关键词不能为空

当前您在: 主页 > 数学 >

人教版高中数学必修五课后习题答案-高中数学必修五课后题答案

作者:高考题库网
来源:https://www.bjmy2z.cn/gaokao
2020-09-15 23:10
tags:高中数学必修五

广东省高中数学是什么版本-宝鸡市高中数学是哪一版本


高中数学必修5课后习题答案[人教版]
高中数学必修5课后习题答案
第一章 解三角形
1.1 两角和与差的正弦、余弦和正切公式
练习(P4)
1、(1)
a?14

b?19

B?105?
; (2)
a?18
cm,
b?15
cm,
C?75?
. 2、(1)
A?65?

C?85?

c?22
;或< br>A?115?

C?35?

c?13

(2)
B?41?

A?24?

a?24
.
练习(P8)
1、(1)
A?39.6?,B?58.2?,c?4.2 cm
; (2)
B?55.8?,C?81.9?,a?10.5 cm
.
2、(1)
A?43.5?,B?100.3?,C?36.2?
; (2)
A?24.7?,B?44.9?,C?110.4?
.
习题1.1 A组(P10)
1、(1)
a?38cm,b?39cm,B?80?
; (2)
a?38cm,b?56cm,C?90?

2、(1)
A?114? ,B?43?,a?35cm;A?20?,B?137?,a?13cm

(2)
B?35?,C?85?,c?17cm

(3)
A?97?,B?58?,a?47cm;A?33?,B?122?,a?26cm

3、(1)
A?49?,B?24?,c?62cm
; (2)
A?59?,C?55?,b?62cm

(3)
B?36?,C?38?,a?62cm

4、(1)
A?36?,B?40?,C?104?
; (2)
A?48?,B?93?,C?39?

习题1.1 A组(P10)
B
1、证明:如图1,设
?ABC
的外接圆的半径是
R

a
?ABC?C?90?
①当时直角三角形时,时,
O
?ABC< br>的外接圆的圆心
O

Rt?ABC
的斜边
AB
上.
BCAC

Rt?ABC
中,
?sinA

?si nB

AB
AB
b
C
ab

?sinA< br>,
?sinB

A
2R2R
(第1题图1)
所以
a?2RsinA

b?2RsinB


c?2R?2R?sin90??2RsinC

所以
a?2RsinA, b?2RsinB, c?2RsinC

②当< br>?ABC
时锐角三角形时,它的外接圆的圆心
O
在三角形内(图2),
作过
O、B
的直径
A
1
B
,连接
AC

1
?90?

?BAC??BAC

?A
1
BC
直角三角形,
?ACB
.
11
A
A
1
Rt?A
1
BC
中,
BC
?sin?BAC
1

A
1
B
第1页 共34页
O
B
(第1题图2)
C


高中数学必修5课后习题答案[人教版]
a
?sin?BAC?sinA

1
2R
所以
a?2RsinA

同理:
b?2RsinB

c?2RsinC

③当
?ABC
时钝角三角形时,不妨假设
?A
为钝角,
它的外接圆的圆心
O

?ABC
外(图3)

作 过
O、B
的直径
A
1
B
,连接
AC
. < br>1
A

?A
1
BC
直角三角形,且
?ACB ?90?

?BAC?180???BAC

11
B
C
Rt?A
1
BC
中,
BC?2Rsin?BAC

1

a?2Rsin(180???BAC)


a?2RsinA

同理:
b?2RsinB

c?2RsinC

综上,对任意三角形
?ABC
,如果它的外接圆半径等于
R


a?2RsinA, b?2RsinB, c?2RsinC

2、因为
acosA?bcosB

所以
sinAcosA?si nBcosB
,即
sin2A?sin2B

因为
0?2A,2B?2
?

O
A
1
(第1题图3)
所以
2A?2B
,或2A?
?
?2B
,或
2A?
?
?2
?
?2B
. 即
A?B

A?B?
所以,三角形是等腰三角形,或是直角三角形.
在得到
sin2A?sin2B
后,也可以化为
sin2A?sin2B?0

所以
cos(A?B)sin(A?B)?0

A?B?
?
2
.
?
2
,或
A?B?0


A?B?
?
2
,或
A?B
,得到问题的结论.
1.2 应用举例
练习(P13)
1、在
?ABS
中,
AB?32.2?0.5?16.1
n mile,
?ABS?115?

根据正弦定理,

AS?
ASAB
?

sin?A BSsin(65??20?)
?AB?sin?ABS?2?16.1?sin115??2

sin(65??20?)

S
到直线
AB
的距离是
d?AS?sin20??16.1?sin115??2?sin20??7.06
(cm).
∴这艘船可以继续沿正北方向航行.
2、顶杆约长1.89 m.
练习(P15)
第2页 共34页


高中数学必修5课后习题答案[人教版]
1、在
?ABP
中,
?ABP?180??
?
?
?

?BPA?180??(
?
?
?
)??ABP?180??(
?
?
?
)?(180??
?
?
?
)?
?
?
?


?ABP
中,根据正弦定理,
APAB

?
sin?ABPsin?APB
APa
?

sin(18 0??
?
?
?
)sin(
?
?
?
)
a?sin(
?
?
?
)
AP?

sin(
?
?
?
)
asin
?
sin(
?
??
)
所以,山高为
h?APsin
?
?

si n(
?
?
?
)
2、在
?ABC
中,
AC? 65.3
m,
?BAC?
?
?
?
?25?25
?< br>?17?38
?
?7?47
?

?ABC?90??
?
?90??25?25
?
?64?35
?

ACBC

?
sin?ABCsin?BAC
AC?sin?BAC 65.3?sin7?47
?
BC???9.8
m
sin?ABCsin64?35
?
井架的高约9.8m.
200?sin38?sin29?
3、山的高度为
?382
m
sin9?
练习(P16)
1、约
63.77?
.
练习(P18)
1、(1)约
168.52 cm
2
; (2)约
121.75 cm
2
; (3)约
425.39 cm
2
.
2、约
4476.40 m
2

a2
?b
2
?c
2
a
2
?c
2
?b
2
?c?
3、右边
?bcosC?ccosB?b?

2ab2ac
a
2
?b
2
?c
2
a
2?c
2
?b
2
2a
2
????a?
左边 【类似可以证明另外两个等式】
2a2a2a
根据正弦定理,
习题1.2 A组(P19)
1、在
?ABC
中,
BC?35?0.5?17.5
n mile,
?ABC?148??126??22?

?ACB?78??(180? ?148?)?110?

?BAC?180??110??22??48?

ACBC

?
sin?ABCsin?BAC
BC?sin?ABC 17.5?sin22?
AC???8.82
n mile
sin?BACsin48?
货轮到达
C
点时与灯塔的距离是约8.82 n mile.
2、70 n mile.
3、在
?BCD
中,
?BCD?30??10??40?

?BDC?180???ADB?180??45??10??125?

1
CD?30??10
n mile
3
根据正弦定理,
第3页 共34页


高中数学必修5课后习题答案[人教版]
根据正弦定理,
CDBD

?
sin?CBDsin?BCD
10BD
?

sin?(180??40??125?)sin40?
10?sin40?

sin15?

?ABD
中,
?ADB?45??10??55?

?BAD?180??60??10??110?

?ABD?180??110??55??15?

ADBDABADBDAB
根据正弦定理,,即
????
sin? ABDsin?BADsin?ADBsin15?sin110?sin55?
10?sin40?< br>?sin15?
BD?sin15?10?sin40?
AD??
sin15?
??6.84
n mile
sin110?sin110?sin70?
BD?
BD?sin55?10?sin40??sin55?
??21.65
n mile
sin110?sin15??sin70?
如果一切正常,此船从
C
开始到
B
所需要的时间为:
AD?AB6.84?21.65
20??60?10?30??60?86.98
min
3030
即约1小时26分59秒. 所以此船约在11时27分到达
B
岛.
4、约5821.71 m
5、在
?ABD
中,
AB?700 km

?ACB?180??21??35??124?

700ACBC
根据正弦定理,
??
sin124?sin35? sin21?
700?sin35?700?sin21?

BC?

AC?
sin124?
sin124?
700?sin35?700?sin21?
AC?BC???786.89 km

sin124?sin124?
所以路程比原来远了约86.89 km.
6、飞机离
A
处探照灯的距离是4801.53 m,飞机离
B
处探照灯的距离是4704.21 m,飞机的
高度是约4574.23 m.
150
7、飞机在150秒内飞行的距离是
d?1000?1000? m

3600
dx
?
根据正弦定理,
sin(81??18.5?)sin18.5?
这里
x
是飞机看到山顶的俯角为
81?
时飞机与山顶的距离.
d?sin18.5?
?tan81??14721.64 m
飞机与山顶的海拔的差是:
x?tan81??
sin(81??18.5?)
山顶的海拔是
20250?14721.64?5528 m

8、在
?AB T
中,
?ATB?21.4??18.6??2.8?

?ABT?90?? 18.6?

AB?15 m

ABAT15?cos18.6?
根据正弦定理,,即
AT?

?
sin2.8?
sin2.8?co s18.6?
15?cos18.6?
塔的高度为
AT?sin21.4???sin21.4??106.19 m

sin2.8?
B
326?18
9、
AE??97.8 km

E
60
A
第4页 共34页
AB?
D
C
(第9题)


高中数学必修5课后习题答案[人教版]

?ACD
中,根据余弦定理:
AC?AD
2
?CD
2
?2?AD?CD?cos66?

?57
2
?110
2
?2?57?110?cos66??101. 235

根据正弦定理,
ADAC

?
sin?A CDsin?ADC
AD?sin?ADC57?sin66?
sin?ACD???0.51 44

AC101.235
?ACD?30.96?

?ACB?133??30.96??102.04?


?ABC< br>中,根据余弦定理:
AB?AC
2
?BC
2
?2?AC?BC ?cos?ACB

?101.235
2
?204
2
?2? 101.235?204?cos102.04??245.93

AB
2
? AC
2
?BC
2
245.93
2
?101.235
2
?204
2
cos?BAC???0.5847

2?AB?AC2?245.93?101.235
?BAC?54.21?


?ACE
中,根据余弦定理:
CE?AC
2
?AE
2
?2?AC?AE?cos?EAC

?101.235
2
?97.8
2
?2?101.235?97.8?0.5487?90.75
AE
2
?EC
2
?AC
2
97.8
2
?90.75
2
?101.235
2
cos?AEC???0.4254
2?AE?EC2?97.8?90.75
?AEC?64.82?

180???AEC?(180??75?)?75??64.82??10.18?

所以,飞机应该以南偏西
10.18?
的方向飞行,飞行距离约
90.75 km
.
10、
A


B


如图,在
?ABC
中,根据余弦定理:
(第10题)
AC?BC
2
?AB
2
?2?AB?BC?cos39?54
?
?(6400?35800)
2
?6400
2
?2?(6400?358 00)?6400?cos39?54
?

C
?42200
2
?6400
2
?2?42200?6400?cos39?54
?
?375 15.44 km

AB
2
?AC
2
?BC
26400
2
?37515.44
2
?42200
2
?B AC????0.6924

2?AB?AC2?6400?37515.44
?BAC?133.82?

?BAC?90??43.?8

2
所以,仰角为
43.82?

11
11、(1)
S?acsinB??28?33?sin45??326.68 cm
2

22
第5页 共34页


高中数学必修5课后习题答案[人教版]
aca36

c???sinC??sin66.5?

sinAs inCsinAsin32.8?
11sin66.5?
S?acsinB??36
2
??sin(32.8??66.5?)?1082.58 cm
2

22sin32.8?
(3)约为1597.94
cm
2

A
1
2
2
?
12、
nRsin
.
2n
a
2
?c
2
?b
2
13、根据余弦定理:< br>cosB?

b
2ac
c
aa
2
所以
m
a
?()
2
?c
2
?2??c?cosB

m
a
22
a
2
a
2
?c
2< br>?b
2
2
?()?c?a?c?

B
22ac
a
11
(第13题)
?()
2
[a
2
?4c
2
?2(a
2
?c
2
?b
2
)]?()
2
[2(b
2
?c
2
)?a
2
]

22
111
所以
m
a
?2(b
2
?c
2
)?a
2
,同理
m
b
?2(c
2
?a
2
)?b
2

m
c
?2(a
2
?b
2
)?c
2

222< br>b
2
?c
2
?a
2
c
2
?a
2
?b
2
14、根据余弦定理的推论,
cosA?

co sB?

2bc2ca
(2)根据正弦定理:
C
所以,左边
?c(acosB?bcosA)

c
2
?a
2
?b
2
b
2
?c
2
?a
2
?c( a??b?)

2ca2bc
c
2
?a
2
?b2
b
2
?c
2
?a
2
1
?c(?)? (2a
2
?2b
2
)?
右边
2c2c2
习题1.2 B组(P20)
abasinB
,所以
b?

?
sinAsinBsinA
11asinB1sinBsinC
代入三角形面积公式得
S?absinC?a?

?sinC?a
2
22sinA2sinA
a
2
?b
2
?c
2
2、( 1)根据余弦定理的推论:
cosC?

2ab
1、根据正弦定理:
a
2
?b
2
?c
2
2
由同角三角函数之间的关系,
sinC?1?cosC?1?()

2ab
2
1
代入
S?absinC
,得 < br>2
1a
2
?b
2
?c
2
2
S?ab 1?()

22ab
?
1
(2ab)
2
?(a2
?b
2
?c
2
)
2

4
第6页 共34页


高中数学必修5课后习题答案[人教版] 1
(2ab?a
2
?b
2
?c
2
)(2ab? a
2
?b
2
?c
2
)

4
1
?(a?b?c)(a?b?c)(c?a?b)(c?a?b)
4
1111

p?(a?b?c)
,则可得到
(b?c?a)? p?a

(c?a?b)?p?b

(a?b?c)?p?c

22
22
代入可证得公式
1
(2)三角形的面积
S
与三角形内切圆半径
r
之间有关系式
S??2p?r?pr

2
?
S(p?a)(p?b)(p?c)
1
其中
p?(a?b?c)
,所以
r??

pp
2
1
(3)根据三角形面积公式
S??a?h
a

2
2S22
所以,
h
a
??p(p?a)(p?a)(p?a)
,即
h
a
?p(p?a)(p?a)(p?a)

aaa
22
同理
h
b
?p(p?a)(p?a)(p?a)

h
c?p(p?a)(p?a)(p?a)

bc
第一章 复习参考题A组(P24)
?
c?8.69 cm
; 1、(1)
B?21?9
?
,C?38?51,
?
c?11.4 c m
;或
B?138?11,
?
C?11?49
?
,c?2. 46 cm
(2)
B?41?49
?
,C?108?11,
(3)
A?11?2
?
,B?38?58
?
,c?28.02 cm
; (4)
B?20?30
?
,C?14?30
?
,a?22.92 cm

(5)
A?16?20
?
,C?11?40
?
,b?53.41 cm
; (6)
A?28?57
?
,B?46?34
?
,C?104?29
?

2、解法1:设海轮在
B
处望见小岛在北 偏东
75?
,在
C
处望
见小岛在北偏东
60?
, 从小岛
A
向海轮的航线
BD
作垂
线,垂线段
AD
的长度为
x
n mile,
CD

y
n mile.
?
x
?< br>x
?
y
?tan30?
?
tan30?
?y
xx
??
?
?
???8

?
xx
ta n30?tan15?
?
?tan15?
?
?y?8
?
?< br>y?8tan15?
?
?
(第2题)
8tan15?tan30?
?4

tan30??tan15?
所以,这艘海轮不改变航向继续前进没有触礁的危险.
3、根据余弦定理:
AB
2
?a
2
?b
2
?2ab cos
?

x?
所以
AB?a
2
?b
2
?2abcos
?

a
2
?AB
2
?b
2
cosB?

2?a?AB
?
a
2
?a
2
?b
2
?2 abcos
?
?b
2
2?a?a?b?2abcos
?
22

第7页 共34页


高中数学必修5课后习题答案[人教版]
?
a?bcos
?
a?b?2abcos
?
22


?B
的余弦值可以确定它的大小.
类似地,可以得到下面的 值,从而确定
?A
的大小.
cosA?
b?acos
?
a? b?2abcos
?
A
22

B
4、如图,
C,D
是两个观测点,
C

D
的距离是
d
,航船在时刻< br>t
1


A
处,以从
A

B
的航向航行,在此时测出
?ACD

?CDA
.
在时刻
t
2
,航船航行到
B
处,此时,测出
?CDB

? BCD
. 根
C
d
D
(第4题)
据正弦定理,在
?BCD
中,可以计算出
BC
的长,在
?ACD
中,
? ACB??ACD??BCD

CD
,可以计算出
AC
的长. 在< br>?ACB
中,
AC

BC
已经算出,解
?A

求出
AB
的长,即航船航行的距离,算出
?CAB
,这样就可以算出 航船的航向和速度.
hsin(
?
?
?
)
A
5、河流宽度是. 6、47.7 m.
B
sin
?
sin
?
7、如图,A,B
是已知的两个小岛,航船在时刻
t
1

C
处,以 从
C


D
的航向航行,测出
?ACD

?BCD
. 在时刻
t
2
,航船航行
d
C
(第7题)
D
D
处,根据时间和航船的速度,可以计算出
C

D
的 距离是
d
,在
D
处测出
?CDB

?CDA
. 根据正弦定理,在
?BCD
中,可以计算出
BD
的长,在
?ACD
中,可以计算出
AD

的长. 在
?A BD
中,
AD

BD
已经算出,
?ADB??CDB??C DA
,根据余弦定理,就可
以求出
AB
的长,即两个海岛
A,B
的距离.
第一章 复习参考题B组(P25)
1、如图,
A,B
是两个底部不可到达的建筑物的尖顶, 在地面某点
E

处,测出图中
?AEF

?AFE
的大小,以及
EF
的距离. 利用正弦
定理,解
?AEF
,算出
AE
. 在
?BEF
中,测出
?BEF

?BFE

利用正弦定理,算出
BE
. 在
?AEB
中,测出
?AEB
,利用余弦定
理,算出
AB
的长. 本题有其他的测量方法.
2、关于三角形的面积公式,有以下的一些公式:
E
111
(1)已知一 边和这边上的高:
S?ah
a
,S?bh
b
,S?ch
c< br>;
222
111
(2)已知两边及其夹角:
S?absinC,S?bcsinA,S?casinB

222
a?b?c
(3)已知三边:
S?p(p?a)(p?b)(p?c)
,这里
p?

2
A
B
D
C
(第1题)
F
b
2
sinCsinAc
2
sinAsinBa
2
sinBsinC,S?,S?
(4)已知两角及两角的共同边:
S?

2sin(C?A)2sin(A?B)2sin(B?C)
(5)已知三边和外接圆半径
R

S?
abc
.
4R
第8页 共34页


高中数学必修5课后习题答案[人教版] < br>3、设三角形三边长分别是
n?1,n,n?1
,三个角分别是
?
,< br>?
?3
?
,2
?
.
n?1
n?1n?1< br>由正弦定理,,所以
cos
?
?
.
?
2(n?1)
sin
?
sin2
?
由余弦定理,
(n?1)
2< br>?(n?1)
2
?n
2
?2?(n?1)?n?cos
?.

(n?1)
2
?(n?1)
2
?n
2< br>?2?(n?1)?n?
n?1
,化简,得
n
2
?5n?0< br>
2(n?1)
所以,
n?0

n?5
.
n?0
不合题意,舍去. 故
n?5

所以,三角形的三边分别是4,5,6. 可以验证此三角形的最大角是最小角的2倍.
另解:先考虑三角形所具有的第一个性质:三边是连续的三个自然数.
(1)三边的长不可能是1,2,3. 这是因为
1?2?3
,而三角形任何两边之和大于第三边.
(2)如果三边分别是
a?2,b?3,c?4
.
b
2
?c
2
?a
2
3
2
?4
2
?2
2
7
??
因为
cosA?
2bc2?3?48
717cos2A?2cos
2
A?1?2?()
2
?1?

832
a
2
?b
2
?c
2
2
2
? 3
2
?4
2
1
cosC????

2ab2?2?34
在此三角形中,
A
是最小角,
C是最大角,但是
cos2A?cosC

所以
2A?C
,边长为2,3,4的三角形不满足条件.
(3)如果三边分别 是
a?3,b?4,c?5
,此三角形是直角三角形,最大角是
90?
,最小 角
不等于
45?
. 此三角形不满足条件.
(4)如果三边分别是
a?4,b?5,c?6
.
b
2
?c
2
?a
2
5
2
?6
2
?4
2
3
??
此时,
cosA?
2bc2?5?64
31
cos2A?2cos
2
A?1?2?()
2
?1?

4 8
a
2
?b
2
?c
2
4
2
?5< br>2
?6
2
1
cosC???

2ab2?4?58
此时,
cos2A?cosC
,而
0 ?2A,C?
?
,所以
2A?C

所以,边长为4,5,6的三角形满足条件.
(5)当
n?4
,三角形的三边是
a?n,b?n?1,c?n?2
时,
三角形的最小角是
A
,最大角是
C
.
b
2
?c
2
?a
2
cosA?

2bc
(n?1)
2
?(n?2)
2
?n
2
?
2(n?1)(n?2)
n
2
?6n?5
?

2(n?1)(n?2)
?
n?5

2(n?2)
13
??

22(n?2)
第9页 共34页


高中数学必修5课后习题答案[人教版]
a
2
?b
2
?c
2
cosC?

2ab
n
2
?(n?1)
2
?(n?2)
2
?
2n(n?1)
n
2
?2n?3
?

2n(n?1)
n?3

2n
13

??
22n
cosA

n
的增大而减小,
A
随之增大,
cosC

n
的增大而增大,
C
随之变小.
由 于
n?4
时有
C?2A
,所以,
n?4
,不可能
C ?2A
.
综上可知,只有边长分别是4,5,6的三角形满足条件.
?
第10页 共34页


高中数学必修5课后习题答案[人教版]
第二章 数列
2.1 数列的概念与简单表示法
练习(P31)
1、
n

n

1 2 5
? ? ?
12


3(3?4n)

a
153
? ? ?
21 33 69
n



2、前5项分别是:
1,0,?1,0,?1
.
?
1
?( n?2m,m?N
*
)
*
?
?
?
n
?2(n?2m,m?N)
3、例1(1)
a
n
?
?
; (2)
a
n
?
?

*
1
?
?(n?2m?1,m?N
*
)
?
0(n?2m?1,m?N)
?
?
n
说明:此题是通项公式不唯一的题目,鼓励学生说出各种可能的表达形式,并举 出其他可
能的通项公式表达形式不唯一的例子.
(?1)
n
1
1< br>?
(n?Z
?
)
; (3)
a
n
?
n?1
(n?Z
?
)
4、(1)
a
n
?(n?Z)
; (2)
a
n
?< br>2n
2n?1
2
2
习题2.1 A组(P33)
1、(1)2,3,5,7,11,13,17,19;
(2)
2,6,22,3,10,23,14,15,4,32

(3)1,1.7,1.73,1.732,?1.732050;
2,1.8,1.74,1.733,?,1.732051.
1111
2、(1)
1,,,,
; (2)
2,?5,10,?17,26
.
491625
3、(1)(1),
?4
,9,(
?16
),25,(
?36
),49;
a
n
?(?1)
n?1
n
2

(2 )1,
2
,(
3
),2,
5
,(
6
),< br>7

a
n
?n
.
1141
4、(1)
,3,13,53,213
; (2)
?,5,,?,5
.
2454
5、对应的答案分别是:(1)16, 21;
a
n
?5n?4
;(2)10,13;
a
n
?3n?2
;(3)24,35;
a
n
?n
2
?2n
.
6、15,21,28;
a
n
?a
n?1
?n
.
习题2.1 B组(P34)
1、前5项是1,9,73,585,4681.
第11页 共34页


高中数学必修5课后习题答案[人教版]
8
n
?1
该数列的递推公式是:
a
n?1
?1?8a
n
,a
1
?1
.通项公式是:
a
n
?
.
7
2、
a
1
?10?(1?0.72﹪)?10.072

a
2
?10?(1?0.﹪7
2
2?)
.
a3
?10?(1?0.72﹪)
3
?10.217559

a
n
?10?(1?0.﹪7
n
2
35813
3、(1)1 ,2,3,5,8; (2)
2,,,,
.
2358

451810.14
2.2 等差数列
练习(P39)
1、表格第一行 依次应填:0.5,15.5,3.75;表格第二行依次应填:15,
?11

?2 4
.
2、
a
n
?15?2(n?1)?2n?13
a
10
?33
. 3、
c
n
?4n

4、(1)是,首项是
a
m?1
?a
1
?md
,公差不变,仍为
d

(2) 是,首项是
a
1
,公差
2d
;(3)仍然是等差数列;首项是
a
7
?a
1
?6d
;公差为
7d
.
5 、(1)因为
a
5
?a
3
?a
7
?a
5< br>,所以
2a
5
?a
3
?a
7
. 同理有
2a
5
?a
1
?a
9
也成立;
(2)
2a
n
?a
n?1
?a
n?1
(n?1)< br>成立;
2a
n
?a
n?k
?a
n?k
(n? k?0)
也成立.
习题2.2 A组(P40)
1、(1)
a
n
?29
; (2)
n?10
; (3)
d?3
; (4)
a
1
?10
. 2、略.
3、
60?
. 4、
2℃

?11℃

?37℃
. 5、(1)
s?9.8t
; (2)588 cm,5 s.
习题2.2 B组(P40)

1、(1)从表中的数据看,基本上是一个等差数列,公差约为2000,< br>a
2010
?a
2002
?8d?0.26?10
5

再加上原有的沙化面积
9?10
5
,答案为
9.26?10
5

(2)2021年底,沙化面积开始小于
8?10
5
hm
2
.
2、略.
2.3 等差数列的前
n
项和
练习(P45)
1、(1)
?88
; (2)604.5.
?
59
,n?1
?
?
12
2、
a
n
?
?

6n?5
?
,n?1
?
?
12
第12页 共34页


高中数学必修5课后习题答案[人教版]
3、元素个数是30,元素和为900.
习题2.3 A组(P46)
1、(1)
n(n?1)
; (2)
n
2
; (3)180个,和为98550; (4)900个,和为494550.
n(a
1
?a
n
)
,并解得
n?27

2
17

a
1
?20,a
n
?54,n?27
代入
a
n
?a
1
?(n?1)d
,并解得
d?
.
13
1n(a
1
?a
n
)
(2)将
d?,n?37,S
n
?629
代入
a
n
?a
1
?(n?1)d

S
n
?

32
2、(1)将
a
1
?20,a
n
?54,S< br>n
?999
代入
S
n
?
?
a
n?a
1
?12
?

?
37(a
1
?a
n
)
;解这个方程组,得
a
1
?11,a
n
?23
.
?629
?
2
?
51n(n?1)
( 3)将
a
1
?,d??,S
n
??5
代入
S
n
?na
1
?d
,并解得
n?15

662< br>513

a
1
?,d??,n?15
代入
a
n
?a
1
?(n?1)d
,得
a
n
??
.
66
2
(4)将
d?2,n?15,a
n
??10
代入
a
n
?a
1
?(n?1)d
,并解得
a
1
??38


a
1
??38,a
n
??10,n?15
代入
S
n
?
3、
4.55?10
4
m. 4、4.
5、这些数的通项公式:
7(n?1)?2
,项数是14,和为665. 6、1472.
习题2.3 B组(P46)

n(a
1
?a< br>n
)
,得
S
n
??360
.
2
1、每个月的维修费实际上是呈等差数列的. 代入等差数列前
n
项和公式 ,求出5年内的总
共的维修费,即再加上购买费,除以天数即可. 答案:292元.
2、本题的解法有很多,可以直接代入公式化简,但是这种比较繁琐.
现提供2个证明方法供参考.
(1)由
S
6
?6a
1< br>?15d

S
12
?12a
1
?66d
,< br>S
18
?18a
1
?153d

可得S
6
?(S
18
?S
12
)?2(S
12?S
6
)
.
(2)
S
12
?S
6< br>?(a
1
?a
2
???a
12
)?(a
1< br>?a
2
???a
6
)

?a
7
?a
8
???a
12

?(a1
?6d)?(a
2
?6d)???(a
6
?6d)

?(a
1
?a
2
???a
6
)?36d

第13页 共34页


高中数学必修5课后习题答案[人教版]
?S
6
?36d

同样可得:
S
18
? S
12
?S
6
?72d
,因此
S
6
?(S
18
?S
12
)?2(S
12
?S
6
)< br>.
3、(1)首先求出最后一辆车出发的时间4时20分;
所以到下午6时,最后一辆车行驶了1小时40分.
(2)先求出15辆车总共的行驶时 间,第一辆车共行驶4小时,以后车辆行驶时间依次
递减,最后一辆行驶1小时40分. 各辆车的行驶 时间呈等差数列分布,代入前
n
项和公式,这
4?1
个车队所有车的行驶时间 为
S?
2
3
?15?
85
h.
22
乘以车速
60
kmh,得行驶总路程为2550 km.
?
1
?
111
a???
4、数列
?
的通项公式为 < br>?
n
n(n?1)nn?1
n(n?1)
??
1111111 11n
所以
S
n
?(?)?(?)?(?)?
?
?(?

)?1??
122334nn?1n?1n?1
类似地,我们可以求出通项公式为< br>a
n
?
1111
?(?)
的数列的前
n
项和 .
n(n?k)knn?k
2.4 等比数列
练习(P52)
1、
a
1



2


50


a
3

a
5

a
7

q

2

?2

4
2
8
0.08
16
0.0032 0.2 < br>2、由题意可知,每一轮被感染的计算机台数构成一个首项为
a
1
?80
,公比为
q?20
的等比
数列,则第5轮被感染的计算机台数
a
5

a
5
?a
1
q
4
?80?204
?1.28?10
7
.
3、(1)将数列
?
an
?
中的前
k
项去掉,剩余的数列为
a
k?1
,a
k?2
,
?
. 令
b?a
k?i
,
i ?
1,2,
?
,则数列
a
k?1
,a
k?2
,
?
可视为
b
1
,b
2
,?
.
因为
b
i?1
a
k?i?1
??q(i≥1)
,所以,
?
b
n
?
是等比数列,即
a
k?1
,a
k?2
,
?
是等比数列.
b
i
a
k?i
a
3
a
5
a
????
2k?1
?? ?q
2
(k≥1)
.
a
1
a
3
a
2k?1
(2)
?
a
n
?
中的所有奇数列是
a
1
,a
3
, a
5
,?
,则
所以,数列
a
1
,a
3
,a
5
,?
是以
a
1
为首项,
q
2
为公比的等比数列.
第14页 共34页


高中数学必修5课后习题答案[人教版]
(3)
?
a< br>n
?
中每隔10项取出一项组成的数列是
a
1
,a
1 2
,a
23
,?


a
12
a
23
a
????
11k?1
???q
11
(k≥1)

a
1
a
12
a
11k?10
所以,数列< br>a
1
,a
12
,a
23
,?
是以
a
1
为首项,
q
11
为公比的等比数列.
猜想:在数列?
a
n
?
中每隔
m

m
是一个正整数 )取出一项,组成一个新的数列,这个数列
是以
a
1
为首项,
qm?1
为公比的等比数列.
2
4、(1)设
?
a
n< br>?
的公比为
q
,则
a
5
?(a
1
q
4
)
2
?a
1
2
q
8
,而
a
3
?a
7
?a
1
q
2
?a
1
q
6
?a
1
2
q
8

22
所以
a
5
?a
3
?a
7
,同理
a
5
?a
1
?a
9

2
(2)用上面的方法不难证明
a
n
?a
n?1
?a
n?1< br>(n?1)
. 由此得出,
a
n

a
n?1

a
n?1
的等比中项.
2
同理:可证明,
a
n
?a
n?k
?a
n?k
(n?k?0)
. 由此得出,
a
n

a
n?k

a
n?k
的等 比中项
(n?k?0)
.
5、(1)设
n
年后这辆车的价值为a
n
,则
a
n
?13.5(1?10﹪)
n
.
(2)
a
4
?13.5(1?10﹪)
4
?88573
(元). 用满4年后卖掉这辆车,能得到约88573元.
习题2.4 A组(P53)
1、(1)可由
a
4
?a
1
q
3
,得a
1
??1

a
7
?a
1
q
6
?(?1)?(?3)
6
??729
.
也可由
a
7
?a
1
q
6

a
4
?a< br>1
q
3
,得
a
7
?a
4
q
3
?27?(?3)
3
??729

?
a
1
?27
?
a
1
??27
?
??
?
a1
q?18
(2)由
?
3
,解得
?
2,或
?
2

q?q??
?
?
?
?a
1
q?8
3
3
?
?
4
?
3
?
a
1
q?4
(3)由
?
6
,解得
q
2
?

2
?
?
a
1
q?6
3
a
9
?a
1
q
8
?a
1
q
6
?q
2
?a7
q
2
?6??9

2
2
a
7
6
2
还可由
a
5
,a
7
,a
9
也成等比数列,即
a?a
5
a
9
,得
a
9
???9
.
a
5
4
2
7
4
?
?
a
1
q?a
1?15
??

(4)由
?
3

aq?aq?6
??

?
1
?
1
第15页 共34页


高中数学必修5课后习题答案[人教版]
q
2
? 15
1
?
,由此解得
q?

q?2
. ①的两边分别除以②的两边,得
q2
2
1

q?
时,
a
1
??16
. 此时
a
3
?a
1
q
2
??4
. 当
q?2
时,
a
1
?1
. 此时
a
3
?a
1
q
2
?4
.
2
2、设
n
年后,需退耕
a
n
,则
?
an
?
是一个等比数列,其中
a
1
?8(1?10﹪),q?0. 1
.
那么2005年需退耕
a
5
?a
1
(1? q)
5
?8(1?10﹪)
5
?13
(万公顷)
3、若< br>?
a
n
?
是各项均为正数的等比数列,则首项
a
1< br>和公比
q
都是正数.

a
n
?a
1< br>q
n?1
,得
a
n
?a
1
q
n?1
?a
1
q
1
2
n?1
2
?a
1< br>(q)
1
2
(n?1)
.
那么数列
?
a
n
?
是以
a
1
为首项,
q
为公比的等比 数列.
4、这张报纸的厚度为0.05 mm,对折一次后厚度为0.05×2 mm,再对折后厚度为0.05×
2
2

mm,再对折后厚度为0.05×
2
3
mm. 设
a
0< br>?0.05
,对折
n
次后报纸的厚度为
a
n
,则?
a
n
?
是一个
等比数列,公比
q?2
. 对折50次后,报纸的厚度为
a
50
?a
0
q
50
?0.05?2
50
?5.63?10
13
mm?5.63?10
10
m

这时报纸的厚度已经超出了地球和月球的平均距离(约
3.84?10
8
m
),所以能够在地球和月
球之间建一座桥.
5、设年平均增长率为
q,a
1
?105

n
年后空气质量为良的天数为
a
n< br>,则
?
a
n
?
是一个等比数列.

a
3
?240
,得
a
3
?a
1
(1?q)< br>2
?105(1?q)
2
?240
,解得
q?
240
?1?0.51

105
a?ba?b?2ab(a?b)
2
a?b
?ab??≥0
6、由已知条件知,
A?,G?ab
,且
A?G?
222
2
所以有
A≥G
,等号成立的条件是
a?b
. 而
a,b
是互异正数,所以一定有
A>G
.
7、(1)
?2
; (2)
?ab(a
2
?b
2
)
. 8、(1)27,81; (2)80,40,20,10.
习题2.4 B组(P54) < br>1、证明:由等比数列通项公式,得
a
m
?a
1
q
m ?1

a
n
?a
1
q
n?1
,其中
a
1
,q?0

a
m
a
1
q
m?1
??q
m?n
所以
n?1
a
n
a
1
q
2、(1)设生物体死 亡时,体内每克组织中的碳14的原子核数为1个单位,年衰变率为
q

n
年 后的残留量为
a
n
,则
?
a
n
?
是一个等 比数列. 由碳14的半衰期为5730
第16页 共34页


高中数学必修5课后习题答案[人教版]

a
n
?a
1
q
5730
?q
5730
1
1
5730
1
?0.999879

?
,解得
q?()
2
2
(2)设动物约在距今
n
年前死亡,由
a
n
?0.6
,得
a
n
? a
1
q?0.999879
n
?0.6
.
解得
n?4221
,所以动物约在距今4221年前死亡.
a
n
3、在等差数列1,2,3,?中,

a
7< br>?a
10
?17?a
8
?a
9

a
10
?a
40
?50?a
20
?a
30

由此可以猜想,在等差数列
?
a
n
?


k?s?p?q(k,s,p,q?N
*
)
,则
a
k
?a< br>s
?a
p
?a
q
.
从等差数列与函数之间的联系的角度来分析这个
a
s
a
k
O
k
p
a
p
q
a
q
s
n
akas
问题:由等差数列
?
a
n
?
的图象,可以看出k
?

s
?

a
p
p
a
q
q
(第3题)
根据等 式的性质,有
a
k
?a
s
k?s
?
,所以
a
k
?a
s
?a
p
?a
q
.
a
p
?a
q
p?q
猜想对于等比数列
?
a
n
?
,类似的性质为:若
k?s?p?q(k,s,p,q?N
*
)< br>,则
a
k
?a
s
?a
p
?a
q.
2.5 等比数列的前
n
项和
练习(P58)
1、( 1)
S
6
?
a
1
(1?q)3(1?2)
a?aq
??189
. (2)
S
n
?
1n
?
1?q1?2
1?q
66
?2.7?
11
(?)
903??
91
.
1
45
1?(?)
3
2、设这个 等比数列的公比为
q

所以
S
10
?(a
1< br>?a
2
???a
5
)?(a
6
?a
7
???a
10
)
?S
5
?q
5
S
5?(1?q
5
)S
5
?50

同理
S
15
?S
10
?q
10
S
5
.
因为
S
5
?10
,所以由①得
q
5
?
S
10
?1?4?q
10
?16

S
5
代入②,得
S
15
?S
10
?q
10
S< br>5
?50?16?10?210
.
3、该市近10年每年的国内生产总值构成 一个等比数列,首项
a
1
?2000
,公比
q?1.1

2000(1?1.1
10
)
?31874.8
(亿元) 设 近10年的国内生产总值是
S
10
,则
S
10
?
1 ?1.1
习题2.5 A组(P61)
第17页 共34页


高中数学必修5课后习题答案[人教版]
1、(1)由
q
3
?
a?aq?1?64?(?4)
a
4
64
?51
.
???64
,解得
q??4
,所以
S
4
?14
?
1?q1?(?4)
a
1
?1
(2)因为< br>S
3
?a
1
?a
2
?a
3
?a3
(q
?2
?q
?1
?1)
,所以
q
?2
?q
?1
?1?3
,即
2q
2
?q?1?0< br>
131
解这个方程,得
q?1

q??
. 当
q?1
时,
a
1
?
;当
q??
时,
a
1
?6
.
222
2、这5年的产值是一个以
a
1
?138?1. 1?151.8
为首项,
q?1.1
为公比的等比数列
a
1
(1?q
5
)151.8?(1?1.1
5
)
??926.754
(万元) 所以
S
5
?
1?q1?1.1
3、(1) 第1个正方形的面积为4
cm
2
,第2个正方形的面积为2
cm
2< br>,?,
1
这是一个以
a
1
?4
为首项,
q ?
为公比的等比数列
2
1
所以第10个正方形的面积为
a
10
?a
1
q
9
?4?()
9
?2
?7< br>(
cm
2

2
(2)这10个正方形的面积和为
S
10
?
a
1
?a
10
q
?
1 ?q
4?2
?7
?
1?
1
2
1
2
?8?2
?7

cm
2

4、(1)当
a?1< br>时,
(a?1)?(a
2
?2)???(a
n
?n)??1? 2???(n?1)??
(n?1)n

2

a?1
时,
(a?1)?(a
2
?2)???(a
n
?n)?(a ?a
2
???a
n
)?(1?2???n)

a(1?a
n
)n(n?1)
??

1?a2
(2)
(2?3?5
?1
)?(4?3?5
?2
)?(n?3?5< br>?n
)?2(1?2???n)?3(5
?1
?5
?2
??? 5
?n
)

n(n?1)5
?1
(1?5
?n)3
2??3??n(n?1)?(1?5
?n
)

?1
21?54
(3)设
S
n
?1?2x?3x2
???nx
n?1
??①

xS
n
?x?2x
2
???(n?1)x
n?1
?nx
n
??②
①-②得,
(1?x)S
n
?1?x?x
2
???x
n?1
?nx
n
??③
1?x
n
nx
n
n(n?1)
?

x?1
时,
S
n
?1?2?3???n?
;当
x?1
时,由③得,
S
n
?

2
(1?x)1?x
2< br>5、(1)第10次着地时,经过的路程为
100?2(50?25???100?2
? 9
)

?100?2?100(2
?1
?2
?2
?
?
?2
?9
)

2
?1
(1?2
?9
)
?100?200??299.61 (m)
1?2
?1
第18页 共34页


高中数学必修5课后习题答案[人教版]
(2)设第
n
次着地时,经过的路程为293.75 m,
2
?1
(1?2
?(n?1)
)
)?100?200??293.75


100?2?100(2?2?
?
?2
1?2
?1
所以300?200?2
1?n
?293.75
,解得
2
1?n?0.03125
,所以
1?n??5
,则
n?6

? 1?2?(n?1)
6、证明:因为
S
3
,S
9
,S
6
成等差数列,所以公比
q?1
,且
2S
9
?S
3
?S
6

a
1
(1?q
9
)a
1
(1?q
3
)a
1
(1?q
6
)
??< br> 即,
2?

1?q1?q1?q
于是,
2q
9
?q
3
?q
6
,即
2q6
?1?q
3

上式两边同乘以
a
1
q
,得
2a
1
q
7
?a
1
q? a
1
q
4

即,
2a
8
?a
2
?a
5
,故
a
2
,a
8
,a
5
成等差数列
习题2.5 B组(P62)
b
1?()< br>n?1
bb
n
a
n?1
?b
n?1
nn?1 nnn
a
1、证明:
a?ab?
?
?b?a(1??
??())?a

?
b
aaa?b
1?
a
2、证 明:因为
S
14
?S
7
?a
8
?a
9???a
14
?q
7
(a
1
?a
2
? ??a
7
)?q
7
S
7

S
21
?S
14
?a
15
?a
16
???a
21
?q
14
(a
1
?a
2
???a
7
)?q
14
S
7

所以
S
7
,S
14?7
,S
21?14
成等比数列

3、(1)环保 部门每年对废旧物资的回收量构成一个等比数列,首项为
a
1
?100
,公比 为
q?1.2
.
所以,2010年能回收的废旧物资为
a
9
?100?1.2
8
?430
(t)
a
1
( 1?q
9
)100(1?1.2
9
)
??2080
(t) (2)从2002年到2010年底,能回收的废旧物资为
S
9
?

1?q1?1.2
可节约的土地为
1650?4?8320

m
2

4、( 1)依教育储蓄的方式,应按照整存争取定期储蓄存款利率计息,免征利息税,且若每
(a?na)n< br>月固定存入
a
元,连续存
n
个月,计算利息的公式为
?
月利率.
2
因为整存整取定期储蓄存款年利率为
2.52﹪
,月利率为
0.21﹪

(50?50?36)?36
故到期3年时一次可支取本息共
?0.21﹪?1800?1869.93
(元)
2
若连续存6年,应按五年期整存整取定期储蓄存款利率计息,具体计算略.
(2)略.
(3)每月存50元,连续存3年
按照“零存整取”的方式,年利率为1.89﹪
,且需支付
20﹪
的利息税
所以到期3年时一次可支取本息 共
1841.96
元,比教育储蓄的方式少收益
27.97
元.
第19页 共34页


高中数学必修5课后习题答案[人教版]
36(x?36x)
?0.21﹪?36x?10000

2
解得
x?267.39
(元),即每月应存入
267.39
(元)
(5)(6)(7)(8)略
(4)设每月应存入
x
元,由教育储蓄的计算公式 得
5、设每年应存入
x
万元,则2004年初存入的钱到2010年底利和为
x(1?2﹪)
7
,2005年初存
)
. 入的钱到2010年底利和为x(1?2﹪)
6
,??,2010年初存入的钱到2010年底利和为
x(1? 2﹪
根据题意,
x(1?2﹪)
7
?x(1?2﹪)
6
?? ?x(1?2﹪)?40

x(1?2

)(1?1.02
7
)
?40
,解得
x?52498
(元) 根据等比数列前
n
项和公式,得
1?1.02
故,每年大约应存入52498元
第二章 复习参考题A组(P67)
1、(1)
B
; (2)
B
; (3)
B
; (4)
A
.
(?1)
n?1
(2 n?1)
2n?1
2、(1)
a
n
?
n
; (2)
a
n
?1?

2
(2n)
2
7
(3)
a
n
?(10
n
?1)
; (4)
a< br>n
?1?(?1)
n

a
n
?1?cosn
?
.
9
3、





< br>4、如果
a,b,c
成等差数列,则
b?5
;如果
a,b,c
成等比数列,则
b?1
,或
?1
.
5、
a
n
按顺序输出的值为:12,36,108,324,972.
sum?86093436
.
6、
1381.9?(1?0.13﹪)
8
?1396.3
(万)
7、从12月20日到次年的1月1日,共13天. 每天领取的奖品价值呈等差数列分布.
n(n?1)13?12
d?10,a
1
?100
. 由
S
n
?a
1
n?d
得:
S
13
?100?1 3??10?2080?2000
.
22
所以第二种领奖方式获奖者受益更多. < br>8、因为
a
2
?a
8
?a
3
?a
7
?a
4
?a
6
?2a
5

5
所以
a
3
?a
4
?a
5
??a
6
?a
7
?450?(a
2
?a
8
)
,则
a
2
?a
8
?180
.
2
10?10n
9 、容易得到
a
n
?10n,S
n
??10?1200
,得< br>n?15
.
2
10、
S
2
?a
n?1?a
n?2
???a
2n
?(a
1
?nd)?(a2
?nd)???(a
n
?nd)

第20页 共34页


高中数学必修5课后习题答案[人教版]
?(a
1
?a2
???a
n
)?n?nd?S
1
?n
2
d< br>
S
3
?a
2n?1
?a
2n?2
???a
3n
?(a
1
?2nd)?(a
2
?2nd)???(a< br>n
?2nd)

?(a
1
?a
2
???a< br>n
)?n?2nd?S
1
?2n
2
d

容易验证
2S
2
?S
1
?S
3
. 所以,
S
1
,S
2
,S
3
也是等差数列,公差为
n
2
d
.
11、
a
1
?f(x?1)?(x?1)
2
?4(x?1)?2?x
2
?2x?1

a
3
?f(x?1)?(x?1)
2
?4(x?1)?2?x
2
?6x?7

因为
?
a
n
?
是等差数列,所以
a< br>1
,a
2
,a
3
也是等差数列.
所以,
2a
2
?a
1
?a
3
. 即,
0?2x
2
?8x?6
. 解得
x?1

x?3
.

x?1
时,a
1
??2,a
2
?0,a
3
?2
. 由此可求出
a
n
?2n?4
.

x?3
时 ,
a
1
?2,a
2
?0,a
3
??2
. 由此可求出
a
n
?4?2n
.
第二章 复习参考题B组(P68)
1、(1)
B
; (2)
D
.
2、(1)不成等差数列. 可以从图象上解释.
a,b,c
成等差,则通项公式为
y?pn?q
的形式,
1
111111

a,b,c
位于同一直线上,而
,,
的通项公式却是
y?
的形式,
,,
不可能在同一直
pn?q
abcabc
线上,因此肯定不是等差数列.
(2)成等比数列. 因为
a,b,c
成等比,有
b
2
?ac
.
又由于
a,b,c
非零,两边同时取倒数,则有
111
所以,
,,
也成等比数列.
abc
1111
???
. < br>2
bacac
3、体积分数:
0.033?(1?25﹪)
6
?0.126
,质量分数:
0.05?(1?25﹪)
6
?0.191
.
4、设工作时间为
n
,三种付费方式的前
n
项和分别为
A
n
,B
n
,C
n
. 第一种付费方式为常数列;
第二种付费方式为首项是4,公差也为4的等差数列;第三种付费方式为首项是0.4,公比为2
0. 4(1?2
n
)
n(n?1)
2
?0.4(2
n
? 1)
. 的等比数列. 则
A
n
?38n

B
n< br>?4n??4?2n?2n

C
n
?
1?2
2下面考察
A
n
,B
n
,C
n
看出
n? 10
时,
38n?0.4(2
n
?1)
.
因此,当工作时间小于10天时,选用第一种付费方式.
第21页 共34页


高中数学必修5课后习题答案[人教版]
n≥10
时,
A< br>n
≤C
n
,B
n
≤C
n

因此,当工作时间大于10天时,选用第三种付费方式.
5、第一星期选择
A
种菜的人数为
n
,即
a
1
?n
,选择
B
种菜的人数为
500?a
.
所以有以下关系式:
a
2
?a
1
?80﹪

?b
1
?30﹪

a
3
?a
2
?80﹪?b
2
?30﹪
??

a
n
?a
n?1
?80﹪?b
b?1
? 30﹪
a
n
?b
n
?500

11
所以< br>a
n
?150?a
n?1

b
n
?500? a
n
?350?a
n?1

22
如果
a
1
?300
,则
a
2
?300

a
3
?300
,?,
a
10
?300

6、解:由
a
n
?2a
n?1
?3a
n?2


a< br>n
?a
n?1
?3(a
n?1
?a
n?2
)
以及
a
n
?3a
n?1
??(a
n?1
? 3a
n?2
)

所以
a
n
?a
n?1?3
n?2
(a
2
?a
1
)?3
n?2
?7

a
n
?3a
n?1
?(?1)
n?2(a
2
?3a
1
)?(?1)
n?2
?13
.
由以上两式得,
4a
n
?3
n?1
?7?(?1)
n?1
?13

1
n?1
所以,数列的通项公式是
a
n
?
?

3?7?(?1)
n?1
?13
???
4
7、设这家牛奶厂每年应扣除
x
万元消费基金
)?x
2002年底剩余资金是
1000(1?50﹪
200 3年底剩余资金是
[1000(1?50﹪)?x](1?50﹪)?x?1000(1?50﹪)2
?(1?50﹪)x?x

??
5年后达到资金
1000(1?50﹪)
5
?(1?50﹪)
4
x?(1?50﹪)
3
x?(1?50﹪)
2
x?(1?50﹪ )x?2000

解得
x?459
(万元)
第22页 共34页


高中数学必修5课后习题答案[人教版]
第三章不等式
3.1 不等关系与不等式
练习(P74)
1、(1)
a?b≥0;(2)
h≤4
;(3)
?
?
(L?10)(W?10)?35 0
.
L?4W
?
2、这给两位数是57. 3、(1)
?
;(2)
?
;(3)
?
;(4)
?

习题3.1 A组(P75)
1、略. 2、(1)
2?
3
7?4
;(2)
7?10?3?14
.
x
2
x
2
3、证明:因为
x?0,?0
,所以?x?1?x?1?0

44
xx
因为
(1?)
2?(1?x)
2
?0
,所以
1??1?x

22
?
x?0
?
x?5?0
?
?
?
4x?48
4、设
A
型号帐篷有
x
个,则
B
型号帐篷有
(x ?5)
个,
?

0?5x?48?5
?
?
3(x? 5)?48
?
?
?
4(x?4)≥48
5、设方案的期限为
n
年时,方案
B
的投入不少于方案
A
的投入.
n(n?1 )
所以,
5n??10≥500
即,
n
2
≥100
.
2
习题3.1 B组(P75)
1、(1)因为
2x
2?5x?9?(x
2
?5x?6)?x
2
?3?0
,所以
2x
2
?5x?9?x
2
?5x?6

(2)因为
(x?3)
2
?(x?2)(x?4)?(x
2
?6x?9)?(x
2
?6x?8)?1?0

所以
(x?3)
2
?(x?2)(x?4)

(3)因为< br>x
3
?(x
2
?x?1)?(x?1)(x
2
?1) ?0
,所以
x
3
?x
2
?x?1

(4) 因为
x
2
?y
2
?1?2(x?y?1)?x
2
? y
2
?1?2x?2y?2?(x?1)
2
?(y?1)
2
?1?0

所以
x
2
?y
2
?1?2(x?y?1)

2、证明:因为
a?b?0,c?d?0
,所以
ac?bd?0

1
又因为
cd?0
,所以
?0

cd
第23页 共34页


高中数学必修5课后习题答案[人教版]
于是
ab
ab
?

??0
,所以
dcdc
3、设安排甲种货箱
x
节,乙种货箱
y
节,总运费为
z
.
?
35x?25y≥1530
?
所以
?
1 5x?35y≥1150
所以
x≥28
,且
x≤30

?< br>x?y?50
?
所以
?
?
x?28
?
x?2 9
?
x?30
,或
?
,或
?

?
y?22
?
y?21
?
y?20
所以共有三种方案,方案一安排甲种 货箱28节,乙种货箱22节;方案二安排甲种货箱29
节,乙种货箱21节;方案三安排甲种货箱30 节,乙种货箱20节.

?
?
x?30
时,总运费
z?0 .5?30?0.8?20?31
(万元),此时运费较少.
y?20
?
3.2 一元二次不等式及其解法
练习(P80)
1、(1)
?
x?1≤x≤
?
?
?
?
?
1 0
?
;(2)R;(3);(4)
xx?2
??
?
?
xx?
3
?
?
3
?
2
?
?
?< br>5
4
4
?
3
?
?
?
5
3< br>1
?
?

2
?
?
?
(5)
?
xx??1,或x?
?
;(6)
?
xx?,或x?
?< br>;(7)
?
x??x?0
?
.
??
33
? ?
2、(1)使
y?3x
2
?6x?2
的值等于0的
x的集合是
?
1?,1?
?

33
??
??< br>?
33
?
??
使
y?3x?6x?2
的值大于0的< br>x
的集合为
?
xx?1?,或x?1?
?

33< br>??
??
2
?
33
?
??
使
y?3 x
2
?6x?2
的值小于0的
x
的集合是
?
x1? ?x?1?
?
.
33
??
??
(2)使
y?25 ?x
2
的值等于0的
x
的集合
?
?5,5
?

使
y?25?x
2
的值大于0的
x
的集合为
?
x?5?x?5
?

使
y?25?x
2
的值小 于0的
x
的集合是
?
xx??5,或x?5
?
.
(3)因为抛物线
y?x
2
+6x?10
的开口方向向上,且与
x< br>轴无交点
所以使
y?x
2
+6x?10
的等于0的集合为< br>?

第24页 共34页


高中数学必修5课后习题答案[人教版]
使
y?x
2
+6x?10
的小于0的集合为
?

使
y?x
2
+6x?10
的大于0的集合为R.
(4)使
y??3x
2
?12x?12
的值等于0的
x
的集合为?
2
?

使
y??3x
2
?12x?12< br>的值大于0的
x
的集合为
?

使
y??3x
2
?12x?12
的值小于0的
x
的集合为
?
xx?2< br>?
.
习题3.2 A组(P80)
?
1313
?
?
35
?
??
1、(1)
?
xx??,或x?
?
;(2)
?
x??x?
?

22
22
? ?
??
??
(3)
?
xx??2,或x?5
?
;( 4)
?
x0?x?9
?
.
2、(1)解
x
2?4x?9≥0
,因为
???20?0
,方程
x
2
?4 x?9=0
无实数根
所以不等式的解集是R,所以
y?x
2
?4x?9
的定义域是R.
(2)解
?2x
2
?12x?18≥0
,即
(x?3)2
≤0
,所以
x?3

所以
y??2x
2?12x?18
的定义域是
?
xx?3
?

3、
mm??3?22,或m??3?22
; 4、R.
5、设能够在抛出点2 m以上的位置最多停留t秒.
1
依题意,
v
0
t?gt
2
?2
,即
12t?4.9t
2
?2
. 这里
t?0
. 所以t最大为2(精确到秒)
2
答:能够在抛出点2 m以上的位置最多停留2秒.
6、设每盏台灯售价
x
元,则
?
?
x≥15
. 即
15≤x?20
.所以售价
x?
?
x15≤x?20
?
x[30?2(x?15)]?400
?
??
习题3.2 B组(P81)
?
5?52
?
?
5?52
?
?< br>1
?
x?x?
1、(1)
?
(2)
?
x3? x?7
?
;(3)
?
;(4)
?
x?x?1
?.
?

22
?
?
3
?
?
? ?
2、由
??(1?m)
2
?4m
2
?0
,整理, 得
3m
2
?2m?1?0
,因为方程
3m
2
?2m ?1?0
有两个实数
11
?
1
?

?1
和 ,所以
m
1
??1
,或
m
2
?

m
的取值范围是
?
mm??1,或m?
?
.
3
?
3
3
?
第25页 共34页


高中数学必修5课后习题答案[人教版]
?
4242
?1
2
3
??
3、使函数
f(x)?x?3x?
的值大于 0的解集为
?
xx?3?,或x?3?
?
.
22
24??
??
4、设风暴中心坐标为
(a,b)
,则
a?3002< br>,所以
(3002)
2
?b
2
?450
,即
?150?b?150


3002?15015
300
?(22? 1)?13.7
(h),
?15
.
202
20
所以,经过约13.7小时码头将受到风暴的影响,影响时间为15小时.
3.3 二元一次不等式(组)与简单的线性规划问题
练习(P86)
1、
B
.
2、
D
.
3、
B
.
4、分析:把已知条件用下表表示:
工序所需时间分钟

打磨 着色 上漆
10 6 6
桌子
A

5 12 9
桌子
B

450 480 450
工作最长时间 解:设家具厂每天生产
A
类桌子
x
张,
B
类桌子
y
张.
对于
A
类桌子,
x
张桌子需要打磨
10 x
min,着色
6x
min,上漆
6x
min
对于
B
类桌子,
y
张桌子需要打磨
5y
min,着色
12y< br>min,上漆
9y
min
而打磨工人每天最长工作时间是
450min,所以有
10x?5y≤450
.
类似地,
6x?12y≤480

6x?9y≤450

在实际问题中,
x≥0,y≥0

?
10x?5y≤450
?
6x?12y≤480
?
?
所以,题目中包含的限制条件为
?< br>6x?9y≤450

?
x≥0
?
?
?
y≥0
收益元
40
30

练习(P91)
1、(1)目标函数为
z?2x?y,可行域如图所示,作出直线
y??2x?z
,可知
z
要取最大值,即直线经过点
C
时,解方程组
?


?
x?y ?1

C(2,?1)
,所以,
z
max
?2x?y?2? 2?(?1)?3
.
y??1
?
第26页 共34页


高中数学必修5课后习题答案[人教版]
y











y
x+y=1
y=x
A
O
B
-1
1
5
y=x +1
B
x
C
A
1
x
-
5y=3
O
3
x
5x
+
3y=15
(1)
(第1题)
(2)
(2)目标函数为
z?3x?5y
,可行域如图所示,作出直线z?3x?5y

可知,直线经过点
B
时,
Z
取得最大值. 直线经过点
A
时,
Z
取得最小值.
解方程组
?
?
y?x?1
?
y?x?1
,和
?

5x?3y?1 5
x?5y?3
?
?
可得点
A(?2,?1)
和点
B(1.5,2.5)
.
所以
z
max
?3?1.5?5?2.5 ?17

z
min
?3?(?2)?5?(?1)??11





2、设每月生产甲产品
x
件,生产乙产品
y
件,每月收入为
z
元,目标函数为
z?3000x?2000y< br>,
?
x?2y≤400
?
2x?y≤500
?
需要满 足的条件是
?
,作直线
z?3000x?2000y

x≥0?
?
?
y≥0
y
500
当直线经过点
A
时,
z
取得最大值.
解方程组
?
?
x?2y?400

2x?y?500
?
200
A
O
250400
x
可得点
A(200 ,100)

z
的最大值为800000元.
(第2题)
习题3.3 A组(P93)
1、画图求解二元一次不等式:
(1)
x ?y≤2
;(2)
2x?y?2
;(3)
y≤?2
;(4)
x≥3





y
2
1
yy=2x
-
2
y
O
1
y
x
O
-1
x
O
2
x
-2
第27页 共34页
-2O
y≤
-2
123
x


高中数学必修5课后习题答 案[人教版]

2、

y=4
-
x
y=x+2
4


x

2
y=+1
3


-1
O
4
15

-1


(第2题)
3、分析:将所给信息下表表示:

每次播放时间分
80
连续剧甲
40
连续剧乙
320
播放最长时间

最少广告时间
广告时间分
1
1

6
收视观众万
60
20


解:设每周播放连续剧甲< br>x
次,播放连续剧乙
y
次,收视率为
z
.
目标函数为
z?60x?20y

?
80x?40y≤320?
x?y≥6
?
所以,题目中包含的限制条件为
?

x ≥0
?
?
?
y≥0
8
y
6
可行域如图. 解方程组
?
?
80x?40y
=
320

x?y< br>=
6
?
O
得点
M
的坐标为
(2,4)
,所以
z
max
?60x?20y?200
(万)
1
5
x
(第3题)
答:电视台每周应播放连续剧甲2次,播放连续剧乙4次,才能获得最高的收视率.
4、设每 周生产空调器
x
台,彩电
y
台,则生产冰箱
120?x?y
台,产值为
z
.
则,目标函数为
z?4x?3y?2(120?x?y)?2x?y?240

所以,题目中包含的限制条件为
11
?
1
x?y?(120?x? y)≤40
?
3x?y≤120
?
234
?
x?y≤100
?
?
120?x?y≥20
?
即,
?

?
x≥0
?
?
x≥0
?
?
?
y≥0
y≥0
?
?
?
3x?y
=
120
可行域如图,解方 程组
?

x?y
=
100
?
120
100
y
M
y=100
-
x
y=120
-3
x< br>O
40100
x
第28页 共34页


高中数学必修5课后习题答案[人教版]
得点
M
的坐标为< br>(10,90)
,所以
z
max
?2x?y?240?350
(千元)
答:每周应生产空调器10台,彩电90台,冰箱20台,才能使产值最高,最高产值是35 0
千元.
习题3.3 B组(P93)
?
2x?3y≤12
?
2x?3y??6
?
1、画出二元一次不等式组
?

x≥ 0
?
?
?
y≥0
y
2
y=4
-
x
3
2
4
所表示的区域如右图






2、画出
(x?2y?1)(x?y?3)?0
表示的区域.













y
y=x+3
-3
O
-2
1
5
6
x
2
y=
-
2
-
x
3
(第1题)
1x
y=
-
22
3
-3
O
-2
1
x
(第2题)
3、设甲粮库要向
A
镇运 送大米
x
吨、向
B
镇运送大米
y
吨,总运费为
z< br>. 则乙粮库要向
A

运送大米
(70?x)
吨、向
B
镇运送大米
(110?y)
吨,目标函数(总运费)为
z?12?20? x?25?10?y?15?12?(70?x)?20?8?(110?y)?60x?90y?30200< br>.
?
x?y≤100
?
(70?x)?(110?y)≤80
?
所以,题目中包含的限制条件为
?
.
0≤x≤70
?
?
?
y≥0
所以当
x?70,y?30
时,总运费最省
z< br>min
?37100
(元)
第29页 共34页


高中数学必修5课后习题答案[人教版]
所以当
x?0,y?100
时,总运费最不合理
z
max
?39200
(元)
使国家造成不该有的损失2100元.
答:甲粮库要向
A
镇运送大米70吨 ,向
B
镇运送大米30吨,乙粮库要向
A
镇运送大米0
吨,向
B
镇运送大米80吨,此时总运费最省,为37100元. 最不合理的调运方案是要向
A< br>镇
运送大米0吨,向
B
镇运送大米100吨,乙粮库要向
A
镇 运送大米70吨,向
B
镇运送大米10
吨,此时总运费为39200元,使国家造成损 失2100元.
3.4 基本不等式
ab≤
练习(P100)
a?b

2
11
1、因为
x?0
,所以
x?≥2x??2

xx
11
时,即
x?1
时取等号,所以当
x?1
时 ,即
x?
的值最小,最小值是2.
xx
2、设两条直角边的长分别为
a,b

a?0,

b?0
,因为直角三角形的面积等于50.
1

ab?50
,所以
a?b≥2ab?2100?20
, 当且仅当
a?b?10
时取等号.
2
答:当两条直角边的长均为10时,两条直角边的和最小,最小值是20.
3、设矩形的长与宽分别为
a
cm,
b
cm.
a?0

b?0

因为周长等于20,所以
a?b?10

a?b
2
102
所以
S?ab≤()?()?25
,当且仅当
a?b?5
时取 等号.
22
答:当矩形的长与宽均为5时,面积最大.
4、设底面的长与宽分别为
a
m,
b
m.
a?0

b?0

因为体积等于32
m
3
,高2
m
,所以底面积为16
m
2
,即
ab?16

当且仅当
x?
所以用纸面积是
S?2ab?2bc?2ac?32?4(a? b)≥32?42ab?32?32?64

当且仅当
a?b?4
时取等号
答:当底面的长与宽均为4米时,用纸最少.
习题3.4 A组(P100)
1 、(1)设两个正数为
a,b
,则
a?0,b?0
,且
ab?36< br>
所以
a?b≥2ab?236?12
,当且仅当
a?b?6
时取等号.
答:当这两个正数均为6时,它们的和最小.
(2)设两个正数为
a, b
,依题意
a?0,b?0
,且
a?b?18

a?b2
18
2
所以
ab≤()?()?81
,当且仅当
a? b?9
时取等号.
22
答:当这两个正数均为9时,它们的积最大.
2、 设矩形的长为
x
m,宽为
y
m,菜园的面积为
S
m
2
.

x?2y?30

S?x?y

第30页 共34页


高中数学必修5课后习题答案[人教版]
11x?2y
2
1900225
由基本不等式与不等式的性质,可得
S??x?2y≤(
.
)???
222242
15225
2
m
. 当
x? 2y
,即
x?15,y?
时,菜园的面积最大,最大面积是
22
3、 设矩形的长和宽分别为
x

y
,圆柱的侧面积为
z
,因为< br>2(x?y)?36
,即
x?y?18
.
所以
z?2
?
?x?y≤2
?
?(
x?y
2
)?162
?< br>,
2

x?y
时,即长和宽均为9时,圆柱的侧面积最大.
4、设房屋底面长为
x
m,宽为
y
m,总造价为
z
元,则
xy?12

y?
z?3y?1200?6x?800?5800?
12

x
12?3600
?4800x?5800≥23600?12?48 00?5800?34600

x
当且仅当
12?3600
?480 0x
时,即
x?3
时,
z
有最小值,最低总造价为34600元.
x
习题3.4 B组(P101)
1、设矩形的长
AB

x
,由矩形
ABCD(AB?AD)
的周长为24,可知,宽
AB?12? x
.

PC?a
,则
DP?x?a

x
2
?12x?72
12x?72
所以
(12?x)?(x?a)?a
,可得
a?

DP?x?a?
.
x
x
2
112x?72?x?18x?7272
?6??6?[?(x?)?18]
所以
? ADP
的面积
S?(12?x)
2xxx
222
由基本不等式与不等 式的性质
S≤6?[?272?18]?6?(18?122)?108?722

7 2
,即
x?62
m时,
?ADP
的面积最大,最大面积是
( 108?722)
m
2
.
x
2、过点
C

CD?AB
,交
AB
延长线于点
D
.

x?< br>设
?BCD?
?

?ACB?
?

CD?x
.
b?ca?c
. 在
?ACD
中,
tan(
?
?
?
)?
< br>xx
tan(
?
?
?
)?tan
?

tan
?
?tan[(
?
?
?
)?
?
] ?

1?tan(
?
?
?
)?tan
?

?BCD
中,
tan
?
?
a?cb?c
?
a?b
xx
?

?
a?cb?c(a?c)(b?c)
1? ?x?
xxx
a?ba?b

?
(a?c)(b?c)2(a?c) (b?c)
2x?
x
(a?c)(b?c)
当且仅当
x?
, 即
x?(a?c)(b?c)
时,
tan
?
取得最大,从而视角也最 大.
x

第31页 共34页


高中数学必修5课后习题答案[人教版]
第三章 复习参考题A组(P103)
1、
5112
???
.
12537
2、化简得
A?
?
x?2?x?3
?

B?
?
xx??4,或x?2
?
,所以
A?B?
?
x2?x? 3
?

3
3、当
k?0
时,一元二次不等式
2kx
2
?kx??0
对一切实数
x
都成立,
8
3即二次函数
y?2kx
2
?kx?

x
轴下方, 8
3
??k
2
?4(2k)(?)?0
,解之得:
?3 ?k?0
.
8
3

k?0
时,二次函数
y?2k x
2
?kx?
开口朝上
8
3
一元二次不等式
2k x
2
?kx??0
不可能对一切实数
x
都成立,
8
所以,
?3?k?0
.
?
4x?3y?8?0
?
4、不等式组
?
x?0
表示的平面区域的整点坐标是
(?1,?1 )
.
?
y?0
?
5、设每天派出
A
型车
x
辆,
B
型车
y
辆,成本为
z
.
?0≤x≤7
?
0≤y≤4
?
所以
?
,目标函数为
z?160x?252y

x?y≤9
?
?
?
48x?6 0y≥360

z?160x?252y
变形为
y??
401401
得到斜率为
?
,在
y
轴上的截距为随
z
x?z
z

63252252
63
变化的一族平行直线. 在可行域的整点中,点
M(5,2)
使得
z
取得最小值. 所以每天派出A
型车
5辆,
B
型车2辆,成本最小,最低成本为1304元.
1
6、设扇形的半径是
x
,扇形的弧长为
y
,因为
S?x y

2
扇形的周长为
Z?2x?y≥22xy?4S

当< br>2x?y
,即
x?S

y?2S
时,
Z
可以 取得最小值,最小值为
4S
.
7、设扇形的半径是
x
,扇形的弧长 为
y
,因为
P?2x?y

1112x?y
2
P< br>2
)?
扇形的面积为
Z?xy?(2x)y≤(

24421 6
P
2
PPP

2x?y
,即
x?
y?
时,
Z
可以取得最大值,半径为时扇形面积最大值为.
16
42
4
第32页 共34页


高中数学必修5课后习题答案[人教版]
ssa
8、设汽车的运输成 本为
y

y?(bv
2
?a)??sbv?

vv

sbv?
a
a
sa
≤c
时,
y
有最小值. 时,即
v?

b
b
v
sasa
≥2 sbv??2sab
,最小值为
2sab
.
vv
y?sbv?
a
sasa
>
c
时,由函数
y?sbv?
的 单调性可知,
v?c

y
有最小值,最小值为
sbc?
.
b
vc
第三章 复习参考题B组(P103)
1、
D
2、(1)
?
xx??2或?2?x?或x?6
?
(2)
?
xx≤?1或≤x?或x?3
?

????
y
?
3
4
??
2
3
3
4
?
3、
m?1

4、设生产裤子
x
条,裙子
y
条,收益为
z
.
?
x?y≤10
?
2x?y≤10
?
?
则目标函数 为
z?20x?40y
,所以约束条件为
?
x?y≤6

?
x≥0
?
?
?
y≥0
10
6
x+y=10
x+y=6
O
56
10
2x+y=10
x
(第4题 )
5、因为
x?y
是区域内的点到原点的距离的平方
所以,当
?
?
x?2y?4?0

3x?y?3?0
?
L
1
B
2
22
y
A
L
3L
2

x
A
?2,y
A
?3
时,x
2
?y
2
的最大值为13.
4
?
x??
4
?
5

?
时,
x
2
?y
2
最小,最小值是.
5
?
y?
2
?
5< br>?
C
1
x
(第5题)
6、按第一种策略购物,设第一次购物 时的价格为
p
1
,购
n
kg,第二次购物时的价格为
p2

仍购
n
kg,按这种策略购物时两次购物的平均价格为
若按 第二种策略购物,第一次花
m
元钱,能购
物品,两次购物的平均价格为
2m2

?
mm11
??
p
1
p
2
p< br>1
p
2
第33页 共34页
p
1
n?p
2
np
1
?p
2
.
?
2n2
mm
kg物品,第二次仍花
m
元钱,能购kgp
1
p
2


高中数学必修5课后习题答案[人教版]
比较两次购物的平均价格:
p
1
?p
2
2p
1< br>?p
2
2p
1
p
2
(p
1
?p2
)
2
?4p
1
p
2
(p
1
?p
2
)
2
?????≥0

11
22p?p2( p?p)2(p?p)
121212
?
p
1
p
2
所 以,第一种策略的平均价格高于第二种策略的平均价格,因而,用第二种策略比较经济.
一般地,如果是
n
次购买同一种物品,用第二种策略购买比较经济.

第34页 共34页

烟台三味教育高中数学-高中数学不等式例子


优化设计高中数学选修4-1-高中数学选择题图像题怎么做


高中数学教材怎么学-小马高中数学集合完整视频教程


2018合肥市高中数学竞赛-高中数学导数问题课题


高中数学题型讲义-2013年浙江高中数学竞赛第11题


高中数学必修1选择题-高中数学教师王民军


高中数学必修五齐智华-高中数学必修五课本内容


高中数学竞赛课表-高中数学怎么提高悟性



本文更新与2020-09-15 23:10,由作者提供,不代表本网站立场,转载请注明出处:https://www.bjmy2z.cn/gaokao/398240.html

人教版高中数学必修五课后习题答案-高中数学必修五课后题答案的相关文章

  • 爱心与尊严的高中作文题库

    1.关于爱心和尊严的作文八百字 我们不必怀疑富翁的捐助,毕竟普施爱心,善莫大焉,它是一 种美;我们也不必指责苛求受捐者的冷漠的拒绝,因为人总是有尊 严的,这也是一种美。

    小学作文
  • 爱心与尊严高中作文题库

    1.关于爱心和尊严的作文八百字 我们不必怀疑富翁的捐助,毕竟普施爱心,善莫大焉,它是一 种美;我们也不必指责苛求受捐者的冷漠的拒绝,因为人总是有尊 严的,这也是一种美。

    小学作文
  • 爱心与尊重的作文题库

    1.作文关爱与尊重议论文 如果说没有爱就没有教育的话,那么离开了尊重同样也谈不上教育。 因为每一位孩子都渴望得到他人的尊重,尤其是教师的尊重。可是在现实生活中,不时会有

    小学作文
  • 爱心责任100字作文题库

    1.有关爱心,坚持,责任的作文题库各三个 一则150字左右 (要事例) “胜不骄,败不馁”这句话我常听外婆说起。 这句名言的意思是说胜利了抄不骄傲,失败了不气馁。我真正体会到它

    小学作文
  • 爱心责任心的作文题库

    1.有关爱心,坚持,责任的作文题库各三个 一则150字左右 (要事例) “胜不骄,败不馁”这句话我常听外婆说起。 这句名言的意思是说胜利了抄不骄傲,失败了不气馁。我真正体会到它

    小学作文
  • 爱心责任作文题库

    1.有关爱心,坚持,责任的作文题库各三个 一则150字左右 (要事例) “胜不骄,败不馁”这句话我常听外婆说起。 这句名言的意思是说胜利了抄不骄傲,失败了不气馁。我真正体会到它

    小学作文
人教版高中数学必修五课后习题答案-高中数学必修五课后题答案随机文章