关键词不能为空

当前您在: 主页 > 数学 >

高中数学经典函数试题及标准答案

作者:高考题库网
来源:https://www.bjmy2z.cn/gaokao
2020-09-17 15:56
tags:高中数学函数

人教版高中数学 教辅-高中数学课学习的技能


经典函数测试题及答案
(满分:150分 考试时间:120分钟)
一、选择题:本大题共12小题。每小题5分,共60分。在每小题给出的四个选项中,只有
一项是符合 题目要求的。
1.函数
y?f(2x?1)
是偶函数,则函数
y?f(2x )
的对称轴是 ( )
A.
x?0
B.
x??1
C.
x?
11
D.
x??

22
x
2.已知
0?a?1,b??1
,则函数
y?a?b
的图象不经过 ( )
A.第一象限 B.第二象限 C. 第三象限 D. 第四象限
3.函数
y?lnx?2x?6
的零点必定位于区间 ( )
A.(1,2) B.(2,3) C.(3,4) D.(4,5)
4.给出四个命题:
(1)当
n?0
时,
y?x
的图象是一条直线;
(2)幂函数图象都经过(0,1)、(1,1)两点;
(3)幂函数图象不可能出现在第四象限;
(4)幂函数
y?x
在第一象限为减函数,则
n
?0

其中正确的命题个数是 ( )
A.1 B.2 C.3 D.4
5.函数
y?a
在[0,1]上的最大值与最小值的和为3,则
a
的值为 ( )
A.
x
n
n
1

2
B.2 C.4 D.
1

4
6.设
f(x)
是奇函数,当
x?0
时,
f(x)?log
2
x,
则当
x?0< br>时,
f(x)?
( )
A.
?log
2
x
B.
log
2
(?x)
C.
log
2
x
D.
?log
2
(?x)

7.若方程2(
m?1

x
+4
mx?3m?2?0
的两根同号,则
m
的取值范 围为 ( )
2
2
?m?1

3
22
C.
m??1

m?
D.
?2?m??1

?m?1

33
A.
?2?m??1
B.
?2?m??1

8.已知
f(x)
是周期为2的奇函数,当
0?x?1
时,
f(x)?lgx.

63
5
a?f(),b?f(),
c?f() ,
则 ( )
2
52
A.
a?b?c
B.
b?a?c
C.
c?b?a
D.
c?a?b

9.已知0
?x?y?a?1
,则有 ( )

1


A.
log
a
(xy)?0
B.
0?log
a
(xy)?1
C.1<
log
a
(xy)?0
D.
log
a
(xy)?2

10.已知
0?a?1

log
a
m?log
a
n?0,
则 ( )
A.
1?n?m
B.
1?m?n
C.
m?n?1
D.
n?m?1

11.设
f(x)? lg
2?x
?
x
??
2
?
,

f
??
?f
??
的定义域为 ( )
2?x
?
2
??
x
?
A.(
?4,0)? (0,4)
B.
(?4,?1)?(1,4)
C.(
?2,?1)?(1,2)
D.(
?4,?2)?(2,4)
< br>12.已知
f(x)?
?
?
(3a?1)x?4a,x?1
是 R上的减函数,那么
a
的取值范围是( )
logx,x?1
a
?
1
3
?
11
?
?
73
?
?1
?
?
7
?
A.(0,1) B.(0,
)
C.
?
,
?
D.
?
,1
?

二、填空题:本大题共4小题,每小题4分,共16分。把答案填在题中横线上。
2
13.若函数
y?log
a
(kx?4kx?3)
的定义域是R,则
k
的取值范围是 .
14.函数
f(x)?2ax?2a?1,x?[? 1,1],

f(x)
的值有正有负,则实数
a
的取值范围为 .
15.光线透过一块玻璃板,其强度要减弱
1
1
,要使光线的强度减弱到原来 的以下,至少
3
10
有这样的玻璃板 块。(参考数据:
lg2?0.3010,lg3?0.4771)

16.给出下列命题:
x
x
①函数
y?a(a?0,a?1)与函数
y?log
a
a
(a?0,a?1)
的定义域相同;
②函数
y?x

y?3
的值域相同;
3x
11< br>(1?2
x
)
2
③函数
y??
x
与函数y?
均是奇函数;
x
2
2?1
x?2
④函数
y?(x?1)

y?2x?1

R
?
上都是增函数。
其中正确命题的序号是 .








2

2


三、解答题:本大题共6小题,共74分。解答应写出文字说明、证明过程或演算步骤。
17.(本小题满分12分)
e
x
a
?

a?0

f(x)?
是R上的偶函数。
a
e
x
⑴求
a
的值;
⑵证明:
f(x)

?
0,??
?
上是增函数。











18.(本小题满分12分)
记函数
f(x)?2?
x?3的定义域为A,
g(x)?lg[(x?a?1)(2a?x)](a?1)
的定义
x?1
域为B。
⑴求A;
⑵若B
?A
,求实数
a
的取值范围。









19.(本小题满分12分)
设函数
y?f(x)
是定义在
R上的减函数,并且满足
f(xy)?f(x)?f(y)

f
??
?1
,(1)

f(1)
的值, (2)如果
f(x)?f(2?x)?2
,求
x
的取值范围。



?
?
1
?
?
3
?

3







20.(本小题满分14分)
对于二次函数
y??4x?8x?3

(1)指出图像的开口方向、对称轴方程、顶点坐标;
(2)画出它的图像,并说明其图像由
y??4x
的图像经过怎样平移得来;
(3)求函数的最大值或最小值;
(4)分析函数的单调性。










21.(本小题满分14分)
已知函数
f(x)?log
a
(x? 1),g(x)?log
a
(1?x)(其中a?0,且a?1)

⑴求函数
f(x)?g(x)
的定义域;
⑵判断函数
f(x)?g(x)
的奇偶性,并予以证明;
⑶求使
f(x)?g(x)
<0成立的
x
的集合。







22.(本小题满分12分) 函数
f(x)
对任意
a,b?R
都有
f(a?b)?f(a)? f(b)?1,
并且当
x?0

f(x)?1

求证:函数
f(x)
是R上的增函数。
2
2

4




《初等函数测试题》〉参考答案
一、选择题
⒈D ⒉ A ⒊B ⒋B ⒌B ⒍A ⒎B ⒏D ⒐D ⒑A ⒒ B ⒓ C
二、填空题

?
?
0,
3
?
?
1
?
4
?

a??
4
⒖11 ⒗①③
三、解答题
⒘⑴
?
f(x)?
e
x
a
?
a
e
x
是R上的偶函数
?
对于任意的
x
,都有
f(?x)?f(x)


e
?x
ae
x
a
a
?
e
?
a
?
1
e
a
)(e
x
?
11
? xx
,化简得(
a?
e
x
)?0

?e
x
?
e
x
?0
?a?1
⑵由⑴得
f(x)?e
x
?e
?x

故任取,则
f(x?f(x
x
11
1
)
2
)?e?e
?x
?e
x
2
?e
?x
2

x
1
e
x
)?
2< br>x
?(e?
1

2< br>e
x
?e
e
x
1
e
x
2


?(e
x
1
?e< br>x
2
)(1?
1
e
x
1
e
x
2
)

?x
2
1
?x
2
?0?e
x
1
?e
x
?1,0?
1
e
x
e
x
2
?1

1
?
(e
x
1
?e
x
2
)(1?
1
e
x
1
e
x2
)
>0
因此
f(x
1
)?f(x
2
)

所以
f(x)

?
0,??
?
上是增函数。 ⒙⑴由
2?
x?3
x?1
?0,得
x?1
x?1
?0,?x??1或x?1,

即A=
(??,?1)?[1,??)

⑵由
(x?a?1)(2a?x)?0,得(x?a?1)(x?2a)?0.


5


1
?B?A,?2a?1或a?1??1, 即a?或a??2,而a?1,

2
1
??a?1或a??2
. < br>2
故当
B?A
时,实数
a
的取值范围是(
??,?2 ]?
?
,1
?
.

⒚解:(1)令
x?y?1,则
f(1)?f(1)?f(1)
,∴
f(1)?0

?1
?
?
2
?
(2)∵
f
??
?1
f
??
?f(?)?f
??
?f
??
?2

?
1
?
?
3
?
?
1
?
?
9
?
11
33
?
1
?
?
3
?
?
1
?
?
3
?

f
?
x
?
?f
?
2?x
?
?f
?
x(2?x)
?
?f
??
,又由
y?f(x)
是定义在R上 的减函数,得:

?
1
?
?
9
?
1?
??
x2?x?
?
9
?
22
?
22
?
??

x?1?,1?
解之得:
x?0
?< br>?
33
?
??
?
2?x?0
?
?

(1)开口向下;对称轴为
x?1
;顶点坐标为
(1,1)

(2)其图像由
y??4x
的图像向右平移一个单位,再向上平移一个单位得到;
(3)函数的最大值为1;
(4)函数在
(??,1)
上是增加的,在
(1,??)
上是减少的
2
21.⑴由题意得:
?
?
x?1?0
??1?x?1
?
1?x?0
所以所求定义域为
?
x|?1?x?1,x?R
?

⑵令H
(x)?f(x)?g(x)

则H(
x)?log
a
(x?1)?log
a
(1?x)?log
a
x?1

1?x
?1
?x?1
?
x?1
?

H(x)
为奇函数,
?H(?x)?log
a
?log
a
??
1?x
?
1?x
?
?
H(x)?f(x)? g(x)为奇函数.

??log
x?1
??H(x)

1 ?x
2

?f(x)?g(x)?log
a
(x?1)(1?x)? log
a
(1?x)?0?log
a
1


6 < /p>


?当a?1时,0?1?x
2
?1,故0?x?1或?1?x?0,

0?a?1时,1?x
2
?1,不等式无解.

综上:
?当a?1时,所求x的集合为{0?x?1或?1?x?0}.

2 2.设任取
x
1
,x
2
?R,且x
1
?x
2
?0,

?f(x
1
)?f(x
2
)?f(x< br>1
?x
2
?x
2
)?f(x
2
)


?f(x
1
?x
2
)?f (x
2
)?f(x
2
)?1


?f(x
1
?x
2
)?1

?x
1
?x
2
,?x
1
?x
2
?0,?f(x
1
?x
2
)?1,即f(x
1
?x
2
)?1?0

所以函数
f(x)
是R上的增函数.















7

高中数学课堂教学心得体会-高中数学老师网课总结


高中数学疑难问题解决策略-高中数学图形图案


全日制人教版高中数学课本教科书-高中数学选修上哪几本


高中数学主要知识点 总结 及-高中数学易错点百度网盘


高中数学绝对不等式考点-江苏南通职业高中数学


高中数学题库大全2018-高中数学几何的手抄报


高中数学选修4 4公式-高中数学教师思想 工作总结


高中数学分母如何通分-高中数学组合公式的计算



本文更新与2020-09-17 15:56,由作者提供,不代表本网站立场,转载请注明出处:https://www.bjmy2z.cn/gaokao/401332.html

高中数学经典函数试题及标准答案的相关文章

  • 爱心与尊严的高中作文题库

    1.关于爱心和尊严的作文八百字 我们不必怀疑富翁的捐助,毕竟普施爱心,善莫大焉,它是一 种美;我们也不必指责苛求受捐者的冷漠的拒绝,因为人总是有尊 严的,这也是一种美。

    小学作文
  • 爱心与尊严高中作文题库

    1.关于爱心和尊严的作文八百字 我们不必怀疑富翁的捐助,毕竟普施爱心,善莫大焉,它是一 种美;我们也不必指责苛求受捐者的冷漠的拒绝,因为人总是有尊 严的,这也是一种美。

    小学作文
  • 爱心与尊重的作文题库

    1.作文关爱与尊重议论文 如果说没有爱就没有教育的话,那么离开了尊重同样也谈不上教育。 因为每一位孩子都渴望得到他人的尊重,尤其是教师的尊重。可是在现实生活中,不时会有

    小学作文
  • 爱心责任100字作文题库

    1.有关爱心,坚持,责任的作文题库各三个 一则150字左右 (要事例) “胜不骄,败不馁”这句话我常听外婆说起。 这句名言的意思是说胜利了抄不骄傲,失败了不气馁。我真正体会到它

    小学作文
  • 爱心责任心的作文题库

    1.有关爱心,坚持,责任的作文题库各三个 一则150字左右 (要事例) “胜不骄,败不馁”这句话我常听外婆说起。 这句名言的意思是说胜利了抄不骄傲,失败了不气馁。我真正体会到它

    小学作文
  • 爱心责任作文题库

    1.有关爱心,坚持,责任的作文题库各三个 一则150字左右 (要事例) “胜不骄,败不馁”这句话我常听外婆说起。 这句名言的意思是说胜利了抄不骄傲,失败了不气馁。我真正体会到它

    小学作文