关键词不能为空

当前您在: 主页 > 数学 >

高中数学人教版选修1-2全套教案

作者:高考题库网
来源:https://www.bjmy2z.cn/gaokao
2020-09-17 12:04
tags:高中数学教案

高中数学课堂引入的艺术-高中数学微课总结



高中数学人教版选修1-2全套教案
第一章统计案例
第一课时 1.1回归分析的基本思想及其初步应用(一)

教学要求:通过典型案例的探究,进一步了解回归分析的基本思想、方法及初步应用.
教学重 点:了解线性回归模型与函数模型的差异,了解判断刻画模型拟合效果的方法-相关指
数和残差分析.
教学难点:解释残差变量的含义,了解偏差平方和分解的思想.
教学过程:
一、复习准备:
1. 提问:“名师出高徒”这句彦语的意思是什么?有名气的老师就一定能 教出厉害的学生吗?
这两者之间是否有关?
2. 复习:函数关系是一种确定性关系,而相关关系是一种非确定性关系. 回归分析是对具有相
关关系的两 个变量进行统计分析的一种常用方法,其步骤:收集数据
?
作散点图
?
求回归 直
线方程
?
利用方程进行预报.
二、讲授新课:
1. 教学例题:
① 例1 从某大学中随机选取8名女大学生,其身高和体重数据如下表所示:
编 号
身高cm
1
165
2
165
57
3
157
50
4
170
54
5
175
64
6
165
61
7
155
43
8
170
59 体重kg 48
求根据一名女大学生的身高预报她的体重的回归方程,并预报 一名身高为172cm的女大学生的
体重. (分析思路
?
教师演示
?
学生整理)

70
60
50



15
身高cm
170175180



k
g
40
30
20
10
0







第一步:作散点图 第二步:求回归方程 第三步:代值计算
② 提问:身高为172cm的女大学生的体重一定是60.316kg吗?
不一定,但一般可以认为她的体重在60.316kg左右.
③ 解释线性回归模型与一次函数的不同
事实上,观察上述散点图,我们可以发现女大学生的体重
y
和身高
x
之间的关系并不能用一次
函数
y?bx?a
来严 格刻画(因为所有的样本点不共线,所以线性模型只能近似地刻画身高和体
重的关系). 在数据表中身 高为165cm的3名女大学生的体重分别为48kg、57kg和61kg,如
果能用一次函数来描述 体重与身高的关系,那么身高为165cm的3名女在学生的体重应相同. 这
就说明体重不仅受身高的 影响还受其他因素的影响,把这种影响的结果
e
(即残差变量或随机
变量)引入到线性 函数模型中,得到线性回归模型
y?bx?a?e
,其中残差变量
e
中包含体 重
不能由身高的线性函数解释的所有部分. 当残差变量恒等于0时,线性回归模型就变成一次函
数模型. 因此,一次函数模型是线性回归模型的特殊形式,线性回归模型是一次函数模型的一
般形式.
2. 相关系数:相关系数的绝对值越接近于1,两个变量的线性相关关系越强,它们的散点图越
接近一条直线,这时用线性回归模型拟合这组数据就越好,此时建立的线性回归模型是有意义.
3. 小结:求线性回归方程的步骤、线性回归模型与一次函数的不同.














第二课时 1.1回归分析的基本思想及其初步应用(二)

教学要求:通过典型案例的探究,进一步了解回归分析的基本思想、方法及初步应用.
教学重点:了解评价回归效果的三个统计量:总偏差平方和、残差平方和、回归平方和.
教学难点:了解评价回归效果的三个统计量:总偏差平方和、残差平方和、回归平方和.
教学过程:
一、复习准备:
1.由例1知,预报变量(体重)的值受解释变量(身高)或随机误差的影响.
2.为了刻 画预报变量(体重)的变化在多大程度上与解释变量(身高)有关?在多大程度上与
随机误差有关?我们 引入了评价回归效果的三个统计量:总偏差平方和、残差平方和、回归平
方和.
二、讲授新课:
1. 教学总偏差平方和、残差平方和、回归平方和:
(1)总偏 差平方和:所有单个样本值与样本均值差的平方和,即
SST?
?
(y
i?y)
2
.
i?1
n
残差平方和:回归值与样本值差的平方和 ,即
SSE?
?
(y
i
?y
i
)
2
.
i?1
n
回归平方和:相应回归值与样本均值差的平方和,即
SSR?
?
(y
i
?y)
2
.
i?1
n
(2)学习要领:①注意
y
i

y
i

y
的区别;②预报变量的变化程度可以分解为由解释变量引
起的变化程度与残差变量的变化程度之和,即< br>?
(y
i
?y)?
?
(y
i
?y
i
)?
?
(y
i
?y)
2
;③当总
22i?1i?1i?1
nnn
偏差平方和相对固定时,残差平方和越小,则回归平方和越大, 此时模型的拟合效果越好;④
对于多个不同的模型,我们还可以引入相关指数
R
2?1?
?
(y
i?1
n
i?1
n
i
? y
i
)
2
来刻画回归的效果,它表
?
(y
i
?y)
2
示解释变量对预报变量变化的贡献率.
R
2
的值越大,说明残差平方和越小,也就是说模型拟合



的效果越好.
2. 教学例题:
例2 关于
x

Y
有如下数据:

x


y

2
30
4
40
5
60
6
50
8
70
y ?6.5x?17.5

y?7x?17
,为了对
x
、现有以下两种 线性模型:
Y
两个变量进行统计分析,
试比较哪一个模型拟合的效果更好.
分析:既可分别求出两种模型下的总偏差平方和、残差平方和、回归平方和,也可分别求出两
种模型下的 相关指数,然后再进行比较,从而得出结论.
(答案:
R
1
2
?1 ?
?
(y
i?1
5
i?1
5
i
?y
i
)
2
?1?
?y)
2
?
(y
155< br>?0.845
1000

R
2
2
?1?
?< br>(y
i?1
5
i?1
5
i
?y
i
)
2
?1?
?y)
2
i
?
(y
180
?0.82
,84.5%>82%,所以甲选
1000
i
用的模型拟合效果 较好.)
3. 小结:分清总偏差平方和、残差平方和、回归平方和,初步了解如何评价两个不同模型拟合
效果的好坏.


















第三课时 1.1回归分析的基本思想及其初步应用(三)

教学要求:通过典型案例的探究,进一步了解回归分析的基本思想、方法及初步应用.
教学重 点:通过探究使学生体会有些非线性模型通过变换可以转化为线性回归模型,了解在解
决实际问题的过程 中寻找更好的模型的方法.
教学难点:了解常用函数的图象特点,选择不同的模型建模,并通过比较相 关指数对不同的模
型进行比较.
教学过程:
一、复习准备:
1. 给出 例3:一只红铃虫的产卵数
y
和温度
x
有关,现收集了7组观测数据列于下表 中,试建

y

x
之间的回归方程.
温度
xC

21 23
11
25
21
27
24
29
66
32
115
35
325
产卵数
y

7
(学生描述步骤,教师演示)
2. 讨论:观察右图中的散点图,发现样本点并没有分布在某
个带状区域内,即两个变量不呈线性相关关系,所以不能直接
用线性回归方程来建立两个变量之 间的关系.
二、讲授新课:
1. 探究非线性回归方程的确定:



350
300
250
200
150
100
50
0
01020
温度
3040
① 如果散点图中的点分布在一个 直线状带形区域,可以选线性回归模型来建模;如果散点图中
的点分布在一个曲线状带形区域,就需选择 非线性回归模型来建模.
② 根据已有的函数知识,可以发现样本点分布在某一条指数函数曲线
y
=
C
1
e
C
2
x
的周围(其中
,故可用指数函数模型来拟合这两个变量.
c
1
,c
2
是待定的参数)
③ 在上式两边取对数,得lny?c
2
x?lnc
1
,再令
z?lny
,则z?c
2
x?lnc
1
,而
z

x
间 的关系
如下:
7

z
6
5
4
3
2
1
0
01020
x
3040






X
z
21 23 25 27 29 32 35
1.946 2.398 3.045 3.178 4.190 4.745 5.784 < br>观察
z

x
的散点图,可以发现变换后样本点分布在一条直线的附近, 因此可以用线性回归方
程来拟合.
④ 利用计算器算得
a??3.843,b?0. 272

z

x
间的线性回归方程为
z?0.272x?3 .843
,因此
红铃虫的产卵数对温度的非线性回归方程为
y?e
0.272 x?3.843
.
⑤ 利用回归方程探究非线性回归问题,可按“作散点图
?
建模
?
确定方程”这三个步骤进行.
其关键在于如何通过适当的变换,将非线性回归问题转化成线性回归问题.
2. 小结:用回归方程探究非线性回归问题的方法、步骤.
三、巩固练习:
为了研究某种细菌随时间
x
变化,繁殖的个数,收集数据如下:
天数
x
天 1 2
12
3
25
4
49
5
95
6
190 繁殖个数
y
个 6
(1)用天数作解释变量,繁殖个数作预报变量,作出这些数据的散点图;
?
=e
0.69x?1.112
.) (2)试求出预报变量对解释变量的回归方程.(答案:所求非线性回归方程为
y














第四课时 1.1回归分析的基本思想及其初步应用(四)

教学要求:通过典型案例的探究,进一步了解回归分析的基本思想、方法及初步应用.
教学重 点:通过探究使学生体会有些非线性模型通过变换可以转化为线性回归模型,了解在解
决实际问题的过程 中寻找更好的模型的方法,了解可用残差分析的方法,比较两种模型的拟合
效果.
教学难点: 了解常用函数的图象特点,选择不同的模型建模,并通过比较相关指数对不同的模
型进行比较.
教学过程:
一、复习准备:
1. 提问:在例3中,观察散点图,我们选择用指数 函数模型来拟合红铃虫的产卵数
y
和温度
x
间的关系,还可用其它函数模型来 拟合吗?
2. 讨论:能用二次函数模型
y?c
3
x
2
? c
4
t
441
400
300
200
1000
0500
t
10001500
529 625
11 21
729 841 1024 1225
24 66 115 325
y

7
来拟合上述两个变量间的关系吗?(令
t?x
2
,则
y
y?c
3
t?c
4
,此时
y

t
间的关系如下:
观察
y

t
的散点图,可以发现样本点并不分布在 一条
直线的周围,因此不宜用线性回归方程来拟合它,即不
宜用二次曲线
y?c
3
x
2
?c
4
来拟合
y

x
之 间的关系. )小结:也就是说,我们可以通过观察变
换后的散点图来判断能否用此种模型来拟合. 事实上,除了观察散点图以外,我们也可先求出
函数模型,然后利用残差分析的方法来比较模型的好坏.
二、讲授新课:
1. 教学残差分析:
① 残差:样本值与回归值的差叫残差,即
e
i
?y
i
?y
i
.
② 残差分析:通 过残差来判断模型拟合的效果,判断原始数据中是否存在可疑数据,这方面的
分析工作称为残差分析.



③ 残差图:以残差为横坐标,以样本编号,或身高数据,或体重估计值等为 横坐标,作出的图
形称为残差图. 观察残差图,如果残差点比较均匀地落在水平的带状区域中,说明选 用的模型
比较合适,这样的带状区域的宽度越窄,模型拟合精度越高,回归方程的预报精度越高.
2. 例3中的残差分析:
计算两种模型下的残差

一般情况下,比较两 个模型的残差比较困难(某些样本点上一个模型的残差的绝对值比另
一个模型的小,而另一些样本点的情 况则相反),故通过比较两个模型的残差的平方和的大小来
判断模型的拟合效果. 残差平方和越小的模型,拟合的效果越好.
由于两种模型下的残差平方和分别为1450.673 和15448.432,故选用指数函数模型的拟合
效果远远优于选用二次函数模型. (当然,还可用相关指数刻画回归效果)
3. 小结:残差分析的步骤、作用
三、巩固练习:练习:教材P13 第1题













高中数学北师大版教材目录-高中数学选修4-5课后题答案百度文库


高中数学备课组学期工作计划-高中数学远程培训


人教a版高中数学必修4课本-高中数学1-2书内容


高中数学高一第二学期教学计划-上海高中数学新课程标准解三角形的区别


广东省学业水平普通高中数学-吉林省高中数学会考时间


北师大高中数学21-高中数学教师资格证数学专业知识考试内容


高中数学常用学法-家长会上高中数学教师发言


高中数学 2-3试题-黑龙江高中数学必修四教材



本文更新与2020-09-17 12:04,由作者提供,不代表本网站立场,转载请注明出处:https://www.bjmy2z.cn/gaokao/400880.html

高中数学人教版选修1-2全套教案的相关文章