关键词不能为空

当前您在: 主页 > 数学 >

高一数学必修5期中试卷及答案

作者:高考题库网
来源:https://www.bjmy2z.cn/gaokao
2020-09-15 20:33
tags:高中数学必修五

高中数学学透-高中数学课本什么意思


湖北省咸宁赤壁市2010—2011学年期中新四校联

高一数学试卷
试卷满分:150分 时间:120分钟
命题学校:南鄂高中 命题人:黄定慧 Tel:
一、单选题(本大题共10个小题,每小题5分,共50分。) 1.数列
?
a
1
n
?
的通项公式
a
n
?
n?n?1
,则该数列的前( )项之和等于9。
A.98 B.99 C.96 D.97
2.设m、m+1、m+2是钝角三角形的三边长,则实数m的取值范围是( )
A.0<m<3 B.1<m<3 C.3<m<4 D.4<m<6
3.已知三角形的三边构成等比数列,且它们的公比为
q
,则
q
的取值范围是( )
A.
(0,
1?5
)
B.
(
1?5
?1?51?5
2
2
,1]
C.
[1,
1?5
2
)
D.
(
2
,
2
)

4.在△ABC中,若
tanA
2
tanB
?
a
b
2
,则△ABC的形 状是( )
A.直角三角形 B.等腰或直角三角形 C.等腰三角形 D.不能确定
5.在△ABC中,若b=2
2
,a=2,且三角形有解,则A的取值范围是( )
A.0°<A<30° B.0°<A≤45° C.0°<A<90° D.30°<A<60°
6(理). 等差数列
?
a
n
?
中,若
a
1
?1

a
8
?15
,则
1
a
?
1
?

?
1
?
( < br>1
?a
2
a
2
?a
3
a
100?a
101
A.
200
B.
100
C.
200
D.
100

199
19 9
201
201
(文)若实数a,b,c成等比数列,则函数f(x)=ax
2
+bx+c的图像与x轴交点的个数为(
A 0个 B 1个 C 2个 D 不能确定
7. 如果把直角三角形的三边都增加同样的长度,则这个新的三角形的形状为( )




(A) 锐角三角形 (B) 直角三角形 (C) 钝角三角形 (D) 由增加的长度决定
8(理).等差数列
{
a
n}
,
{b
n
}
的前
n
项和分别为
S< br>n
,
T
n
,若
S
n
?
7n?45< br>,则使
a
n
为整数的正整
T
n
n?3
bn
数n的取值个数是( )
A 3 B 4 C 5 D 6
(文).等差数列
{
a
n
},
{b
n
}
的前
n
项和分别为
S
n< br>,
T
n
,若
S
n
a
2n
?
,则
n
=( )
T
n
3n?1b
n
A
2
2n?1
2n?1
B C D
2n?1

3
3n?1
3n?1
3n?4
9 (理).设
a

b

c
为同平面内具有相同起点的任意三个 非零向量,且满足
a

b
不共线,
a?c

a?c
,则
b?c
的值一定等于( )

A
.以
a

b
为两边的三角形面积;
B
.以
a

b
为邻边的平行四边形的面积;
C.以
b

c
为两边的三角形面积;
D
.以
b

c
为邻边的平行四边形的面积.
(文 ).在△
ABC
中,
AB
=5,
BC
=7,
AC< br>=8,则
AB?BC
的值为( )
A.79
C.5














B.69
D.-5
10(理).已知 正项数列
?
a
n
?
满足:
a
1
?3,?
2n?1
?
a
n
?2?
?
2n?1
?
a
n?1
?8n
2
n?1,n?N
*
,设??
b
n
?
1
,
数列
?
b
n
?
的前
n
项的和
S
n
,则
S
n< br>的取值范围为
a
n
?
2
?
( )
A.
?
0,
1
?

?
?
?
C.
?
11
?
D.
?
11
?

B.
?
1
,
1< br>?
,
?
,
?
?
?
32
??
32
?
?
?
32
?
?
(文).已知数列
2 004
,
2005
,
1,
-2004

-2005
,…,这个数列的特点是从第二项起,每
一项都等于它的前后两项之和,则这个数列的前
2004
项之和
S
2004
等于( )
A.
2005

B.
2004
C.
1
D.
0

二. 填空题:(本大题共5个小题,每小题5分,共25分,)
11(理).在△
ABC
中,
A
=60°,
b
=1,其面积为
3
,则
a? b?c
=_____________
sinA?sinB?sinC
(文). 在 △ABC中,已知sinA∶sinB∶sinC=3∶5∶7,则此三角形的最大内角等于________.


2
12.等差数列
{
a
n
}的前
n
项和为
S
n
,若m>1,
a
m?1
?a
m ?1
?a
m
?0,S
2m?1
?78,
则m=_____。
13. 数列
lg1000,lg(1000
?
cos60
0
),lg(1000
?
cos
2
60
0
),...lg( 1000
?
cos
n?1
60
0
),
…的前___ __
项和为最大?
14(理).不等式log
2
(2-1)·log
2
(2
xx?1
-2)<2的解集是_______________。
(文).已知
x,y?R,x
2
?2x?1y
2
?2y?1?1,
x?y?

15(理). 已知a
n
=
(文). 设
f
(
x
)=
1
(n=1, 2, …),则S
9 9
=a
1
+a
2
+…+a
99

100
4?2
n
????
32
1
2?2
x
,利用课本中推导等差数列前
n
项和的求和公式的方法,
可求得
f
(-8)+
f
(-7)+…+
f
(0)+…+
f
( 8)+
f
(9)的值为___________________.
三. 解答题(本大题共6小题共75分,解答应写出必要的文字说明、演算步骤或证明过程。)
16. 在锐角三角形中,边a、b是方程x
2
-2








3(x-1)
??
??
?
x
2
-2x-3
?
1
?
?
2
17.(理 )已知集合
A=
?
x|2<
??
,B=x|log(9-x)???
,又A∩
11
2
??
??
3 3
??
??
3 x+2=0的两根,角A、B满足2sin(A+B)
3 =0,求角C的度数,边c的长度及△ABC的面积. (本题满分12分)
B={x|x
2
+ax+b<0},求a+b的值。(本题满分12分)
( 文)(1)若
?
2
x?
5
x?
2
?
0,化简:
4x?4x?1?2x?2

2
2


(2)求关于x的不等式(k
2
-2k+
分)


5
5
x
)<(k
2
-2k+)
1ˉx
的解集( 本题满分12
2
2
7
18.在△ABC中,已知角A、B、C所对的边分别是 a、b、c,边c= ,且tanA+tanB=
2
tanA·tanB-




19.设数列
{
a
n
}
的前
n
项和为
S
n

a
1
?10

a
n?1
?9S
n
?10
.
⑴求证:数列
{lg
a
n
}
是等差数列.
3
3 ,又△ABC的面积为S
△ABC
=
3
2
3
,求a+b的值。(本题满分12分)
??
3
1
⑵设
T
n
是数列
?
求使
T
n
?
(
m
2?
5
m
)
对所有的
n?N
?

?< br>的前
n
项和,
4
?
(lga
n
)(lga< br>n?1
)
?
成立的最大正整数
m
的值. (本题满分12分)





20.
n(n?4)
个正数排成
n

n
列:
2



a
11

a
21

a
31
a
1 2
a
22
a
32
a
13
a
23
a
33
a
14
a
24
a
34
???a
1n

???a
2n

???a
3n


??????


a
n1
a< br>n2
a
n3
a
n4
???a
nn

其中每一行的数由左至右成等差数列,每一列的数由上至下成等比数列,并且所有公比相
等,已知
a
24
?1
,
a
42
?






21.设
f
?
k
?
是满足 不等式
log
2
x?log
2
?
5?2
k?1?x
?

2k
?
k?N
?
?
的自然数
x
的个数.
(1)求
f
?
k
?
的函数解析式;
(2)
S
n
?f
?
1
?
?f
?
2
?< br>?????f
?
n
?
,求
S
n

n?1
(3)设
P
n
?2?n?3
,由(2)中
S
n

P
n
构成函数
T
n

T
n< br>?
13
,
a
43
?
,试求
a
11< br>?a
22
?????a
nn
的值. (本题满分13分)
8 16
log
2
?
S
n
?P
n
?

log
2
?
S
n?1
?P
n?1
?
?10.5

T
n
的最小值与最大值.(本题满分14分)







湖北省咸宁赤壁市2010—2011学年期中新四校联



高一数学试卷(参考答案)
一.单选题(本小题10个小题,每小题5分,共50分。)
1---5. B B D B B 6.(理)D (文)A , 7 .A , 8(理)C (文)B
9(理)B(文)D , 10(理)B (文)D
二.填空题:(本小题5个小题,每小题5分,共25分,)
2
?
11. (理)
239
(文) 12. 20 13. 10
3
3
14. (理)


2
5
,㏒
2
3

(文) –2 或0 15. (理)
4
99
(文)
42

.
2
101
三.解答题(本大题共6小题共75分,解答应写出必要的文字说明、演算步骤或证明过程。)
3
3 =0,得sin(A+B)= , ∵△ABC为锐角三角形
2
16.解:由2sin(A+B)-
∴A+B=120°, C=60°.………………………………………………………………(4分)
又∵a、b是方程x
2
-23 x+2=0的两根,∴a+b=23 ,a·b=2, ……………….(6分)
6 , …………….……(.10分) ∴c
2
=a< br>2
+b
2
-2a·bcosC=(a+b)
2
-3ab=12 -6=6, ∴c=
1133
S
△ABC
= absinC= ×2× = . …………….…….(12分)
2222< br>?
9?x
2
?1?2x
?
?
?
1
?
17. (理)解:∵
A?x?3?x?2
?
,
B?
?< br>x9?x
2
?0
?
?
?
x?2?x?
?…(6分)
2
?
?
1?2x?0
?
?
??
∴A∩B={x|x
2
+ax+b<0}=
?
x?2?x?< br>1
?
?
, ………………………(8分)
2
?
13
?
?a??2???
1
?
22< br> ∴a+b=
1
.………(12分)

?2
和即为方程x< br>2
+ax+b=0的两根,∴
?

?
22
?
b?(?2)?
1
??1
?
?2
(文)解:(1)∵
1?x?2,?
原式=
2
?
2x?1
?
2
?2x ?2?2x?1?2x?2
…(5分)


?2x?
(2)
1 1
??
?2x?2
=
2
?
x??x?2
?
?3
………………………(8分)
22
??
k
2
?2k?
53
2
?
?
k?1
?
??1,
?
原不等式等价于
x?1?x

22
?
1?
?
此不 等式的解集为
?
xx?
?
………………………(12分)
2
?
?

18.解:由tanA+tanB=
分)
即tan(A+B)=-
∴tan(π-C)= -
3 …………………….(4分)
3 , ∴tanC=3
3 tanA·tanB-3 可得
tanA?tanB
=-3 ,………(3
1?tanA?tanB
3 , ∴-tanC=-
∵C∈(0, π), ∴C=
3
?
……………………………………………………….(6分)
3
31331333
又△ABC的面积为S
△ABC
= ,∴ absinC= 即 ab× = , ∴ab=6…….
222222
(8分)
又 由余弦定理可得c
2
=a
2
+b
2
-2abcosC
7121
?
7
22222222
∴( )= a+b-2abcos∴( )= a+b-ab=(a+b)-3ab∴(a+b)= , ……(.11
224
3
分)
11
∵a+b>0, ∴a+b= ……………………………………………………. (12分)
2
19 .解:⑴依题意,
a
2
?
9
a
1
?
10< br>?
100
,故

n?2
时,
a
n
?
9
S
n?1
?
10


a
n?1
?
9
S
n
?
10
② ………………….…………. (4分)
a
②―①整理得:
n?1
?< br>10
,故
{
a
n
}
n?N
?
为等比 数列,
a
n

a
n
?a
1
q
n?1
?10
n

?lg
a
n
?
n
.
?lga
n?1
?lga
n
?(n?1)?n?1


{lg
a
n
}
是等差数列. ………………………. (6分)
a
2
?10
,………………………………. (2分)
a
1


111
⑵由⑴知,
T
n
?3(??
?< br>?
)

1?22?3n(n?1)
111113
.……………………. (9分)
???
?
??)?3?
223nn?1n?1
331
?T
n
?
,依题意有
?(m
2
?5m)
,解得
?1?m ?6
,…………… (11分)
24
2
故所求最大正整数
m
的值为5 …………………. (12分)
=
3(1?
s?1
20.解:设
a
11
?a
,第一行数的公差为
d
,第一列数的公比为q
,可得
a
st
?[a?(t?1)d]q

又设第一 行数列公差为
d
,各列数列的公比为
q
,则第四行数列公差是
dq< br>,于是可得
3
?
?
a
24
?(a
11?3d)q?1

?
1
.………………….…. (3分)
?
3
?< br>a
42
?(a
11
?d)q?
8
?
3
?
3
a?a?dq?
4342
?
16
?
解此方程 组,得
a
11
?d?q??
1
2
,由于给
n
个数都是正数,必有
q?0
,从而有
2
1
, .………………………. (4分)
2
k
k?1k?1
于是对任意的1?k?n
,有
a
kk
?a
1k
q?[a
11
?(k?1)d]q?
k
…….…… (6分)
2
123n

S??
2
?
3
?????
n
, …………………. (8分)
2222
1123n

S?
2
?
3
?
4
?????
n?1
. …………………. (10分)
22222
11111n
两式相减后得:
S??
2
?
3
?????
n
?
n?1
. …………… (12分)
222222
1n
所以
S?2?
n?1
?
n
…………………. (13分)
22
a
11
?d?q?
21. 解:(1)由原不等式得
log
2
5?2

x?5?2

x?2
2k?1
?
k?1
x?x
2
?

2k?log
2
2
2k

x?2
2k
≤0, …………………………………………………(2分) k?1
?
k?1
??
x?4?2
?
≤0,得
2
k?1

x

4?2
k?1
…………………….(4分)
f
?
k
?
?4?2
k?1< br>?2
k?1
?1?3?2
k?1
?1
?
k?N
?
?
………………………..(6分)
(2)
s
n
?f
?
1
?
?f
?
2
?< br>?????f
?
n
?
?32?2?2?????2
012?
n?1
?
?n
….………(8分)

?< br>3
?
1?2
n
?
1?2
?n?3?2
n?n?3
………………………(10分)


(3)
T
n
?

?
log
2
?
3?2
log
2
?
3?2
n< br>?n?3?2
n?1
?n?3
?
n?1
?n?1?3?2n?2
?n?1?3
?
?10.5

nn
…………………………(11分)
?
n?1?10.5n?9.5
9.5

?1?
, ………………………………………………………(12分)
n?9.5

n?9
时有最小值
T
9
?? 18

n?10
时有最大值
T
10
?20
………… ….(14分)

2018江苏高中数学考试大纲-高中数学哪些属于数与代数


高中数学排列组合口诀-初中能用高中数学公式


人教版高中数学必修1内容-高中数学兼职老师 北京


高数证明的高中数学-12999高中数学网试卷


2016高中数学联赛山东赛区-全国高中数学联赛获奖分值区间


高中数学在线辅-高中数学统计相关知识


吉安有名的高中数学老师-高中数学高考三角函数视频


高中数学如何布置假期作业-高中数学人教必修第一册



本文更新与2020-09-15 20:33,由作者提供,不代表本网站立场,转载请注明出处:https://www.bjmy2z.cn/gaokao/397950.html

高一数学必修5期中试卷及答案的相关文章

  • 余华爱情经典语录,余华爱情句子

    余华的经典语录——余华《第七天》40、我不怕死,一点都不怕,只怕再也不能看见你——余华《第七天》4可是我再也没遇到一个像福贵这样令我难忘的人了,对自己的经历如此清楚,

    语文
  • 心情低落的图片压抑,心情低落的图片发朋友圈

    心情压抑的图片(心太累没人理解的说说带图片)1、有时候很想找个人倾诉一下,却又不知从何说起,最终是什么也不说,只想快点睡过去,告诉自己,明天就好了。有时候,突然会觉得

    语文
  • 经典古训100句图片大全,古训名言警句

    古代经典励志名言100句译:好的药物味苦但对治病有利;忠言劝诫的话听起来不顺耳却对人的行为有利。3良言一句三冬暖,恶语伤人六月寒。喷泉的高度不会超过它的源头;一个人的事

    语文
  • 关于青春奋斗的名人名言鲁迅,关于青年奋斗的名言鲁迅

    鲁迅名言名句大全励志1、世上本没有路,走的人多了自然便成了路。下面是我整理的鲁迅先生的名言名句大全,希望对你有所帮助!当生存时,还是将遭践踏,将遭删刈,直至于死亡而

    语文
  • 三国群英单机版手游礼包码,三国群英手机单机版攻略

    三国群英传7五神兽洞有什么用那是多一个武将技能。青龙飞升召唤出东方的守护兽,神兽之一的青龙。玄武怒流召唤出北方的守护兽,神兽之一的玄武。白虎傲啸召唤出西方的守护兽,

    语文
  • 不收费的情感挽回专家电话,情感挽回免费咨询

    免费的情感挽回机构(揭秘情感挽回机构骗局)1、牛牛(化名)向上海市公安局金山分局报案,称自己为了挽回与女友的感情,被一家名为“实花教育咨询”的情感咨询机构诈骗4万余元。

    语文