关键词不能为空

当前您在: 主页 > 数学 >

高一数学知识点汇总讲解大全

作者:高考题库网
来源:https://www.bjmy2z.cn/gaokao
2020-09-16 11:05
tags:高中数学知识点总结

高中数学知识点总结选修-高中数学北师大教材电子版


高中数学知识点汇总(高一)
高中数学知识点汇总(高一) ........... .................................................. .................................................. ..... 0

一、集合和命题 .......................... .................................................. .................................................. .............. 1

二、不等式 ................... .................................................. .................................................. ............................. 3

三、函数的基本性质 .................................................. .................................................. ................................ 4

四、幂函数、指数函数和对数函数 .............................. .................................................. ...........................11

(一)幂函数 ..... .................................................. .................................................. ......................................11

(二)指数&指数函数 ................................... .................................................. ...........................................11

(三)反函数的概念及其性质 ................................ .................................................. ................................ 12

(四)对数&对数函数 ................................... .................................................. .......................................... 13

五、三角比 ........................................ .................................................. .................................................. ...... 15

六、三角函数 ......................... .................................................. .................................................. ................. 22


一、集合和命题
一、集合:
(1)集合的元素的性质:
确定性、互异性和无序性;
(2)元素与集合的关系:

a?A
?a
属于集合
A


a?A
?a
不属于集合
A

(3)常用的数集:

N
?
自然数集;
N
*
?
正整数集;
Z?
整数集;

Q
?
有理数集 ;
R
?
实数集;
?
?
空集;
C?
复数集;

?
?
?
Z
?
?正整数集
?
?
Q
?
?正有理数集
?
?
R
?
?正实数集
?
?
Z
?
?负整数集

?
?< br>?
Q
?
?负有理数集

?
?
?
R< br>?
?负实数集

(4)集合的表示方法:
集合
?
?
有限集?列举法
?
无限集?描述法

例如:①列举法:
{z,h,a,n,g}
;②描述法:
{xx?1}

(5)集合之间的关系:

A?B
?
集合
A
是集合
B
的子集;特别地,
A?A

?
?
A?B
?
B?C
?A?C


A?B

?
?
A?B
?
?
A?B
集合< br>A
与集合
B
相等;

A
?
?
B
?
集合
A
是集合
B
的真子集.
例:
N?Z?Q?R
?C

N
?
?
Z
?< br>?
Q
?
?
R
?
?
C

④空集是任何集合的子集,是任何非空集合的真子集.
(6)集合的运算:
①交集:
A?B?{xx?A且x?B}
?
集合
A
与集合
B
的交集;
②并集:
A?B?{xx?A或x?B}
?集合
A
与集合
B
的并集;
③补集:设
U
为全集,集合
A

U
的子集,则由
U
中所有不 属于
A
的元素组成的集合,叫
做集合
A
在全集
U
中 的补集,记作
C
U
A

④得摩根定律:
C
U
(AIB)?C
U
AUC
U
B

C< br>U
(AUB)?C
U
AIC
U
B


(7)集合的子集个数:
若集合
A

n(n?N
*
)
个元素,那么该集合有
2
n
个子 集;
2
n
?1
个真子集;
2
n
?1
个非空 子集;
2
n
?2
个非空真子集.
二、四种命题的形式:
(1)命题:能判断真假的语句.
(2)四种命题:如果用
?

?< br>分别表示原命题的条件和结论,用
?

?
分别表示
?

?
的否定,
那么四种命题形式就是:
命题 原命题
表示形式

?
,则
?

逆命题 否命题 逆否命题

?
,则
?


?
,则
?
; 若
?
,则
?

逆否命题
?
否命题
逆否命题
?
逆命题
逆命题
?
否命题
逆命题关系 原命题
?
逆命题
否命题关系 原命题
?
否命题
逆否命题关系
原命题
?
逆否命题
同真同假关系
(3)充分条件,必要条件,充要条件:
①若
?
?
?,那么
?
叫做
?
的充分条件,
?
叫做
?
的必要条件;
②若
?
?
?

?
?
?
,即
?
?
?
,那么
?
既是
?
的充分条件,又是
?
的必要条件,也就是
说,
?

?
的充分必要条件,简称充要条件.
③欲证明条件
?
是结论
?
的充分必要条件,可分两步来证:
第一步:证明充分性:条件
?
?
结论
?

第二步:证明必要性:结论
?
?
条件
?

(4)子集与推出关系:

A

B
是非空集合,
A?{xx具有性质
?
}

B?{yy具有性质
?
}


A?B

?
?
?
等价.
结论:小范围
?
大范围;例如:小明是上海人
?
小明是中国人.
小范围是大范围的充分非必要条件;
大范围是小范围的必要非充分条件.






二、不等式
一、不等式的性质:
1、
a?b,b?c?a?c
; 2、
a?b?a?c?b?c

3、
a?b,c?0?ac?bc
; 4、
a?b,c?d?a?c?b?d

不等式的性质
5、
a?b?0,c?d?0?ac?bd
; 6、
a?b?0?0?
11
?

ab
7、
a? b?0?a
n
?b
n
(n?N
*
)
; 8、
a?b?0?
n
a?
n
b(n?N
*
,n?1)< br>.
二、一元一次不等式:
一元一次不等式
ax?b

解集
三、一元二次不等式:
ax
2
?bx?c?0(a?0)

a?0

x?
b

a
a?0

x?
b

a
a?0

b?0

b?0

?

R

△?b
2
?4ac?0

△?b
2
?4ac?0

△?b
2
?4ac?0

的根的判别式
y?ax
2
?bx?c(a?0)


ax
2
?bx?c?0(a?0)

ax
2
?bx?c?0(a?0)

ax
2
?bx?c?0(a?0)

ax
2
?bx?c?0(a?0)

ax
2
?bx?c?0(a?0)


{x
0
}

(??,x
0
)?(x
0
,??)


{ x
1
,x
2
}

x
1
?x
2
(??,x
1
)U(x
2
,??)

?

R

(x
1
,x
2
)

(??,x
1
]U[x
2
,??)

?

R

{x
0
}

?

R

[x
1
,x
2
]

?



四、含有绝对值不等式的性质:


(1)
a?b?a?b?a?b
; (2)
a
1
?a
2
???a
n
?a
1
?a
2
???a
n< br>.
五、分式不等式:
ax?bax?b
(1)
?0?(ax?b)(cx?d)?0
; (2)
?0?(ax?b)(cx?d)?0

cx?dcx?d
六、含绝对值的不等式:
x?a

x?a

x?a

x?a

a?0

a?0

a?0

a?0

a?0

a?0

a?0

a?0

a?0

a?0

?a?x?a

?

x?a或x??a

R

?a?x?a

x?0

?

x?a或x??a

R

七、指数不等式:
(1)
a
f(x)
?a
?
(x)
(a?1)?f(x)?
?
(x)
; (2)
a
f(x)
?a
?
(x)
(0?a?1)?f(x)?
?
(x )

八、对数不等式:
?
?
(x)?0
(1)< br>log
a
f(x)?log
a
?
(x)(a?1)?
?

?
f(x)?
?
(x)
?
f(x)?0
(2 )
log
a
f(x)?log
a
?
(x)(0?a?1)?
?

f(x)?
?
(x)
?
九、不等式的证明:
(1)常用的基本不等式:

a
2
?b< br>2
?2ab(a、b?R
,当且仅当
a?b
时取“
?
”号
)


a?b
?ab(a、b?R
?
,当且仅当
a?b
时取“
?
”号
)

2
2
a
2
?b
2
a?b
补充公式:.
?ab
?
?
11
2
2
?
ab

a
3
?b
3
?c
3
?3abc(a、b、c?R
?
,当且仅当
a?b?c
时取“
?
”号
)

a?b?c
3
?abc(a、b、c?R
?
,当且仅当
a?b?c
时取“
?
”号
)

3
a?a
2
???a
n
n
1
?a
1
a
2
?a
n
(n
为大于1的 自然数,
a
1
,a
2
,?,a
n
?R
?< br>,当且仅当
n


a
1
?a
2
???a
n
时取“
?
”号
)
(2)证明不等式的常用方法:
①比较法; ②分析法; ③综合法.


三、函数的基本性质
一、函数的概念:
f
????
因变量y,则y就是
x
的函 数,记作
y?f(x),x?D
; (1)若自变量
x?
对应法则



x
的 取值范围
D
?
函数的定义域;
y
的取值范围
?
函数 的值域.
求定义域一般需要注意:

y?
1

f(x)?0
; ②
y?
n
f(x)

f(x)?0

f(x)

y?(f(x))
0

f(x)?0
; ④
y?log
a
f(x)

f(x)?0


y?log
f(x)
N

f(x)?0

f(x )?1

(2)判断是否函数图像的方法:任取平行于
y
轴的直线,与图像最多只有一个公共点;
(3)判断两个函数是否同一个函数的方法:①定义域是否相同;②对应法则是否相同.
二、函数的基本性质:
(1)奇偶性:
函数
y?f(x),x?D

“定义域
D
关于0对称”成立
前提条件
f(x)?f(?x)

f(x)??f(?x)

①“定义域
D
关于0对称”;
②“
f(x)?f(?x)
”;③ “
f(x)??f(?x)

成立
奇偶性
奇偶函数
图像性质
偶函数
关于
y
轴对称
成立
奇函数
关于
O(0,0)
对称
?
①成立
①不成立或者
?

②、③都不成立
?
非奇非偶函数
注意:定义域包括0的奇函数必过原点
O(0,0)

(2)单调性和最值:
前提条件
单调增函数
y?f(x),x?D

I?D
, 任取
x
1
,x
2
?区间I

?
x
1
?x
2
?
x
1
?x
2

??
f(x)?f(x)f(x)?f(x)
1212
??
单调减函数
最小值
y
min
?f(x
0
)

最大值
y
max
?f(x
0
)

注意:
①复合函数的单调性:
函数
外函数
y?f(x)

Z

?
x
1
?x
2
?
x
1
?x
2

?
< br>?
f(x)?f(x)f(x)?f(x)
1212
??
任取
x?D,存在x
0
?D,f(x)?f(x
0
)

任取x?D,存在x
0
?D,f(x)?f(x
0
)

单调性
Z

]

]


内函数
y?g(x)

复合函数
y?f[g(x)]


Z

Z

]

]

Z

]

]

Z

②如果函数
y?f(x)
在某个区间
I< br>上是增(减)函数,那么函数
y?f(x)
在区间
I
上是单调函
数,区间
I
叫做函数
y?f(x)
的单调区间.

(3)零点:若
y?f(x),x?D

c?D

f(c)?0,则
x?c
叫做函数
y?f(x)
的零点.
?
存在x
0
?(a,b)
?
y?f(x),x?[a,b]
零点定理:
?
;特别地,当
y?f(x),x?[a,b]
是单调函数, < br>?
?
?
f(a)?f(b)?0
?
f(x
0
)?0

f(a)?f(b)?0
,则该函数在区间
[a,b]
上有 且仅有一个零点,即存在唯一
x
0
?(a,b)
,使得
f(x
0
)?0

(4)平移的规律:“左加右减,下加上减”.
函数 向左平移
k
向右平移
k

y?f(x)

y?f(x?k)

y?f(x?k)

向上平移
h

y?h?f(x)

向下平移
h

y?h?f(x)

备注
k,h?0

(5)对称性:
①轴对称的两个函数:
函数
对称轴
函数
x

y?f(x)

y

y?f(?x)

y?x

x?f(y)

y??x

?x?f(?y)

x?m

y?n

2n?y?f(x)

?y?f(x)

y?f(2m?x)

②中心对称的两个函数:
函数 对称中心
y?f(x)

(m,n)

函数
2n?y?f(2m?x)

③轴对称的函数:
函数
对称轴
条件
y?f(x)

y

f(x)?f(?x)

x?m

f(x)?f(2m?x)

注意:
f(a?x)?f(b? x)
?
f(x)
关于
x?
a?b
对称;
2

f(a?x)?f(a?x)
?
f(x)
关于
x?a
对称;

f(x)?f(?x)
?
f(x)
关于
x?0
对称,即
f(x)
是偶函数.
④中心对称的函数:


函数
对称中心
条件
y?f(x)

(m,n)

f(x)?2n?f(2m?x)

a?bc
,)
对称;
22
a?b

f(a?x)?f(b?x)?0< br>?
f(x)
关于点
(,0)
对称;
2
注意:
f(a?x)?f(b?x)?c
?
f(x)
关于点
(

f(a?x)?f(a?x)?2b
?
f(x)
关于点
(a,b)
对称;

f(x)?f(? x)?0
?
f(x)
关于点
(0,0)
对称,即
f(x)< br>是奇函数.
(6)凹凸性:
?
x?x
?
f(x1
)?f(x
2
)
设函数
y?f(x),x?D
,如果对任意
x
1
,x
2
?D
,且
x
1
?x
2
,都有
f
?
12
?
?
,则 称
22
??
函数
y?f(x)

D
上是凹函数;例 如:
y?x
2

?
x?x?
L
?x
n< br>?
f(x
1
)?f(x
2
)?
L
f(xn
)
进一步,如果对任意
x
1
,x
2
,Lx
n
?D
,都有
f
?
12
,则称函
?
?
nn
??

y?f(x)

D
上是凹函 数;该不等式也称琴生不等式或詹森不等式;
?
x?x
?
f(x
1
)?f(x
2
)
设函数
y?f(x),x?D
,如 果对任意
x
1
,x
2
?D
,且
x
1
?x
2
,都有
f
?
12
?
?
,则称2
?
2
?
函数
y?f(x)

D
上是 凸函数.例如:
y?lgx

?
x?x?
L
?x
n
?
f(x
1
)?f(x
2
)?
L
f(x
n
)
进一步,如果对任意
x
1
,x
2,Lx
n
?D
,都有
f
?
12
,则称函
?
?
nn
??

y?f(x)

D
上是 凸函数;该不等式也称琴生不等式或詹森不等式.





(7)翻折:
函数 翻折后 翻折过程

y?f(x)

y
轴右边的图像不变,并将其翻折到
y
轴左边,并覆盖.

y?f(x)

x
轴上边的图像不变,并将其翻折到
x
轴下边,并 覆盖.
y?f(x)

y?f(x)

y?f(x)

y?f(x)

第一步:将
y?f(x)

y
轴右 边的图像不变,并将其翻折到左边,并覆盖;


第二步:将
x
轴上边的 图像不变,并将其翻折到
x
轴下边,并覆盖.
y?f(x)

(8)周期性:

y?f(x)

x
轴上边的图像保持不变,并将
x
轴下边的图像翻折到
x
轴上
边,不覆盖.

y?f(x),x?R

?T?0

任取x?R
,恒有< br>f(x?T)?f(x)
,则称
T
为这个函数的周期.
注意:若
T

y?f(x)
的周期,那么
kT(k?Z,k?0)< br>也是这个函数的周期;
周期函数的周期有无穷多个,但不一定有最小正周期.

f(x?a)?f (x?b)

a?b
?
f(x)
是周期函数,且其中一个周期
T?a?b

(阴影部分下略)

f(x)??f(x?p)

p?0
?
T?2p


f(x?a)??f(x?b)

a?b
?
T?2a?b;

f(x)?
11

f(x)??
p?0
?
T?2p

f(x?p)
f(x?p)
1? f(x?p)f(x?p)?1

f(x)?

p?0
?
T ?2p

1?f(x?p)f(x?p)?1
1?f(x?p)f(x?p)?1< br>或
f(x)?

p?0
?
T?4p

1?f(x?p)f(x?p)?1

f(x)?

f(x)?

f(x)
关于直线
x?a

x?b

a?b
都对称
?
T?2a?b


f(x)
关于两点
(a,c)

(b, c)

a?b
都成中心对称
?
T?2a?b


f(x)
关于点
(a,c)

a?0
成中心对称,且关于 直线
x?b

a?b
对称
?
T?4a?b

⑩若
f(x)?f(x?a)?f(x?2a)?L?f(x?na)?m< br>(
m
为常数,
n?N
*
),则
f(x)
是以
(n?1)a
为周期的周期函数;

f(x)?f( x?a)?f(x?2a)?L?f(x?na)?m

m
为常数,
n
为正偶数),则
f(x)
是以
2(n?1)a
为周期的周期函数.
三、V函数:
定义
分类
形如
y?ax?m?h(a?0)
的函数,称作V函数.
y?ax?m?h,a?0

y?ax?m?h,a?0


图像

定义域
值域
对称轴
开口
顶点

(??,?m]
上单调递减;
单调性

[?m,??)
上单调递增.
注意



















四、分式函数:
定义
分类

[?m,??)
上单调递减.

m?0
时,该函数为偶函数
向上
(?m,h)

[h,??)

x??m


R

(??,h]

向下

(??,?m]
上单调递增;
a
形如
y?x?(a?0)
的函数,称作分式函数.
x
aa
y?x?,a?0
(耐克函数)
y?x?,a?0

xx


图像

定义域
值域
渐近线
(??,?2a]U[2a,??)


(??,0)U(0,??)

R

x?0

y?x


(??,?a]

[a,??)
上单调递增;
单调性

[?a,0)

(0,a]
上单调递减.
五、曼哈顿距离:
在平面上,
M(x
1
,y
1< br>)

N(x
2
,y
2
)
,则称
d? x
1
?x
2
?y
1
?y
2

MN
的曼哈顿距离.
六、某类带有绝对值的函数:
1、对于函数
y?x?m
,在
x?m
时取最小值;
2、对 于函数
y?x?m?x?n

m?n
,在
x?[m,n]
时 取最小值;
3、对于函数
y?x?m?x?n?x?p

m?n? p
,在
x?n
时取最小值;
4、对于函数
y?x?m?x ?n?x?p?x?q

m?n?p?q
,在
x?[n,p]
时取最 小值;
5、推广到
y?x?x
1
?x?x
2
?L ?x?x
2n

x
1
?x
2
?L?x
2n
,在
x?[x
n
,x
n?1
]
时取最小值;

y?x?x
1
?x?x
2
?L ?x?x
2n?1

x
1
?x
2
?L?x
2n?1
,在
x?x
n
时取最小值.
思考:对于函数
y? x?1?2x?3x?2
,在
x
_________时取最小值.




(??,0)

(0,??)
上单调递增;


四、幂函数、指数函数和对数函数
(一)幂函数
(1)幂函数的定义:
形如
y?x
a
(a?R)
的函数称作幂函数,定义域因
a
而异.
(2)当
a?0,1
时,幂函数
y?x
a
(a?R)
在区间
[0,??)
上的图 像分三类,如图所示.

(3)作幂函数
y?x
a
(a?0,1)
的草图,可分两步:
①根据
a
的大小,作出该函数在区间
[0,??)
上的图像;
②根据该函数的定义域及其奇偶性,补全该函数在
(??,0]
上的图像.
(4)判断幂函数
y?x
a
(a?R)

a
的大小比较:
方法一:
y?x
a
(a?R)
与直线
x? m(m?1)
的交点越靠上,
a
越大;
方法二:
y?x
a
(a?R)
与直线
x?m(0?m?1)
的交点越靠下,< br>a
越大
ax?b
(c?0)
的变形幂函数的作图:
cx?d
d
a
①作渐近线(用虚线):
x??

y?

c
c

(5)关于形如
y?
b
②选取特殊点:任取该函数图像上一点,建议取
(0,)

d
③画出大致图像:结合渐近线和特殊点,判断图像的方位(右上左下、左上右下).





(二)指数&指数函数
1、指数运算法则:



a?a?a
xyx?y
a
x
ax
;②
(a)?a
;③
(a?b)?a?b
;④
()?
x
,其中
(a,b?0,x、y?R)

bb
xyxyxxx
2、指数函数图像及其性质:

y?a
x
(a?1)

y?a
x
(0?a?1)

图像

定义域
值域
奇偶性
渐近线
单调性

(??,??)
上单调递增;

R

(0,??)

非奇非偶函数
x


(??,??)
上单调递减;
①指数函数
y?a
x
的函数值恒大于零;
②指数函数
y?a
x
的图像经过点
(0,1)

性质
③当
x?0
时,
y?1


x?0
时,
0?y?1

3、判断指数函数
y?a
x
中参数
a
的大小:
方法一:y?a
x
与直线
x?m(m?0)
的交点越靠上,
a
越大;
方法二:
y?a
x
与直线
x?m(m?0)
的交点越靠下,
a
越大.




③当
x?0
时,
0?y?1


x?0
时,
y?1

(三)反函数的概念及其性质
1、反函数的概念:


对于函数
y?f(x)
,设它的 定义域为
D
,值域为
A
,如果对于
A
中任意一个值
y
,在
D
中总有唯
一确定的
x
值与它对应,且满足
y?f(x)
,这样得到的
x
关于
y
的函数叫做
y?f(x )
的反函数,记作
x?f
?1
(y)
.在习惯上,自变量常用
x
表示,而函数用
y
表示,所以把它改写为
y?f
?1
( x)(x?A)

2、求反函数的步骤:(“解”
?
“换”
?
“求”)
①将
y?f(x)
看作方程,解出
x?f(y)

②将x

y
互换,得到
y?f
?1
(x)

③标出反函数的定义域(原函数的值域).
3、反函数的条件:
定义域与值域中的元素一一对应.
4、反函数的性质:
①原函数
y?f(x)
过点
(m,n)
,则反函数
y?f
②原函数
y?f(x)
与反函数
y?f
③奇函数的反函数必为奇函数.
5、原函数与反函数的关系:

定义域
值域

















函数
y?f(x)

y?f
?1
?1
?1
(x)
过点
(n,m)

(x)
关于
y?x
对称,且单调性相同;
(x)

D

A

A

D

(四)对数&对数函数
1、指数与对数的关系:



a
b
?N

a

b

指数
N


真数
底数
log
a
N?b

对数
2、对数的运算法则:

log
a
1?0

log
a
a?1
,< br>a
log
a
N
?N
;②常用对数
lgN?log10
N
,自然对数
lnN?log
e
N


log
a
(MN)?log
a
M?log
a
N< br>,
log
a

log
b
N?
M
?log
a
M?log
a
N

log
a
M
n
?nlog
a
M

N
log
aN
1
m

log
a
b?

loga
n
b
m
?log
a
b

loga
c
b
c
?log
a
b

a
log
N
b
?b
log
N
a

log< br>b
a
n
log
a
b
3、对数函数图像及其性质:

y?log
a
x(a?1)

y?log
a
x(0?a?1)

图像

定义域
值域
奇偶性
渐近线
单调性

(0,??)
上单调递增;
(0,??)


R

非奇非偶函数
y


(0,??)
上单调递减;
①对数函数
y?log
a
x
的图像在
y
轴的右方;
②对数函数
y?log
a
x
的图像经过点
(1,0)

性质
③当
x?1
时,
y?0


0?x?1
时,
y?0


4、判断对数函数
y?log
a
x,x?0
中参数
a
的大小:
方法一 :
y?log
a
x,x?0
与直线
y?m(m?0)
的交点 越靠右,
a
越大;
③当
x?1
时,
y?0


0?x?1
时,
y?0


方法二:
y?log
a
x,x?0
与直线
y?m(m?0)
的交点越靠左,
a
越大.







































五、三角比
1、角的定义:
(1)终边相同的角:

?

2k
?
?< br>?
,k?Z
表示终边相同的角度;


②终边相同的角不一定相等,但相等的角终边一定相同;

?
k
?
?
?
,k?Z
表示终边共线的角(同向或反向).
(2)特殊位置的角的集合的表示:
位置

x
轴正半轴上

x
轴负半轴上

x
轴上

y
轴正半轴上
角的集合
{
??
?2k
?
,k?Z}

{
??
?2k
?
?
?
,k?Z}
{
??
?k
?
,k?Z}

{
??
?2k
?
?
?
2
,k?Z}


y
轴负半轴上
{
??
?2k
?
?3
?
,k?Z}

2

y
轴上
{
??
?k
?
?
?
2
,k?Z}

在坐标轴上
{
??
?
k
?
,k?Z}

2
在第一象限内
{
?
2k
?
?
?
?2k
?
?
?
2
,k?Z}

在第二象限内 < br>{
?
2k
?
?
?
2
?
?
? 2k
?
?
?
,k?Z}

3
?
,k?Z}

2
在第三象限内
{
?
2k
?
?
?
?
?
?2k
?
?在第四象限内

(3)弧度制与角度制互化:

?
rad?180?
; ②
1rad?
180
{?
2k
?
?
3
?
?
?
?2k
?
?2
?
,k?Z}

2
?
?
; ③
1??
?
180
rad

(4)扇形有关公式:
l

?
?

r
②弧长公式:
l?
?
r

11
③扇形面积公式:
S?lr?
?
r
2
(想象三角形面积公式).
22

(5)集合中常见角的合并:


?
??
?
?
?
k
?
?
?
?
??
x?
?
x?2k
?
?
?
2
?
?
?
2
?
?
x?k
?
?
??
?
?
2
x?2k
?
?
??
?
2?
?
?
x?2k
?
?
?
x?k
?
x?2k?
?
?
?

x?2k
?
x?2k
?
x?2k
?
x?2k
?
?
?
?
?
?
?
?
?
?
k
?
?
?
?
?
?
,k?Z
?
x?
?
?
?
4
?
?
?

4
?
?
x?k
?
?
?
?
?
5
?
?
4
?
?
?
?
?
?
?
k
??
?4
?
??
?
?
?
?
x?
24
?
3
?
?
?
?
?
?
??
?
4
?
??
x?k
?
?
??
?
?
?
4
??
?
?
?
4
?
?
?
?
?
?

(6)三角比公式及其在各象限的正负情况:
以角
?
的顶点为坐标原点,始边为
x
轴的正半轴建立直角坐标系,在
?
的终边上任取一个异
于原点的点
P(x,y)
,点
P
到原点的距离记为
r
,则








(7)特殊角的三角比:
角度制

0?

0
30?

45?

60?

90?

180?

270?

3
?

2
360?

2
?

?

弧度制
?

6
1

2
?

4
2

2
?

3
3

2
?

2
1
?

sin
?

0 0
?1

0


cos
?

1
3

2
2

2
1

2
0
?1

0 1
tan
?

0
3

3
1
3

无 0 无 0



(8)一些重要的结论:(注意,如果没有特别指明,
k
的 取值范围是
k?Z

①角
?
和角
?
的终边:

?
和角
?
的终边
关于
x
轴对称 ?
sin
?
??sin
?
?
?
cos
?
?cos
?

?
tan
?
??tan
?
?
关于
y
轴对称
关于原点对称
?
sin
?
?sin
?
?
sin
?
??sin
?
??
?
cos
?
??cos
?

?
cos
?
??cos
?

?
tan?
??tan
?
?
tan
?
?tan
?
??

?
的终边与
?
的终边的关系.
2

?
的终边在第一象限
?
?
? (2k
?
,2k
?
?)
?
?(k
?
,k< br>?
?)

224
,k
?
?)

242
2
3
?
??
3
?

?
的终边在第三象限
?
?
?(2k
?
?
?
,2k
?
?)
?
?(k
?
?,k
?
?)

224
2
3
?
?
3
?

?
的终边在第四象限
?
?
?(2k
?
?
, k
?
?
?
)

,2k
?
?2
?
)
?
?(k
?
?
24
2

sin
?

cos
?
的大小关系:
3
??

sin
?
?cos
?< br>?
?
?(2k
?
?

,2k
?
? )
?
?
的终边在直线
y?x
右边(
x?y?0
)< br>44
?
5
?

sin
?
? cos
?
?
?
?(2k
?
?,2k
?
?)
?
?
的终边在直线
y?x
左边(
x?y?0
);
44
?
5
?

sin
?
?cos
?
?
?
?{2k
?
?,

2k
?
?}
?
?
的终边在直线
y?x
上(
x? y?0

44
?
??

?
的终边 在第二象限
?
?
?(2k
?
?
?
,2k
?
?
?
)
?
?
?(k
?
?
??
sin
?

cos
?
的大小关系:

sin
?
?cos
?
?
??(k
?
?
?
?
x?y?0
?
x?y?0?
,k
?
?)
?
?
的终边在
?
?

44
?
x?y?0
?
x?y?0
,k< br>?
?
,k
?
?

sin
?
?cos
?
?
?
?(k
?
?

sin
?
?cos
?
?
?
?{k
?
?
?
4
?
x?y?0
?
x?y?0
3
?
)
?
?
的终边在
?

?

4< br>x?y?0x?y?0
??
3
?
}

k?Z
?
?
的终边在
y??x

4
?
4




2、三角比公式:
(1)诱导公式:(诱导公式口诀:奇变偶不变,符号看象限)
第一组诱导公式: 第二组诱导公式: 第三组诱导公式:
(周期性) (奇偶性) (中心对称性)
?
sin(2k
?
?
?
)?sin
?
?
cos(2k
?
?
?
)?cos
?
?

?

?
tan( 2k
?
?
?
)?tan
?
?
?
cot(2 k
?
?
?
)?cot
?
?
sin(?
?< br>)??sin
?
?
cos(?
?
)?cos
?
?

?
?
tan(?
?
)??tan
?< br>?
?
cot(?
?
)??cot
?
?
sin (
?
?
?
)??sin
?
?
cos(
?< br>?
?
)??cos
?
?

?
?
ta n(
?
?
?
)?tan
?
?
?
cot(< br>?
?
?
)?cot
?
第四组诱导公式: 第五组诱导公式: 第六组诱导公式:
(轴对称) (互余性)
?
?
sin(?
?
)?cos
?
?< br>2
?
?
sin(
?
?
?
)?sin
?
?
?
cos(?
?
)?sin
?
?
co s(
?
?
?
)??cos
?
?
?
2

?

?

tan(
?
?
?
)??tan
?
?
?
tan(
?
?< br>?
)?cot
?
?
?
2
?
cot(
?
?
?
)??cot
?
?
?
?
cot(?
?
)?tan
?
2
?
?
?
sin(??
)?cos
?
?
2
?
?
cos(
?
?
?
)??sin
?
?
2

?
?
tan(
?
?
?
)??cot
?
?
2?
?
?
cot(?
?
)??tan
?
2
?
(2)同角三角比的关系:
倒数关系: 商数关系: 平方关系:
?
sin
?
?csc
?
?1
?

?
cos
?
?sec
?
?1

?
tan
?
?cot
?
?1
?
sin
??
tan
?
?(cos
?
?0)
?
?
cos
?

?
cos
?
?
cot
?
?(sin
?
?0)
?
sin
?
?
?< br>sin
2
?
?cos
2
?
?1
?
2 2
?
1?tan
?
?sec
?

?
1?c ot
2
?
?csc
2
?
?
(3)两角和差的正 弦公式:
sin(
?
?
?
)?sin
?
cos?
?cos
?
sin
?

两角和差的 余弦公式:
cos(
?
?
?
)?cos
?
cos< br>?
?sin
?
sin
?

两角和差 的正切公式:
tan(
?
?
?
)?
tan
?
?tan
?

1?tan
?
tan
?

(4)二倍角的正弦公式:
sin2
?
?2sin
?
c os
?

二倍角的余弦公式:
cos2
?
?cos
2
?
?sin
2
?
?1?2sin
2?
?2cos
2
?
?1

2tan
?

1?tan
2
?
降次公式: 万能置换公式:
二倍角的正切公式:
tan2
?
?


?
2
?
1?cos
?
?2sin
?
2
1?c os2
?
?
2
?
?
sin
?
?
?
1?cos
?
?2cos
2
?
2
?
?2
1?cos2
?
?
2
?
2

?
?

?
cos
?
?
??
??
2
??
1?sin
?
?
?
sin?c os
?
22
?
1?cos2
?
?
2
??
tan
?
?
??
2
1?cos2
?
?
??
??
?
1?sin
?
?sin?cos
??
?
22
??
?
?
sin
?
1?cos?
半角公式:
tan?

?
21?cos
?
sin
?
(5)辅助角公式:
①版本一:
2tan
?
?
sin2
??
?
1?tan
2
?
?
1?tan
2
?
?

?
cos2
?
?
2
1?tan?
?
2tan
?
?
tan2
?
?
?< br>1?tan
2
?
?
b
?
sin
?
?
?
a
2
?b
2
?
22

asin
?
?bcos
?
?a?bsin(
?
?< br>?
)
,其中
0?
?
?2
?
,
?
a
?
cos
?
?
?
a
2
?b
2
?
②版本二:
?
b

asin
?
?bcos
?
?a
2
?b
2< br>sin(
?
?
?
)
,其中
a,b?0,0?
?
?,tan
?
?

2a
3、正余弦函数的五点法作图:
?
3
?

y?sin(
?
x?
?< br>)
为例,令
?
x?
?
依次为
0,,
?
,,2
?
,求出对应的
x

y
值,描点
(x,y )
作图.
22

4、正弦定理和余弦定理:
abc
(1)正弦定理:
???2R(R
为外接圆半径
)

sinAsinBsinC
其中常见的结论有:
①< br>a?2RsinA

b?2RsinB

c?2RsinC

abc

sinA?

sinB?

sinC?

2R2R2R

sinA:sinB:sinC?a:b:c


S△ABC
?2R
2
sinAsinBsinC

S
△A BC
?
aRsinBsinC
abc
?
?
?
bRs inAsinC

S
△ABC
?

4R
?
cRsinAsinB
?
?
b
2
?c
2
?a2
?
cosA?
222
2bc
?
a?b?c?2bcc osA
?
?
2
?a
2
?c
2
?b
2
22
(2)余弦定理:版本一:
?
b?a?c?2accosB
;版本二:
?
cosB?

2ac
?
c
2?a
2
?b
2
?2abcosC
?
?
?
b
2
?a
2
?c
2
?
cosC?
2ab
?
?
a?bcosC?ccosB
?
(3)任意三角形射影定理(第一余弦定理):
?
b?ccosA?acosC
. < br>?
c?acosB?bcosA
?


5、与三角形有关的三角比:
(1)三角形的面积:
1

S
△ABC
?dh

2
111

S
△ABC
?absinC?bcsinA?acsinB

222

S
△ABC
?
l
?
l
??
l
??
l
?
?
?
?a
? ?
?b
??
?c
?

l

△ABC
的周长.
2
?
2
??
2
??
2
?
(2)在
△ABC
中,

a?b?A?B?sinA?sinB?cosA?cosB?cotA?cotB

②若
△ABC
是锐角三角形,则
sinA?cosB

?
sin(A?B)?sinC
?
cos(A?B)??cosC
?
tan(A ?B)??tanC
???

?
sin(B?C)?sinA

?
cos(B?C)??cosA

?
tan(B?C) ??tanA

?
sin(A?C)?sinB
?
cos(A?C )??cosB
?
tan(A?C)??tanB
???
B?C
?< br>AB?C
?
A
sin?costan?cot
?
2
?
222
??
A?C
?
BA?C
?
B

?
sin?cos

?
tan?cot

22 22
??
A?B
?
CA?B
?
C
sin?cost an?cot
??
2222
??
?
sin
?
?
?
?
sin
?
?
AB
?BA
?
CA
?cossin?cossin?cos
?
2
?
22

?
2

?
22

? ?
AC
?
BC
?
CB
?cossin?cossin?co s
22
?
?22
?
?22
BAB
?
Asinsin?coscos
?
2222
?
ABCABC
CAC
?
A

?
?
sinsin?coscos
?
sinsinsin?coscoscos

222222
22 2
?
2
CBC
?
B
sinsin?coscos
?
2222
?
ABC
?
sinA?sinB?sinC?4cosco scos
?
222
?
ABC
?

?
cosA?cosB?cosC?1?4sinsinsin

222
?
ABC
?
sinA?sinB?sinC?4sinsincos
?
222
?
?
sin2A?sin2B?sin2C?4sinAsinBs inC

?

?
cos2A?cos2B?co s2C??4cosAcosBcosC?1


?
33
sinAsinB sinC?(0,]
?
?
33
8
sinA?sinB?sinC?( 0,]
?
?
?
?
2

?

?
sinAsinBsinC?cosAcosBcosC

?
cosA?cosB?cosC?(1,
3
]
?
1
?
?
cosAcosBcosC?(?1,]
?2
8
?
?
其中,第一组可以利用琴生不等式来证明;第二组可以结合第一组及基本不等式证明.
(3)在< br>△ABC
中,角
A

B

C
成等差数列?
B?
(4)
△ABC
的内切圆半径为
r?
?
3

2S

a?b?c
6、仰角、俯角、方位角:

7、和差化积与积化和差公式(理科):
1
?
sin
?
c os
?
?[sin(
?
?
?
)?sin(
?
?
?
)]
?
2
?
?
cos
?
s in
?
?
1
[sin(
?
?
?
)?sin (
?
?
?
)]
?
2
(1)积化和差公式:
?

1
?
cos
?
cos
?
? [cos(
?
?
?
)?cos(
?
?
?
) ]
?
2
?
1
?
sin
?
sin
?
?[cos(
?
?
?
)?cos(
?
?
?
)]
?2
?
?
??
?
?
?
sin
?
?sin
?
?2sincos
?
22
?
?
sin
?
?sin
?
?2cos
?
?
?
sin
?
?
?
?
22
(2)和差化积公式:
?

?
cos
?
?cos
?
?2cos
?
?
?
cos
?
?
?
?
22
?
?
?
??
?
?
?
co s
?
?cos
?
??2sinsin
?22





六、三角函数
1、正弦函数、余弦函数和正切函数的性质、图像:




y?sinx

y?cosx

R

y?tanx

{xx?k
?
?
R

?
2
,k?Z}













[?1,1]

[?1,1]

R

奇函数 奇函数 偶函数
最小正周期
T?2
?

,2k
?
?]Z

22
?
3
?
[2k
?
?,2k
?
?]]

22

k?Z

[2k
?
?
最小正周期
T?2
?

[2k
?
?
?
,2k
?
]Z

最小正周期
T?
?

??
(k
?
?
[2k
?
,2k
?
?
?
]]

,k
?
?)Z
22

k?Z

??

k?Z


x?2k
?
?
?
时,
y
min
??1



x?2k
?
时,
y
max
?1




x?2k
?
?
?
2
时,
y
min
??1

时,
y
max
?1
; 当
x?2k
?
?
?
2





例1:求函数
y?5sin(2x?)
的周期、单调区间和最值.(当< br>x
的系数为负数时,单调性相反)
3
解析:周期
T?

2k
?
?
2
?
??
?
?
,由函数
y?sinx
的递增区间
[2k
?
?,2k
?
?]
,可得
2
22
?
5
??
?x?k
?
?

1212
232
?
5
??
,k
?
?]. 于是,函数
y?5sin(2x?)?7
的递增区间为
[k< br>?
?
31212
?
?
7
?
同 理可得函数
y?5sin(2x?)?7
递减区间为
[k
?
?,k< br>?
?]

31212
?
?2x?
?
?2k
?
?
?
,即
k
?
?

2x?
时,函数
y?5sin(2x?)
取最大值5;
32123
??
5
?
?

2x?? 2k
?
?
,即
x?k
?
?
时,函数
y?5 sin(2x?)
取最大值
?5

32123
例2:求函数
y?5sin(2x?)?7,x?[0,]
的单调区间和最值.
32
?
??
4
?
解析:由
x?[0,]
,可得
2x??[,]

2333
然后画出
2x?

2x?
?
?2k
?
?
?
,即
x?k
?
?
?
?
??
?
3
的终边图,然后就可以得出
?
?[,]
,即
x?[0 ,]
时,函数
y?5sin(2x?)?7
单调递增;
332123
??
?
?



2 x?
??
4
?
??
?
?[,]
,即
x?[ ,]
时,函数
y?5sin(2x?)?7
单调递减.
3231223
同时,当
2x?

2x??
3
?
?
?
2
,即
x?
时,函数y?5sin(2x?)?7
取最大值12;
12
3
?
??
3
53
4
?
?
?
,即
x?
时,函数
y?5sin(2x?)?7
取最小值
7?

2
2
33
注意:当
x
的系数为负数时,单调性的分析正好相反.

2、函数
y?Asin(
?
x?
?
)?h
&
y?Acos(
?
x?
?
)?h
&
y?Atan(
?
x?
?
)?h
,其中
A?0,
?
?0

(1)复合三角函数的基本性质:
y?Asin(
?
x?
?
)?h

y?Acos(
?
x?
?
)?h

y?Atan(
?
x?
?
)?h

三角函数
其中
A?0,
?
?0

振幅
基准线
定义域
值域
最小正周期
(??,??)

[A?h,A?h]

T?
2
?
其中
A?0,
?
?0
其中
A?0,
?
?0


A

y?h

{x
?
x?
?
?k
?
?
?
2
,k?Z}

(??,??)

T?
?

?

?
频率
相位
初相





f?
1
?
?

T2
?
f?
1
?
?

T
?
?
x?
?

?

(2) 函数
y?Asin(
?
x?
?
)?h
与函数
y?s inx
的图像的关系如下:
①相位变换:
?y?sin(x?
?
)
; 当
?
?0
时,
y?sinx??????
?y?sin(x?
?
)
; 当
?
?0
时,
y?sinx??????
向右平移
?
个单位
向左平移
?
个单位
②周期变换:
?
?y?sin(
?
x?
?
)
; 当
?
?1
时,
y?sin(x?
?
)?????????? ????
1
所有各点的横坐标缩短到原来的倍(纵坐标不变)


?
?y?sin(
?
x?
?
)
; 当
0 ?
?
?1
时,
y?sin(x?
?
)?????????? ????
1
所有各点的横坐标伸长到原来的倍(纵坐标不变)
③振幅变换:
所有各点的纵坐标伸长到原来的A倍(横坐标不变)
?y?Asin(
?
x?
?
)
; 当
A?1
时,
y?sin(
?
x?
?
)??????????????
所有各点的 纵坐标缩短到原来的A倍(横坐标不变)
?y?Asin(
?
x?
?
)
; 当
0?A?1
时,
y?sin(
?
x?
?
)??????????????
④最值变换:
所 有各点向上平行移动h个单位
?y?Asin(
?
x?
?
)?h; 当
h?0
时,
y?Asin(
?
x?< br>?
)?????????
所有各点向下平行移动h个单位
?y?Asin(?
x?
?
)?h
; 当
h?0
时,
y?Asin(
?
x?
?
)?????????
注意:函数
y?Acos(
?
x?
?
)?h
和函数
y?Atan(
?
x?
?
)?h
的变换情况同上.

3、三角函数的值域:
(1)
y?asinx?b
型:

t?sinx
,化为一次函数
y?at?b
在闭区间
[?1,1]
上求最值.
(2)
y?asinx?bcosx?c

a,b?0
型:
引入辅助角
?
,tan
?
?
b
,化为
y?a
2
?b
2
sin(x?
?
)?c

a
(3)
y?asin
2
x?bsinx?c
型:

t?sinx?[?1,1]
,化为二次函数
y?at
2
?bt?c
求解.
(4)
y?asinxcosx?b(sinx?cosx)?c
型:
a(t
2
?1)
?bt?c
在闭 设
t?s inx?cosx?[?2,2]
,则
t?1?2sinxcosx
,化为二次函数< br>y??
2
2
区间
t?[?2,2]
上求最值.


(5)
y?atanx?bcotx
型:
b

t?tanx
,化为
y?at?
,用“Nike函数”或“差函数”求解.
t
asinx?b
(6)
y?
型:
csinx?d
方法一:常数分离、分层求解;方法二:利用有界性,化为
?1?sinx?1
求解.
asinx?b
(7)
y?
型:
ccosx?d
化为
asinx?yccosx?b?dy
,合并
a
2
?y
2
c
2
sin(x?
?
)?b?dy
,利用有界性,



sin(x?
?
)?
b?dy
a?y c
222
?[?1,1]
求解.
(8)
asinxcosx? bsin
2
x?ccos
2
x
,(
a?0,b,c
不全为0)型:
ac?bb?c
利用降次公式,可得
asinxco sx?bsin
2
x?ccos
2
x?sin2x?
,然后利用辅
cos2x?
222
助角公式即可.
4、三角函数的对称性:
对称中心 对称轴方程
y?sinx

(k
?
,0)

k?Z

x?k
?
?
?
2

k?Z

y?cosx

y?tanx

y?cotx

( k
?
?
(
?
2
,0)

k?Z

x?k
?

k?Z



k
?
,0)
k?Z

2
k
?
(,0)
k?Z

2
备注:①
y?sinx

y?cosx
的对称中心在其函数图像上;

y?tanx

y?cotx
的对称中心不一 定在其函数图像上.(有可能在渐近线上)
例3:求函数
y?5sin(2x?)?7
的对称轴方程和对称中心.
3
解析:由函数
y?sinx
的对称轴方程
x?k
?
?
解得
x?
?
?
2

k?Z
,可得
2x?< br>?
3
?k
?
?
?
2

k?Z

?
12
?
k
?

k?Z

2
?
?
k
?
所以,函数
y?5si n(2x?)?7
的对称轴方程为
x??

k?Z

3122
由函数
y?sinx
的中心对称点
(k?
,0)

k?Z
,可得
2x?
解得
x??
?
3
?k
?

k?Z

?
6
?
k
?

k?Z

2
?
?
k
?
所以,函数
y?5si n(2x?)?7
的对称中心为
(??,7)

k?Z

362
5、反正弦、反余弦、反正切函数的性质和图像:

定义域
值域
奇偶性
单调性
对称中心
y?arcsinx

[?1,1]

y?arccosx

[?1,1]

y?arctanx

(??,??)

[?,]

22
奇函数
??
[0,
?
]

(?
非奇非偶函数

[?1,1]
上是减函数

(0,)

2
,)

22
奇函数
??

[?1,1]
上是增函数

(0,0)


(??,??)
上是增函数

(0,0)

?


图像

重要结论:
(1)先反三角函数后三角函数:

a?[?1,1]?sin(arcsina)?cos(arccosa)?a


a?R?tan(arctana)?a

(2)先三角函数后反三角函数:

?
?[?


??
,]
?
arcsin(sin
?
)?
?

22

?
?[0,
?
]
?< br>arccos(cos
?
)?
?

,)
?
arctan(tan
?
)?
?

22
(3)反三角函数对称中心特征方程式:

?
?(?
??

a?[?1,1]
?
arcsin(?a)??arcsina


a?[?1,1]
?
arccos(?a)?
?< br>?arccosa


a?(??,??)
?
arctan(?a)??arctana

6、解三角方程公式:

?
sinx?a,a?1x?k
?< br>?(?1)
k
arcsina,k?Z
?
?
cosx?a,a ?1x?2k
?
?arccosa,k?Z

?
tanx?a,a ?Rx?k
?
?arctana,k?Z
?

高中数学选修2-1课本北师大出版社-聊城高唐高中数学出版社


高中数学联赛历届试题高思-高中数学网络教学教案


高中数学希望杯试题讲解-浅析高中数学为难学的原因及对策


高中数学所有推论-高中数学必修二期末考试题


2020新版人教版高中数学A版-高中数学列阵


高中数学奥赛卷真题-高中数学求导是哪一本教材


山西省普通高中数学学业-高中数学偏科记忆


2018年下半年教师资格高中数学真题-高中数学必修四课时分层作业答案



本文更新与2020-09-16 11:05,由作者提供,不代表本网站立场,转载请注明出处:https://www.bjmy2z.cn/gaokao/399517.html

高一数学知识点汇总讲解大全的相关文章