)公 式,倍角公式以后,我们就有了进行变换的性工
具,从而使三角变换的内容、思路和方法更加丰富,这为 我们的推理、
运算能力提供了新的平台.下面我们以习题课的形式讲解本节内容.
例1、试以
cos
?
表示
sin
2
,cos
2
,ta n
2
22
???
2

?1

cos?
?1?2sin
2
1?cos
?

2
解: 我们可以通过二倍角
cos
?
?2cos
2
因为
cos?
?1?2sin
2
,可以得到
sin
2
2
?
2
?
2
来做此题.
?
?
2
?
因 为
cos
?
?2cos
2
?
2
?
2
?1
,可以得到
cos
2
?
2
?
1?cos?

2
又因为
tan
2
?
2
?1?cos
?

?
1?cos
?
cos
2< br>2
sin
2
?
思考:代数式变换与三角变换有什么不同?
代 数式变换往往着眼于式子结构形式的变换.对于三角变换,由
于不同的三角函数式不仅会有结构形式方面 的差异,而且还会有所包
含的角,以及这些角的三角函数种类方面的差异,因此三角恒等变换
常 常首先寻找式子所包含的各个角之间的联系,这是三角式恒等变换
的重要特点.


例2、求证:
(1)、
sin
?
cos
?
?
?
sin
?
?
?
?
?
?sin
?
??
?
?
?
??
2
(2)、
sin
?< br>?sin
?
?2sin
?
?
?
2
cos1
?
?
?
2

证明:(1)因为
sin?
?
?
?
?

sin
?
?
?
?
?
是我们所学习过的知识,因此
我们从等式右边着手.
sin< br>?
?
?
?
?
?sin
?
cos
?< br>?cos
?
sin
?

sin
?
?
?
?
?
?sin
?
cos
?
?cos
?< br>sin
?

两式相加得
2sin
?
cos
?
?sin
?
?
?
?
?
?sin
?
?
?
?
?


sin
?
cos
?
?
?

s in
?
?
?
?
?
?sin
?
?
?
?
?
?
??
2
(2)由(1)得
sin
?
?
?
?
?
?sin
?
?
?
??
?2sin
?
cos
?
①;设
?
?
?
?
?
,
?
?
?
?
?

1
那么
?
?
?
?
?
2
,
??
?
?
?
2

?
?
?
2< br>cos

?
,
?
的值代入①式中得
sin
?
?sin
?
?2sin
?
?
?
2

思考:在例2证明中用到哪些数学思想?
例2 证明中用到换元思想,(1)式是积化和差 的形式,(2)式是
和差化积的形式,在后面的练习当中还有六个关于积化和差、和差化
积的公 式.
例3、求函数
y?sinx?3cosx
的周期,最大值和最小值.
解:
y?sinx?3cosx
这种形式我们在前面见过,
?
1
?< br>3
?
??
y?sinx?3cosx?2
?
sinx?cos x?2sinx?
?
??

?
2
?
23
??
??


所以,所求的周期
T?
2
?
??2
?
,最大值为2,最小值为
?2

点评:例3是三角恒等 变换在数学中应用的举例,它使三角函数中对
函数
y?Asin
?
?
x?
?
?
的性质研究得到延伸,体现了三角变换在化简三
角函数式中的作用.
小结:此节虽只安排一到两个课时的时间,但也是非常重要的内容,
我们要对变换过程中体现的 换元、逆向使用公式等数学思想方法加深
认识,学会灵活运用.
作业:
P
157
?P
158

T
1
?T
4







《三角恒等变换》复习课(2个课时)

一、教学目标
进一步 掌握三角恒等变换的方法,如何利用正、余弦、正切的和
差公式与二倍角公式,对三角函数式进行化简、 求值和证明:
二、知识与方法:


1. 11个三角恒等变换公式中,余弦的 差角公式是其它公式的基础,
由它出
cos(α-β)=cosαcosβ+sinαsinβ sin(α+β)=sinαcosβ+cosαsinβ
sin(α-β)=sinαcosβ- cosαsinβ

发,
cos(α+β)=cosαcosβ- sinαsinβ

用-β
β、
?

2
代替
±β

α=β
元法可
导出其
式。你
据下图
推导过 程吗?











tan
?
?tan
?
tan(α+β)=
1?tan
?
tan
?
tan
?
?tan
?


tan(α-β)=
1?tan
?
tan
?
β、
等换
以推
它公
tan2α=
sin2α=2sinα cosα
cos2α=cos
2
α- sin
2
α
=2cos
2
α-1=1-2 sin
2
α

ta n
?
?tan
?
1?tan
?
tan
?

能根
回顾







< br>2.化简,要求使三角函数式成为最简:项数尽量少,名称尽量少,
次数尽量底,分母尽量不含三 角函数,根号内尽量不含三角函数,能
求值的求出值来;
3.求值,要注意象限角的范围、三 角函数值的符号之间联系与影
响,较难的问题需要根据上三角函数值进一步缩小角的范围。
4 .证明是利用恒等变换公式将等式的左边变同于右边,或右边变
同于,或都将左右进行变换使其左右相等 。
5. 三角恒等变换过程与方法,实际上是对三角函数式中的角、名、
形的变换,即(1) 找差异:角、名、形的差别;(2)建立联系:角
的和差关系、倍半关系等,名、形之间可以用哪个公式 联系起来;(3)
变公式:在实际变换过程中,往往需要将公式加以变形后运用或逆用
公式,如 升、降幂公式, cosα= cosβcos(α-β)- sinβsin(α-
β),1= sinα+cos
例题
例1 已知sin(α+β)=,sin(α-β)=,求
tan
?
的值。
tan
?
22
1?tan30
0
α,
1?tan30
0< br>tan45
0
?tan30
0
=
1?tan45
0< br>tan30
0
=tan(45
0
+30
0
)等。
2
3
1
5


例2求值:cos24°﹣sin6°﹣cos72°
例3 化简(1)
αcos2β。


例4 设为锐角,且3sin
2< br>α+2sin
2
β=1,3sin2α-2sin2β=0,求证:α
+2β= 。


例5 如图所示,某村欲修建一横断面为等腰梯形的水渠,为降低成
本,必须尽量减少水与水渠壁的接触面。若水渠断面面积设计为定值
m,渠深8米。则水渠壁的倾角?
应为多少时,方能使修建的成本最
低?

分析:解答本题的关键是把 实际
问题转化成数学模型,作
出横断面的图形,要减少
水与水渠壁的接触面只
要使水与水渠断面周长最小,利用三角形的边角关系将倾角

?
和横断面的周长L之间 建立函数关系,求函数的最小值


E D
A






B

C
31
?< br>0
sin20sin70
0
;(2)sin
2
αsin
2
β+cos
2
αcos
2
β-
1
cos22
?
2
8

北师大版高中数学选修学哪几本-高中数学如何评课及评语


高中数学数列典型例题累和例题-高中数学集合与函数讲义


高中数学选择怎么蒙-重庆高中数学竞赛培训机构


高中数学必修3北师大第一章-教师资格笔试高中数学


高中数学改错本 图片-人教版高中数学三维设计必修四


高中数学教育教学改进-高中数学 人教b版 必修四


理科高中数学课本导数-高中数学八进制有用吗


哈尔滨补高中数学多少钱-高中数学必修课件 百度文库



本文更新与2020-09-15 14:51,由作者提供,不代表本网站立场,转载请注明出处:https://www.bjmy2z.cn/gaokao/397260.html

高中数学必修四教案的相关文章