关键词不能为空

当前您在: 主页 > 数学 >

2018-2019学年初高中数学衔接超好教材word版含答案

作者:高考题库网
来源:https://www.bjmy2z.cn/gaokao
2020-09-18 11:46
tags:初高中数学衔接

高中数学竞赛a类和b类的区别-高中数学必修一概念 公式 公理

2020年9月18日发(作者:柴贞)


初高中数学衔接教材


现有初高中数学知识存在以下“脱节”

1.立方和与差的公式初中已删去不讲,而高中的运算还在用。
2.因式分解初中一般只限于 二次项且系数为“1”的分解,对系数不为“1”的涉及不多,
而且对三次或高次多项式因式分解几乎不 作要求,但高中教材许多化简求值都要用到,如解方
程、不等式等。
3.二次根式中对分子、 分母有理化初中不作要求,而分子、分母有理化是高中函数、不
等式常用的解题技巧。
4.初 中教材对二次函数要求较低,学生处于了解水平,但二次函数却是高中贯穿始终的
重要内容。配方、作简 图、求值域、解二次不等式、判断单调区间、求最大、最小值,研究闭
区间上函数最值等等是高中数学必 须掌握的基本题型与常用方法。
5.二次函数、二次不等式与二次方程的联系,根与系数的关系(韦达 定理)在初中不作
要求,此类题目仅限于简单常规运算和难度不大的应用题型,而在高中二次函数、二次 不等式
与二次方程相互转化被视为重要内容,高中教材却未安排专门的讲授。
6.图像的对称 、平移变换,初中只作简单介绍,而在高中讲授函数后,对其图像的上、
下;左、右平移,两个函数关于 原点,轴、直线的对称问题必须掌握。
7.含有参数的函数、方程、不等式,初中不作要求,只作定量 研究,而高中这部分内容视
为重难点。方程、不等式、函数的综合考查常成为高考综合题。
8 .几何部分很多概念(如重心、垂心等)和定理(如平行线分线段比例定理,射影定理,
相交弦定理等) 初中生大都没有学习,而高中都要涉及。
另外,像配方法、换元法、待定系数法初中教学大大弱化,不利于高中知识的讲授。





目 录


1.1 数与式的运算
1.1.1 绝对值
1.1.2 乘法公式
1.1.3 二次根式
1.1.4 分式
1.2 分解因式

2.1 一元二次方程
2.1.1 根的判别式
2.1.2 根与系数的关系(韦达定理)
2.2 二次函数
2.2.1 二次函数
y< br>=
ax
2

bx

c
的图像和性质

2.2.2 二次函数的三种表示方式

2.2.3 二次函数的简单应用
2.3 方程与不等式
2.3.1 二元二次方程组解法
2.3.2 一元二次不等式解法

3.1 相似形
3.1.1.平行线分线段成比例定理
3.1.2相似形
3.2 三角形
3.2.1 三角形的“四心”
3.2.2 几种特殊的三角形
3.3圆
3.3.1 直线与圆,圆与圆的位置关系
3.3.2 点的轨迹




1.1 数与式的运算

1.1.1.绝对值

绝对值的代数意义:正数的绝对值是它的本身,负数的绝对值是它的相反数,零的绝对值
仍是零 .即
?
a,a?0,
?
|a|?
?
0,a?0,

?
?a,a?0.
?
绝对值的几何意义:一个数的绝对值,是数轴上表示它的 点到原点的距离.
两个数的差的绝对值的几何意义:a?b表示在数轴上,数
a
和数
b
之间的距离.
例1 解不等式:
x?1?x?3
>4. < br>解法一:由
x?1?0
,得
x?1
;由
x?3?0
, 得
x?3

①若
x?1
,不等式可变为
?(x?1)?(x?3)?4


?2x?4
>4,解得
x
<0,

x
<1,

x
<0;
②若
1?x?2
,不等式可变为
(x?1)?(x?3)?4

即1>4,
∴不存在满足条件的
x

③若
x?3
,不等式可变为
(x?1)?(x?3)?4


2x?4
>4, 解得
x
>4.

x
≥3,点
B
之间的距离|
PB
|,即|
PB
|=|
x
-3|.
所以,不等式

由|
AB
|=2,可知

P
在点
C
(坐标为0)的左侧、或点
P
在点< br>D
(坐标为4)的右侧.

x
<0,或
x
>4.
练 习
1.填空:
(1)若
x?5
,则
x
=_________;若
x??4
,则
x
=_________.
(2)如果
a?b?5
,且
a??1
,则
b
=________;若
1?c?2
,则
c
=________.

2.选择题:
下列叙述正确的是 ( )
(A)若
a?b
,则
a?b
(B)若
a?b
,则
a?b

(C)若
a?b
,则
a?b
(D)若
a?b
,则
a??b

3.化简:|
x
- 5|-|2
x-
13|(
x
>5).
1.1.2. 乘法公式
我们在初中已经学习过了下列一些乘法公式:


(1)平方差公式
(a?b)(a?b)?a
2
?b
2

(2)完全平方公式
(a?b)
2
?a
2
?2ab?b
2

我们还可以通过证明得到下列一些乘法公式:
(1)立方和公式
(a?b)(a
2
?ab?b
2
)?a
3
?b
3

(2)立方差公式
(a?b)(a
2
?a b?b
2
)?a
3
?b
3

(3)三数和平方公式
(a?b?c)
2
?a
2
?b
2
?c
2
?2(ab?bc?ac)

(4)两数和立方公式
(a?b)
3
?a
3
? 3a
2
b?3ab
2
?b
3

(5)两数差立方公式
(a?b)
3
?a
3
? 3a
2
b?3ab
2
?b
3

对上面列出的五个公式,有兴趣的同学可以自己去证明.
例1 计算:
(x?1) (x?1)(x
2
?x?1)(x
2
?x?1)

222
?
解法一:原式=
(x
2
?1)
?
(x?1)?x
??

=
(x
2
?1)(x
4
?x
2
?1)

=
x
6
?1

解法二:原式=
(x?1)(x
2
?x?1)(x?1)(x
2
?x?1)

=
(x
3
?1)(x
3
?1)

=
x
6
?1

例2 已知
a?b?c?4
,< br>ab?bc?ac?4
,求
a
2
?b
2
?c
2
的值.
解:
a
2
?b
2
?c
2?(a?b?c)
2
?2(ab?bc?ac)?8

练 习
1.填空:
1
2
1
2
11

a?b?(b?a)
( )
9423
22
(2)
(4m?

)?16m?4m?(

)

2222
(3)
(a?2b?c)?a?4b?c?(

)

(1)
2.选择题:
1
mx?k
是一个完全平方式,则
k
等于 ( )
2
1
2
1
2
1
2
2< br>(A)
m
(B)
m
(C)
m
(D)
m

416
3
22
(2)不论
a

b
为何实数,
a?b?2a?4b?8的值 ( )
(1)若
x?
2
(A)总是正数 (B)总是负数
(C)可以是零 (D)可以是正数也可以是负数


1.1.3.二次根式
一般地,形如
a(a?0)
的代数式叫做二次根式.根号下含有字母、且不能够开得尽方的式子称为无理式. 例如
3a?a
2
?b?2b

a
2
?b
2
等是无理式,而
2x
2
?
x
2< br>?2xy?y
2

a
2
等是有理式.
2
x?1

2
1.分母(子)有理化


把分母(子)中的根号化去,叫做分母(子)有理化.为了进行分母(子)有理化,需要引入有理化因式的概念.两个含有二次根式的代数式相乘,如果它们的积不含有二次根式,我
们就说 这两个代数式互为有理化因式,例如
2

2

3a

a

3?6

3?6

23?32

2 3?32
,等等. 一般地,
ax

x

ax?by
ax?by

ax?b

ax?b
互为有理化因式.
分母有理化的方法是分母和分子都乘以分母的有理化因式,化去分母中的根号的过程;而
分子有 理化则是分母和分子都乘以分母的有理化因式,化去分子中的根号的过程
在二次根式的化简与运算过程 中,二次根式的乘法可参照多项式乘法进行,运算中要运用
公式
ab?ab(a?0,b?0)
;而对于二次根式的除法,通常先写成分式的形式,然后通过分
母有理化进行运算;二次根式的 加减法与多项式的加减法类似,应在化简的基础上去括号与合
并同类二次根式.
2.二次根式
a
2
的意义
a
2
?a?
?
?
a,a?0,

?a,a?0.
?
例1 将下列式子化为最简二次根式:
(1)
12b
; (2)
a
2
b(a?0)
; (3)
4x
6
y(x?0)

解: (1)
12b?23b

(2)
a
2
b?ab?ab(a?0)

(3)< br>4x
6
y?2x
3
y??2x
3
y(x?0)

例2 计算:
3?(3?3)

3?3

3?(3?3)

(3?3)(3?3)
33?3

9?3
3(3?1)

6
3?1
=.
2
例3 试比较下列各组数的大小:
解法一:
3?(3?3)

3


3?3
3

3(3?1)
1

3?1

3?1

(3?1)(3?1)

2

22-6
.
6?4
3?1

2
解法二:
3?(3?3)

3

(1)
12?11

11?10
; (2)
解: (1)∵
12?11?

11?10?
12?11(12?11)(12?11)1

??
1
12?1112?11
11?10(11?10)(11?10)1

??
1
11?1011?10



12?11?11?10


12?11

11?10

22-6(22-6)(22+6)2
??,

1
22+622+6
又 4>22,
∴6+4>6+22,
2
∴<
22-6
.
6?4
例4 化简:
(3?2)
2004
?(3?2)
2005

(2)∵
22-6?
解:
(3?2)
2004
?(3?2)
2005


(3?2)
2004
?(3?2)
2004
?(3?2)

?

?
?
(3?2)?(3?2)
?

1
2004
?(3?2)

2004
?(3?2)


3?2

例 5 化简:(1)
9?45
; (2)
x
2
?

解:(1)原式
?5?45?4


?(5)
2
?2?2?5?2
2

1
1
(2)原式=
(x?)
2
?x?

x
x

0?x?1

1

?1?x

x
1
所以,原式=
?x

x
1
?2(0?x?1)

x
2
?(2?5)
2

?2?5
?5?2

3?23?2
,求
3x
2
?5xy?3y
2
的值 .
,y?
3?23?2
3?23?2
解: ∵
x?y???(3?2)
2
?(3?2)
2
?10

3?23?2
3?23?2
xy???1

3?23?2

3x
2
?5xy?3y
2
?3(x?y)
2
?1 1xy?3?10
2
?11?289

例 6 已知
x?
练 习
1.填空:
(1)
1?3
=__ ___;
1?3
2
(2)若
(5?x)(x?3)?(x?3)5?x,则
x
的取值范围是_ _ ___;
(3)
424?654?396?2150?
__ ___;


(4)若
x?
2.选择题:
5
x?1?x?1x?1?x?1
,则
??
______ __.
2
x?1?x?1x?1?x?1
xx
成立的条件是 ( )
?
x?2
x?2
(A)
x?2
(B)
x?0
(C)
x?2
(D)
0?x?2

等式
a
2
?1?1?a
23.若
b?
,求
a?b
的值.
a?1
4.比较大小:2-3 5-4(填“>”,或“<”).


1.1.4.分式

1.分式的意义
形如
AA A
的式子,若
B
中含有字母,且
B?0
,则称为分式.当
M
≠0时,分式具有下列性质:
BBB
AA?M

?
BB?M
AA?M

?
BB?M
上述性质被称为分式的基本性质.

2.繁分式
a
m?n?p

b
,这样,分子或分母中又含有分式的分式叫做繁分式.
2m
c?d
n?p
5x?4AB
??
例1 若,求常数
A,B
的值.
x(x?2)xx?2
ABA(x?2)?Bx( A?B)x?2A5x?4
???
解: ∵
?

xx?2x(x?2)x(x?2)x(x?2)
?
A?B?5,

?

2A?4,
?
解得
A?2,B?3

111
??
例2 (1)试证:(其中
n
是正整数);
n(n?1)nn?1
111
???
(2)计算:;
1?22?39?10
1111
????
. (3)证明:对任意大于1的正整数
n
, 有
2?33?4n(n?1)2


(1)证明:∵
11
n
?
n?1
?
(n?1)?n
n(n?1)
?
1
n(n?1)


1
n(n?1)
?
1
n
?
1
n?1
(其中
n
是正整数)成立.
(2)解:由(1)可知

111
1?2
?
2?3
??
9?10


?(1?
11111
2
)?(
2
?
3
)? ?(
9
?
10
)


?1?
19
10

10

(3)证明:∵
1
2?3
?
1
3?4
??
1
n(n?1)


(
11111
2
?
3)?(
3
?
4
)??(
1
n
?
n?1
)


11
2
?
n?1


n
≥2,且
n
是正整数,

1
n
+1
一定为正数,

1
1
2?3
?
1
3?4
??
1
n(n?1)

2

例3 设
e?
c
a
,且
e
>1,2
c
2
-5
ac
+2
a
2=0,求
e
的值.
解:在2
c
2
-5
ac< br>+2
a
2
=0两边同除以
a
2
,得
2
e
2
-5
e
+2=0,
∴(2
e-
1)(
e
-2)=0,

e

1
2
<1,舍去;或
e
=2.

e
=2.

练 习
1.填空题:
对任意的正整数
n

1
n(n?2)
?
(
11
n
?
n?2
);
2.选择题:

2x?y
x?y
?
2
3
,则
x
y

(A)1 (B)
5
4
(C)
4
5
(D)
6
5

3 .正数
x,y
满足
x
2
?y
2
?2xy
, 求
x?y
x?y
的值.
4.计算
11
1?2
?< br>2?3
?
1
3?4
?...?
1
99?100




)(



习题1.1
A 组
1.解不等式:
(1)
x?1?3
; (2)
x?3?x?2?7

(3)
x?1?x?1?6

2.已知
x?y?1
,求
x3
?y
3
?3xy
的值.
3.填空:
(1)
(2?3)
18
(2?3)
19
=________;
(2)若
(1?a)
2
?(1?a)
2
?2
,则
a
的取值范围是________;
(3)
1
1?2
?
1
2 ?3
?
1
3?4
?
1
4?5
?
1
5?6
?
________.

B 组
1.填空:
(1)
a?
1
2

b?
1
3
,则
3a
2
?ab
3a
2
?5ab?2b
2
?
____ ____;
(2)若
x
2
?xy?2y
2
?0
,则
x
2
?3xy?y
2
x
2
?y
2
?
__ __;
2.已知:
x?
1
2
,y?
1
y
3
,求
x?y
?
y
x?y
的值.
C 组
1.选择题:
(1)若
?a?b?2ab??b??a
,则 (
(A)
a?b
(B)
a?b
(C)
a?b?0
(D)
b?a?0

(2)计算
a?
1
a
等于 (
(A)
?a
(B)
a
(C)
??a
(D)
?a

2.解方程
2( x
2
?
11
x
2
)?3(x?
x
)?1? 0

3.计算:
111
1?3
?
2?4
?
3?5
??
1
9?11

4.试证:对任意的正整数
n
,有
1
1?2?3
?
1
2?3?4
??
1
n(n?1)(n?2)

1
4





1.1.1.绝对值
1.(1)
?5

?4
(2)
?4

?1

3
2.D 3.3
x
-18
1.1.2.乘法公式
1.(1)
1111
3
a?
2
b
(2)
2
,
4
(3)
4ab?2ac?4bc







2.(1)D (2)A
1.1.3.二次根式
1. (1)
3?2
(2)
3?x?5
(3)
?86
(4)
5

2.C 3.1 4.>
1.1.4.分式
1
99
1. 2.B 3.
2?1
4.
2
100
习题1.1
A组
1.(1)
x??2

x?4
(2)-4<
x
<3 (3)
x
<-3,或
x
>3
2.1 3.(1)
2?3
(2)
?1?a?1
(3)
6?1

B组
1
35
1.(1) (2),或- 2.4.
5
72
C组
136
1.(1)C (2)C 2.
x
1
?,x
2
?2
3.
255
1111
?[?]
4.提示:
n(n?1)(n?2)2n(n?1)(n?1)(n?2)



1.2 分解因式
因式分解的主要方法有:十字相乘法、提取公因式法、公式 法、分组分解法,另外还应了
解求根法及待定系数法.
1.十字相乘法
例1 分解因式:
(1)
x
2
-3
x
+2; (2)
x
2
+4
x
-12;
(3)
x
2
?(a?b)xy?aby
2
; (4)
xy?1?x?y

解:(1)如图1.2-1,将二次项
x
2
分解成图中的两个
x
的积,再将常数项2分解成-1
与-2的乘 积,而图中的对角线上的两个数乘积的和为-3
x
,就是
x
2
-3< br>x
+2中的一次项,所
以,有
x
2
-3
x
+2=(
x
-1)(
x
-2).


1
x
x
1
-2
-1
-ay
-1


1
x
x
1 6
-2
-by
-2

图1.2-1 图1.2-3
图1.2-4
图1.2-2

说明:今后在分解与本例类似的二次三项式时,可以直接将 图1.2-1中的两个
x
用1
来表示(如图1.2-2所示).
(2)由图1.2-3,得


x
2
+ 4
x
-12=(
x
-2)(
x
+6).
(3)由图1.2-4,得

x
2
?(a?b)xy?a by
2

(x?ay)(x?by)

(4)
xy?1?x ?y

xy
+(
x

y
)-1
=(
x
-1) (
y+
1) (如图1.2-5所示).
2.提取公因式法与分组分解法
例2 分解因式:
(1)
x
3
?9?3x
2
?3x
; (2)
2x
2
?xy?y
2
?4x?5y?6

解: (1)
x
3
?9?3x
2
?3x
=
(x
3
?3x
2
)?(3x?9)
=
x
2
(x?3)?3(x?3)

=
(x?3)(x
2
?3)


x
3
?9?3x
2
?3x

(x
3
?3x< br>2
?3x?1)?8

(x?1)
3
?8

(x?1)
3
?2
3


[(x?1 )?2][(x?1)
2
?(x?1)?2?2
2
]


(x?3)(x
2
?3)

(2)
2x
2
?xy?y
2
?4x?5y?6
=
2x
2
?(y ?4)x?y
2
?5y?6

=
2x
2?(y?4)x?(y?2)(y?3)
=
(2x?y?2)(x?y?3)


2x
2
?xy?y
2
?4x?5y?6
=
(2x
2
?xy?y
2
)?(4x?5y)?6

=
(2x?y)(x?y)?(4x?5y)?6

=
(2x?y?2)(x?y?3)

3.关于
x
的二次三项式< br>ax
2
+
bx
+
c
(
a
≠0)的因 式分解.
若关于
x
的方程
ax
2
?bx?c?0(a?0 )
的两个实数根是
x
1

x
2
,则二次三项式ax
2
?bx?c(a?0)
就可分解为
a(x?x
1
)(x?x
2
)
.
x
y
图1.2-5
-1
1
例3 把下列关于
x
的二次多项式分解因式:
(1)
x
2
?2x?1
; (2)
x
2
?4xy?4y
2

解: (1)令
x
2
?2x?1
=0,则解得
x
1
??1?2
,< br>x
2
??1?2

???

x< br>2
?2x?1
=
?
?
x?(?1?2)
??
x?(?1?2)
?

=
(x?1?2)(x?1?2)

(2)令
x
2
?4x y?4y
2
=0,则解得
x
1
?(?2?22)y

x
1
?(?2?22)y


x
2
?4xy?4y
2
=
[x?2(1?2)y][x?2(1?2)y]

练 习
1.选择题:
多项式
2x?xy?15y
的一个因式为 ( )


22


(A)
2x?5y
(B)
x?3y
(C)
x?3y
(D)
x?5y

2.分解因式:
233
(1)
x
+6
x
+8; (2)8
a

b

(3)
x
-2
x
-1; (4)
4(x?y?1)?y(y?2x)

习题1.2
1.分解因式:
(1)
a?1
; (2)
4x?13x?9

22
(3)
b?c?2ab?2ac?2bc
; (4)
3x?5xy?2y?x?9y?4

22
2
342
2.在实数范围内因式分解:
2
(1)
x?5x?3
; (2)
x?22x?3

2
(3)
3x?4xy?y
; (4)
(x?2x)?7(x?2x)?12

3.
?ABC
三边
a

b

c
满足
a?b?c?ab?bc?ca< br>,试判定
?ABC
的形状.
4.分解因式:
x

x
-(
a

a
).

22
22222
222
1.2分解因式
1. B
2.(1)(
x
+2)(
x
+4) (2)
(2a?b)(4a
2
?2ab?b
2
)

(3)
(x?1?2)(x?1?2)
(4)
(2?y)(2x?y?2)

习题1.2
1.(1)
?
a?1
?
?
a
2
?a?1
?
(2)< br>?
2x?3
??
2x?3
??
x?1
??
x ?1
?

(3)
?
b?c
??
b?c?2a
?
(4)
?
3y?y?4
??
x?2y?1
?

?
5?13
??
5?13
?
x?x?
2.(1)
?< br>; (2)
x?2?5x?2?5

???
????
2??
2
??
?
2?7
??
2?7
?
x ?yx?y
?
(3)
3
?
; (4)
?
x?3
?
(x?1)(x?1?5)(x?1?5)

??
????
33
????
3.等边三角形
4.
(x?a?1)(x?a)

????

2.1 一元二次方程

2.1.1根的判别式

我们知道,对于一元二次方程< br>ax

bx

c
=0(
a
≠0),用配方法 可以将其变形为
2


b
2
b
2
?4ac
)?

(x?
. ①
2
2a4a
因为
a
≠0,所以,4
a
>0.于是
2
(1)当
b
-4
ac
>0时,方程①的右端是一个正数, 因此,原方程有两个不相等的实数根
2
?b?b
2
?4ac

x
1,2
=;
2a
(2)当
b
-4
ac
=0时,方程①的右端为零,因此,原方程有两个等的实数根

x< br>1

x
2
=-
2
2
b

2a
(3)当
b
-4
ac
<0时,方程①的右端是一个负数,而方程 ①的左边
(x?
b
2
)
一定大于或等于零,因
2a
此,原方程没有实数根.
222
由此可知,一元二次方程
ax

b x

c
=0(
a
≠0)的根的情况可以由
b
-4< br>ac
来判定,我们把
b
-4
ac
2
叫做一元二次方程
ax

bx
+c=0(
a
≠0)的根的判别式,通常用符号 “Δ”来表示.
2
综上所述,对于一元二次方程
ax

bx

c
=0(
a
≠0),有
(1) 当Δ>0时,方程有两个不相等的实数根
?b?b
2
?4ac

x
1,2
=;
2a
(2)当Δ=0时,方程有两个相等的实数根

x
1

x
2
=-
b

2a
(3)当Δ<0时,方程没有实数根.
例1 判定下列关于
x
的方程的根的情况(其中
a
为常数),如果方程有实数根,写出方程的实数根.
22
(1)
x
-3
x
+3=0; (2)
x

ax
-1=0;
22
(3)
x

ax
+(
a
-1)=0; (4)
x
-2
x

a
=0.
2
解:(1)∵Δ=3-4×1×3=-3<0,∴方程没有实数根.
22
(2)该方程的根的判别式Δ=
a
-4×1×(-1)=
a
+4>0,所以方 程一定有两个不等的实数根
a?a
2
?4a?a
2
?4

x
2
?

x
1
?
22
(3)由于该方程的根的判别式为
222Δ=
a
-4×1×(
a
-1)=
a
-4
a+4=(
a-
2),
所以,
①当
a
=2时,Δ=0,所以方程有两个相等的实数根

x
1

x
2
=1;
②当
a
≠2时,Δ>0, 所以方程有两个不相等的实数根

x
1
=1,
x
2

a-
1.
(3)由于该方程的根的判别式为
2
Δ=2-4×1×
a
=4-4
a
=4(1
-a
),
所以
①当Δ>0,即4(1
-a
) >0,即
a
<1时,方程有两个不相等的实数根

x
1
?1?1?a

x
2
?1?1?a

②当Δ=0,即
a
=1时,方程有两个相等的实数根

x
1

x
2
=1;
③当Δ<0,即
a
>1时,方程没有实数根.
说明:在第3,4小题中,方程的根的 判别式的符号随着
a
的取值的变化而变化,于是,在解题过程中,
需要对
a< br>的取值情况进行讨论,这一方法叫做分类讨论.分类讨论这一思想方法是高中数学中一个非常重
要 的方法,在今后的解题中会经常地运用这一方法来解决问题.



2.1.2 根与系数的关系(韦达定理)

若一元二次方程
ax< br>+
bx

c
=0(
a
≠0)有两个实数根

所以,一元二次方程的根与系数之间存在下列关系:
如果
ax< br>+
bx

c
=0(
a
≠0)的两根分别是
x
1

x
2
,那么
x
1

x
2

?
2
2
bc

x
1
·x
2
=.这一关系也被称为
aa
韦达定理.
2
特别 地,对于二次项系数为1的一元二次方程
x

px

q
=0 ,若
x
1

x
2
是其两根,由韦达定理可知

x
1

x
2
=-
p
x
1
·
x
2

q


p
=-(
x
1

x
2
),
q
x
1
·
x
2

222
所以,方程
x

px

q
=0可化为
x
-(
x
1

x
2
)程
x

px< br>+
q
=0的两
根,出
k
的值,再由方程解出另一个根.但由于 我们学习了韦达定理,又可以利用韦达定理来解题,即由
于已知了方程的一个根及方程的二次项系数和常 数项,于是可以利用两根之积求出方程的另一个根,再由
两根之和求出
k
的值.
解法一:∵2是方程的一个根,
2
∴5×2+
k
×2-6=0,

k
=-7.
所以,方程就为5
x
-7
x
-6=0,解得
x
1
=2,
x
2
=-
2
3

5
所以,方程的另的平方和比两个根的积大21得到关于
m
的 方程,从而解得
m
的值.但在解题中需要特
别注意的是,由于所给的方程有两个实数根 ,因此,其根的判别式应大于零.
解:设
x
1

x
2
是方程的两根,由韦达定理,得
2

x
1

x
2
=-2(
m-
2),
x
1
·
x
2

m
+ 4.
22

x
1

x
2
-< br>x
1
·
x
2
=21,
2
∴(
x
1

x
2
)-3
x
1
·
x
2
=21,
22
即 [-2(
m-
2)]-3(
m
+4)=21,
2
化简,得
m
-16
m
-17=0,
解得
m
=-1,或
m
=17.
2

m
=-1 时,方程为
x
+6
x
+5=0,Δ>0,满足题意;
22

m
=17时,方程为
x
+30
x
+293=0,Δ=30 -4×1×293<0,不合题意,舍去.
综上,
m
=17.
说明:(1 )在本题的解题过程中,也可以先研究满足方程有两个实数根所对应的
m
的范围,然后再由“两个实数根的平方和比两个根的积大21”求出
m
的值,取满足条件的
m
的值即可.
(1)在今后的解题过程中,如果仅仅由韦达定理解题时,还要考虑到根的判别式Δ是否 大于或大于
零.因为,韦达定理成立的前提是一元大方向个数分别为
x

y< br>,利用二元方程求解出这两个数.也可以利
用韦达定理转化出一元二次方程来求解.
解法一:设这两个数分别是
x

y


x

y
=4, ①
xy
=-12. ②
由①,得
y
=4-
x

代入②,得
x
(4-
x
)=-12,
2

x
-4
x
-12=0,

x
1
=-2,
x
2
=6.


?
x
1
??2,
?
x
2
?6,

?

?

y?6,y??2.
?
1
?
2
因此,这两个数是-2和6.
解法二:由韦达定理可知,这两个数是方程
2

x
-4
x
-12=0
的两个根.
解这个方程,得

x
1
=-2,
x
2
=6.
所以,这两个数是-2和6.
说明:从上面的两种解法我们不难发现,解法二(直接利用韦达定理来解题)要比解法一简捷.
2
例5 若
x
1

x
2
分别是一元二 次方程2
x
+5
x
-3=0的两根.
(1)求|
x
1

x
2
|的值;
(2)求
3
11
?
的值;
x
1
2
x
2
2
3

(3)
x
1

x
2

2
解:∵
x
1

x
2
分别是一元二次方程2
x
+5
x
-3=0的两根,

x
1
?x
2
??
2
1
2
1
22
5
2
x
1
x
2
??
3
2

x?x
2
11
??
x
1
2
x
2
2
x?x
2
2

33
5325
(?)
2
?2?(? )?3
(x
1
?x
2
)?2x
1
x
237
224

????
3
2
9
(x
1
x
2
)
2
9
(?)
24
22 2
(3)
x
1

x
2
=(
x
1

x
2
)(
x
1

x
1
x
2

x
2
)=(
x
1

x
2< br>)[ (
x
1

x
2
)-3
x
1
x
2
]
=(-
55
2< br>3
215
)×[(-)-3×(
?
)]=-.
8
222
说明:一元二次方程的两根之差的绝对值是一个重要的量,今后我们经常会 遇到求这一个量的问题,
为了解题简便,我们可以探讨出其一般规律:
2

x
1

x
2
分别是一元二次方程
ax

b x

c
=0(
a
≠0),则
?b?b
2
?4ac

x
2
?

2a
?b?b
2
?4ac?b?b
2
?4ac2b
2?4ac
??
∴|
x
1

x
2
|=
2a2a2a
b
2
?4ac?

?

?
|a||a|
于是有下面的结论:

x
1

x
2
分别是一元二次方程
ax

bx

c
=0(
a
≠0),则|
x
1
x
2
|=
2
?
2
(其中Δ=
b
-4< br>ac
).
|a|
今后,在求一元二次方程的两根之差的绝对值时,可以直接利用上面的结论.
2
例6 若关于
x
的一元二次方程
x

x

a
-4=0的一根大于零、另一根小于零,求实数
a
的取值范围.
解:设
x
1

x
2
是方程的两根,则

x
1
x
2

a
-4<0, ①
2
且Δ=(-1)-4(
a
-4)>0. ②
由①得
a
<4,
17
由②得
a
< .
4



a
的取值范围是
a
<4.



练 习
1.选择题:
(1)方程
x?23kx?3k?0

习题2.1
A 组
1.选择题:
2
(1)已知关于
x
的方程
x
+< br>kx
-2=0的一个根是1,则它的另一个根是( )
(A)-3 (B)3 (C)-2 (D)2
(2)下列四个说法:
2
①方程
x
+2
x
-7=0的两根之和为-2,两根之积为-7;
2
②方程
x
-2
x
+7=0的两根之和为-2,两根之积为7;
③方程3
x
-7=0的两根之和为0,两根之积为
?
2
2
22
7

3
④方程3
x
+2
x
=0的两根之和为-2,两根之积为0.
其中正确说法的个数是 ( )
(A)1个 (B)2个 (C)3个 (D)4个
22
(3)关于
x
的一元二次方程
ax
-5
x

a

a
=0的一个根是0,则
a
的值是( )
(A)0 (B)1 (C)-1 (D)0,或-1
2.填空:
2
(1)方程
kx
+4
x
-1=0的两根之和为-2,则
k
= .
222
(2)方程2
x

x-4=0的两根为α,β,则α+β= .
2
(3)已知关于
x
的方程
x

ax
-3
a
=0的一个根是-2,则 它的另一个根是

2
(4)方程2
x+2
x
-1=0的两根为
x
1

x
2
,则|
x
1

x
2
|= .
< br>22
3.试判定当
m
取何值时,关于
x
的一元二次方程
mx
-(2
m
+1)
x
+1=0有两个不相等的实数根?有两个
相等的实数根?没有实数根?
2
4.求一个一元二次方程,使它的两根分别是方程
x
-7
x
-1=0各根的相 反数.


B 组
1.选择题:
22
若关于
x
的方程
x
+(
k
-1)
x

k
+1=0的两根互为相反数,则
k
的值为
( )
(A)1,或-1 (B)1 (C)-1 (D)0
2.填空:
222
(1)若
m

n
是 方程
x
+2005
x
-1=0的两个实数根,则
mn
mn

mn
的值等于 .
23223
( 2)如果
a

b
是方程
x

x
-1=0的 两个实数根,那么代数式
a

ab

ab

b的值是 .
2
3.已知关于
x
的方程
x

kx
-2=0.
4.-1 提示:
(
x
1
-3)(
x
2
-3)=
x
1
x
2
-3(
x
1

x
2
)+9

习题2.1
2.(1)2006 提示:∵
m

n
=- 2005,
mn
=-1,∴
m
2
n

mn
2

mn

mn
(
m

n
-1) =-1×(-2005-1)=
2006.
(2)-3 提示;∵
a

b
=-1,
ab
=-1,∴
a
3

a
2
b

ab
2

b
3

a
2
(
a

b
)+
b
2
(
a

b
)=(
a

10



b
)(
a
2

b
2< br>)=(
a

b
)[(
a

b
)
2
-2
ab
]=(-1)×[(-1)
2
-2×(-1)]=-3.
3.(1)∵Δ=(-
k
)
2
-4×1×(-2)=
k2
+8>0,∴方程一定有两个不相等的实数根.
(2)∵
x
1< br>+
x
2

k

x
1
x
2< br>=-2,∴2
k
>-2,即
k
>-1.
3abc?b
3
b
b
2
?4ac
x
1
?x
2
33
4.(1)|
x
1

x
2
|=,=
?
;(2)
x
1

x
2
=.
a
3
22a
|a|
5.∵|
x
1
x
2
|=
16?4m?24?m?2
,∴
m
=3.把< br>m
=3代入方程,Δ>0,满足题意,∴
m
=3.

C组
1.(1)B (2)A
(3)C 提
整数的实数
k
的整数值为-2,-3和-5.
1
(3)当
k
=-2时,
x
1

x
2
=1,①
x
1
x
2
=, ②
8
xx
1
2
2
①÷②,得
1
?
2
+2=8,即
?
??6
,∴
?
?6
?< br>?1?0

x
2
x
1
?

?
?3?22

4.(1)Δ=
2(m?1)?2?0

2
m
2
(2)∵
x
1
x
2
=-≤0,∴
x
1
≤0 ,
x
2
≥0,或
x
1
≥0,
x
2
≤0.
4
①若
x
1
≤0,
x
2≥0,则
x
2
=-
x
1
+2,∴
x
1

x
2
=2,∴
m
-2=2,∴
m
=4. 此时,方程为
x
-2
x
-4=0,

x
1
?1?5

x
2
?1?5

②若
x
1
≥0,
x
2
≤0,则-
x
2

x
1
+2,∴
x
1

x
2
=-2,∴m
-2=-2,
2

m
=0.此时,方程为
x
+2=0,∴
x
1
=0,
x
2
=-2.
5.设 方程的两根为
x
1

x
2
,则
x
1

x
2
=-1,
x
1
x
2

a

由一根大于1、另一根小于1,得
(
x
1
-1)(
x
2
-1)

2

2.2.1 二次函数
y

ax
2

bx

c
的图像和性质


问题1 函数y

ax

y

x
的图象之间存在怎样的关?
为了研究这一问题,我们可以先画出
y
=2
x

y

222
2
22
1
2
x

y
=- 2
x
2
的图象,通过这些函数图象与函数
y
2

x
的图象之间的关系,推导出函数
y

ax

y
=< br>x
的图象之间所存在的关系.
22
先画出函数
y

x

y
=2
x
的图象.
先列表:
x
x
2
2
2
x




-3
9
18
-2
4
8
2
-1
1
2
0
0
0
2
1
1
2
2
4
8
3
9
18



2
从表中不难看出,要得到2
x
的值,只要把相应的
x
的值扩大两倍就可以了.
22
再描点、连线,就分别得到了函数
y

x

y
=2
x
的图象(如图2-1所示),从 图
22
2-1我们可以得到这两个函数图象之间的关系:函数
y
=2
x
的图象可以由函数
y

x
的图象各点的纵坐标变为原来的两倍得到 .
同学们也可以象之间的关系.
通过上面的研究,我们可以得到以下结论:
22
二次函数
y

ax
(
a
≠0)的图象可以由
y

x
的图象各点的纵坐标变为原来的
a


11
y
y=2x
y=x
2

O
图2.2-1
x


得到.在二次函数
y

ax
(
a
≠0)中,二次项系数
a
决定了图象的开口方向和在同一个 坐标系中的开口的大
小.
22
问题2 函数
y

a(
x

h
)+
k

y

ax
的图象之间存在怎样的关系?
同样地,我们可以利用几个特殊的函数图象之间的关系来研究它 们之间的关系.同学们可以作出函数
y
222
=2(
x
+1)+1与
y
=2
x
的图象(如图2-2所示),从函数的同学我们不难发现,只要把函 数
y
=2
x
的图象
2
向左平移一个单位,再向上平移一个单 位,就可以得到函数
y
=2(
x
+1)+1的图
y
象.这两个函数图象之间具有“形状相同,位置不同”的特点.
22
y=2(x+1)
2
+1
类似地,还可以通过画函数
y
=-3
x

y
=-3(
x
-1)+1的图象,研 究它们
图象之间的相互关系.
y=2(x+1)
2

通过上面的研究,我们可以得到以下结论:
2
y=2x
2

二次函数
y

a
(
x

h
)+
k
(
a
≠0)中,
a
决定了二次函数图象的开口大小及方
向 ;
h
决定了二次函数图象的左右平移,而且“
h
正左移,
h
负右移”;
k
决定了二
次函数图象的上下平移,而且“
k
正上移,< br>k
负下移”.
2
由上面的结论,我们可以得到研究二次函数
y

ax

bx

c
(
a
≠0)的图象的 方
法:
2
b
2
b
2
bb
2
由于
y

ax

bx

c

a
(
x

x
)+
c

a
(
x
x

2
)+
c

4a
4a
aa
2
b
2
b?4ac
)?

?a(x?

2a4a
22
-1
O
图2.2-2
x
所以,
y

ax

b x

c
(
a
≠0)的图象可以看作是将函数
y
=< br>ax
的图象作左右平
2
移、上下平移得到的,于是,二次函数
y

ax

bx

c
(
a
≠0)具有下列 性质:
2
22
b4ac?b
2
,)
,对称轴为直线
x
(1)当
a
>0时,函数
y

ax

bx

c
图象开口向上;顶点坐标为
(?
2a4a
bbbb
=-;当
x

?
时,
y
随着
x
的 增大而减小;当
x

?
时,
y
随着
x
的增 大而增大;当
x

?
时,
2a2a2a2a
4ac?b2
函数取最小值
y
=.
4a
b4ac?b
2
2
,)
,对称轴为直线
x
(2)当
a
<0时,函数
y

ax

bx

c
图象开口向下;顶点坐标为< br>(?
2a4a
bbbb
=-;当
x

?
时,
y
随着
x
的增大而增大;当
x

?
时,< br>y
随着
x
的增大而减小;当
x

?
时,2a2a2a2a
4ac?b
2
函数取最大值
y
=.
4a
上述二次函数的性质可以分别通过图2.2-3和图2.2-4直观地表示出来.因此, 在今后解决二次
函数问题时,可以借助于函数图像、利用数形结合的思想方法来解决问题.
2
例1 求二次函数
y


3
x
-6< br>x
+1图象的开口方向、对称轴、顶点坐标、最大值(或最小值),并指
出当
x
取何值时,
y

x
的增大而增大(或减小)?并画出该函数的图象.
22
解:∵
y


3
x
-6
x< br>+1=-3(
x
+1)+4,
∴函数图象的开口向

12



例2 某种产品的成本是120元件,试销阶段每件产品的售价
x
(元)与产品的日销售量
y
(件)之间
关系如下表所示:
x
元 130 150 165
y
件 70 50 35
若日 销售量
y
是销售价
x
的一次函数,那么,要使每天所获得最大的利润,每件产 品的销售价应定为
多少元?此时每天的销售利润是多少?
分析:由于每天的利润=日销售量< br>y
×(销售价
x
-120),日销售量
y
又是销售价
x
的一次函数,所以,
欲求每天所获得的利润最大值,首先需要求出每天的利润与销售价
x
之间的函数关系,然后,再由它们之
间的函数关系求出每天利润的最大值.
解:由于
设每天的利润为
z
(元),则
z
=(-
x
+200)(
x
-120)=-
x
2
+320
x
-24000
=-(
x
-160)
2
+1600,
∴当
x
=160时,
z
取最大值1600.
答:当售价为160元件时,每天的利润最大,为1600元.
例3 把二次函数
y

x
2

bx

c
的图像向上平移2个 单位,再向左平移4个单位,得到函数
y

x
2
的图
像,求
b

c
的值.
解法一:
y

x
2

bx

c
=(
x
+
b
2b
2
2
)
?c?
4
,把它的图像向上平移2个单位,再 向左平移4个单位,得到
y?(x?
b
2
?4)
2
?c?< br>b
2
4
?2
的图像,也就是函数
y

x2
的图像,所以,
?
?
b
?4?

?
?
?
2
0,
解得
b
=-8,
c
=14.
?
2

?
?
c?
b
4
?2?0,
解法二:把二次函数< br>y

x
2

bx

c
的图像向上平 移2个单位,再向左平移4个单位,得到函数
y

x
2
的图像,等价 于把二次函数
y

x
2
的图像向下平移2个单位,再向右平移4个单 位,得到函数
y

x
2

bx

c
的图像.
由于把二次函数
y

x
2
的图像向下平移2 个单位,再向右平移4个单位,得到函数
y
=(
x
-4)
2
+2的图
像,即为
y

x
2
-8
x
+14 的图像,∴函数
y

x
2
-8
x
+14与函数y

x
2

bx

c
表示同一个函数 ,∴
b
=-8,
c
=14.
说明:本例的两种解法都是利用二次函 数图像的平移规律来解决问题,所以,同学们要牢固掌握二次
函数图像的变换规律.
这两种解 法反映了两种不同的思维方法:解法一,是直接利用条件进行正向的思维来解决的,其运算

13


量相对较大;而解法二,则是利用逆向思维,将原来的问题等 价转化成与之等价的问题来解,具有计算量
小的优点.今后,我们在解题时,可以根据题目的具体情况, 选择恰当的方法来解决问题.
2
例4 已知函数
y

x
,-2≤
x

a
,其中
a
≥-2,求该函数的最大值与最小 值,并求出函数取最大值
和最小值时所对应的自变量
x
的值.
分析:本例中函数自变量的范围是一个变化的范围,需要对
a
的取值进行讨论.
2
解:(1)当
a
=-2时,函数
y

x
的图象仅仅对应着一个点(-2,4),所以,函数的最大值和最小值
都是4,此时
x
=-2;
(2)当-2<
a
<0时,由图2.2-6①可知,当
x
=-2时,函数取最大值
y
=4;当
x

a
时,函数取< br>2
最小值
y

a

(3)当0≤
a
<2时,由图2.2-6②可知,当
x
=-2时,函数取最大值
y
=4;当
x
=0时,函数取最
小值
y
=0;
2
(4)当< br>a
≥2时,由图2.2-6③可知,当
x

a
时,函数取最大 值
y

a
;当
x
=0时,函数取最小值
y
=0.

y
y
y
y

2
4
a
4





4

a
2
2

a




x
x
x O
O
a
O
a
-2
a 2
-2
-2

















图2.2-6



说明:在本 例中,利用了分类讨论的方法,对
a
的所有可能情形进行讨论.此外,本例中所研究的二
次函数的自变量的取值不是取任意的实数,而是取部分实数来研究,在解决这一类问题时,通常需要借助
于函数图象来直观地解决问题.
练 习
1.选择题:
(1)下列函数图象中,顶点不在坐标轴上的是 ( )
22
(A)
y
=2
x
(B)
y
=2
x
-4
x
+2
22
(C)
y
=2
x
-1 (D)
y
=2
x
-4
x

22
(2)函 数
y
=2(
x
-1)+2是将函数
y
=2
x
( )
(A)向左平移1个单位、再向上平移2个单位得到的
(B)向右平移2个单位、再向上平移1个单位得到的
(C)向下平移2个单位、再向右平移1个单位得到的
(D)向上平移2个单位、再向右平移1个单位得到的
2.填空题
2
(1 )二次函数
y
=2
x

mx

n
图象的顶 点坐标为(1,-2),则
m
= ,
n
= .
2
(2)已知二次函数
y

x
+(
m
-2 )
x
-2
m
,当
m
= 时,函数图象的顶点在
y
轴上;当
m
= 时,
函数图象的顶点在
x
轴上;当
m
= 时,函数图象经过原点.
2
(3)函数
y
=-3(
x
+2)+5的图象的开口向 ,对称轴为 ,顶点坐标为 ;

x
= 时,函数取最 值
y
= ;当
x
时,
y
随着
x
的增大而减小.
3.求下列抛物线的开口方向、对称 轴、顶点坐标、最大(小)值及
y

x
的变化情况,并画出其图象.
22
(1)
y

x
-2
x
-3; (2)
y
=1+6
x

x

2
4.已 知函数
y
=-
x
-2
x
+3,当自变量
x
在下列取值范围内时,分别求函数的最大值或最小值,并求
当函数取最大(小)值时所对应的自变量x
的值:
(1)
x
≤-2;(2)
x
≤2;(3)- 2≤
x
≤1;(4)0≤
x
≤3.

14




2.2.2 二次函数的三种表示方式


通过上一小节的学习,我们知道,二次函数可以表示成以下两种形式:
1.一般式:
y

ax

bx

c
(
a
≠0) ;
2.顶点式:
y

a
(
x

h
)+
k
(
a
≠0),其中顶点坐标是(-
h

k
). < br>除了上述两种表示方法外,它还可以用另一种形式来表示.为了研究另一种表示方式,我们先来研究
二次函数
y

ax

bx

c
(
a
≠0)的图象与
x
轴交点个数.
当抛物线
y

ax

bx

c
(
a
≠0)与
x
轴相交时,其函数值为零,于是有
2
2
2
2
ax
2
bx

c
=0. ①
并且方程①的解就是抛物线
y

ax

bx

c
(
a
≠0)与
x
轴交点的横坐标(纵坐标为零),于是,不难发
2
2
现 ,抛物线
y

ax

bx

c
(
a
≠0)与
x
轴交点个数与方程①的解的个数有关,而方程①的解的个数又与方程①的根的判别式Δ=
b
-4
ac
有关,由此可知,抛物线
y
ax

bx

c
(
a
≠0)与x
轴交点个数与根的判别式
Δ=
b
-4
ac
存在下列关 系:
(1)当Δ>0时,抛物线
y

ax

bx

c
(
a
≠0)与
x
轴有两个交点;反过来,若抛物线y

ax

bx

22
2
22
c
(
a
≠0)与
x
轴有两个交点,则Δ>0也成立.
( 2)当Δ=0时,抛物线
y

ax

bx

c(
a
≠0)与
x
轴有一个交点(抛物线的顶点);反过来,若抛物
线
y

ax

bx

c
(
a< br>≠0)与
x
轴有一个交点,则Δ=0也成立.
(3)当Δ<0时,抛物线y

ax

bx

c
(
a
≠ 0)与
x
轴没有交点;反过来,若抛物线
y

ax

bx

c
(
a
≠0)与
x
轴没有交点,则Δ<0 也成立.
于是,若抛物线
y

ax

bx
c
(
a
≠0)与
x
轴有两个交点
A
(
x
1
,0),
B
(
x
2
,0),则
x1

x
2
是方程
ax

bx

c
=0的两根,所以
22
22
2
2

bc

x
1
x
2
=,
aa
bc
即 =-(
x
1

x
2
), =
x
1
x
2

aa
bc
2
2< br>所以,
y

ax

bx

c
a
(
x?x?
)
aa
x
1

x
2

?
2
=
a
[
x
-(
x
1

x
2)
x

x
1
x
2
]

a
(
x

x
1
) (
x

x
2
).
由上面的推导过程可以得到下面结论:
2
若抛物线
y

ax
bx

c
(
a
≠0)与
x
轴交于< br>A
(
x
1
,0),
B
(
x
2
,0)两点,则其函数关系式可以表示为
y

a
(
x
-< br>x
1
) (
x

x
2
) (
a
≠0).
这样,也就得到了表示二次函数的第三种方法:
3.交点 式:
y

a
(
x

x
1
) (
x

x
2
) (
a
≠0),其中
x1

x
2
是二次函数图象与
x
轴交点的横坐标. 今后,在求二次函数的表达式时,我们可以根据题目所提供的条件,选用一般式、顶点式、交点式这
三种表达形式中的某一形式来解题.


15


例1 已知某二次函数的最大值为2,图像的顶点在直线
y

x
+1上,并且图象经 过点(3,-1),求
二次函数的解析式.
分析:在解本例时,要充分利用题目中所给出的条 件——最大值、顶点位置,从而可以将二次函数设
成顶点式,再由函数图象过定点来求解出系数
a

解:∵二次函数的最大值为2,而最大值一定是其顶点的纵坐标,
∴顶点的纵坐标为2.
又顶点在直线
y

x
+1上,
所以,2=
x
+1,∴
x
=1.
∴顶点坐标是(1,2).
设该二次函数的解析式为
y?a(x?2)
2
?1(a?0)

∵二次函数的图像经过点(3,-1),

?1?a(3?2)
2
?1
,解得
a
=-2.
∴二次函数的解析式为
y??2(x?2)
2
?1
,即
y< br>=-2
x
+8
x
-7.
说明:在解题时,由最大值确定出顶 点的纵坐标,再利用顶点的位置求出顶点坐标,然后设出二次函
数的顶点式,最终解决了问题.因此,在 解题时,要充分挖掘题目所给的条件,并巧妙地利用条件简捷地
解决问题.
例2 已知二次 函数的图象过点(-3,0),(1,0),且顶点到
x
轴的距离等于2,求此二次函数的表达
式.
分析一:由于题目所给的条件中,二次函数的图象所过的两点实际上就是二次函数的图象 与
x
轴的交
点坐标,于是可以将函数的表达式设成交点式.
解法一:∵二次函数的图象过点(-3,0),(1,0),
∴可设二次函数为
y

a
(
x
+3) (
x
-1) (
a
≠0),
2
展开,得
y

ax
+2
ax
-3
a

2
?12a
2
?4a
2
??4a
, 顶点的纵坐标为
4a
由于二次函数图象的顶点到
x
轴的距离2,
∴|-4
a
|=2,即
a

?
1
2
所以,二次函数的表达式为
y

1
2
313
x?x?
,或
y
=-
x
2
?x?

2222
分析二:由于二次函数的图象过点(-3,0),(1,0),所以,对称轴为直线
x
=-1,又由顶点到
x

的距离为2,可知顶点的纵坐标为2,或 -2,于是,又可以将二次函数的表达式设成顶点式来解,然后再
利用图象过点(-3,0),或(1, 0),就可以求得函数的表达式.
解法二:∵二次函数的图象过点(-3,0),(1,0),
∴对称轴为直线
x
=-1.
又顶点到
x
轴的距离为2,
∴顶点的纵坐标为2,或-2.
22
于是可设二次函数为
y
a
(
x
+1)+2,或
y

a
(
x< br>+1)-2,
由于函数图象过点(1,0),
22
∴0=
a
(1+1)+2,或0=
a
(1+1)-2.

a
=-
11
,或
a
=.
22
11
22
(
x
+1)+2,或
y
=(
x
+ 1)-2.
22
所以,所求的二次函数为
y


说明: 上述两种解法分别从与
x
轴的交点坐标及顶点的坐标这两个不同角度,利用交点式和顶点式来< br>解题,在今后的解题过程中,要善于利用条件,选择恰当的方法来解决问题.
例3 已知二次函数的图象过点(-1,-22),(0,-8),(2,8),求此二次函数的表达式.
2
解:设该二次函数为
y

ax

bx

c
(
a
≠0).

16


由函数图象过点(-1,-22),(0,-8),(2,8),可得
?
?22?a?b?c,
?

?
?8?c,
?
8?4a?2b?c,
?
解得
a
=-2,
b
=12,
c
=-8.
2
所 以,所求的二次函数为
y
=-2
x
+12
x
-8.
通过上面的几道例题,同学们能否归纳出:在什么情况下,分别利用函数的一般式、顶点式、交点式
来 求二次函数的表达式?

练 习
1.选择题:
2
(1 )函数
y
=-
x

x
-1图象与
x
轴的交 点个数是 ( )
(A)0个 (B)1个 (C)2个 (D)无法确定
1
2
(2)函数
y
=- (
x
+1)+2的顶点坐标是 ( )
2
(A)(1,2) (B)(1,-2) (C)(-1,2) (D)(-1,-2)
2.填空:
(1)已知二次函数的图象 经过与
x
轴交于点(-1,0)和(2,0),则该二次函数的解析式可设为
y

a

(
a
≠0) .
2
(2)二次函数
y
=-
x
+23
x
+1的函数图象与x
轴两交点之间的距离为 .
3.根据下列条件,求二次函数的解析式.
(1)图象经过点(1,-2),(0,-3),(-1,-6);
(2)当
x
=3时,函数有最小值5,且经过点(1,11);
(3)函数 图象与
x
轴交于两点(1-2,0)和(1+2,0),并与
y
轴交于(0, -2).


2.2.3 二次函数的简单应用


一、函数图象的平移变换与对称变换
1.平移变换
问题1 在把二次函数的图象进行平移时,有什么特点?依据这一特点,可以怎样来研究二次函数的图
象平移?
我们不难发现:在对二次函数的图象进行平移时,具有这样的特点——只改变函数图象的位置、不改< br>变其形状,因此,在研究二次函数的图象平移问题时,只需利用二次函数图象的顶点式研究其顶点的位置< br>即可.
2
例1 求把二次函数
y

x
-4
x
+3的图象经过下列平移变换后得到的图象所对应的函数解析式:
(1)向右平移2个单位,向下平移1个单位;
(2)向上平移3个单位,向左平移2个单位.
分析:由于平移变换只改变函数图象的位置而不改变其形状(即不改变二次项系数),所以只改变二次
函数图象的顶点位置(即只改变一次项和常数项),所以,首先将二次函数的解析式变形为顶点式,然后 ,
再依据平移变换后的二次函数图象的顶点位置求出平移后函数图像所对应的解析式.
2
解:二次函数
y
=2
x
-4
x
-3的解析式可变为
2

y
=2(
x
-1)-1,
其顶点坐标为(1,-1).
2
(1)把函数
y
=2(
x
-1)-1的图象向右平移2个单位,向下平移1个单位后,其函数图象的顶点坐标
是(3 ,-2),所以,平移后所得到的函数图象对应的函数表达式就为
2

y
=2(
x
-3)-2.

17


(2)把函数
y
=2(
x
-1)-1的图象向上平 移3个单位,向左平移2个单位后,其函数图象的顶点坐标
是(-1, 2),所以,平移后所得到的函数图象对应的函数表达式就为
2

y
=2(
x
+1)+2.

2

2.对称变换
问题2 在把二次函数的图象关于与坐标轴平行的直线进行对称变换时,有什 么特点?依据这一特点,
可以怎样来研究二次函数的图象平移?
我们不难发现:在把二次函 数的图象关于与坐标轴平行的直线进行对称变换时,具有这样的特点——
只改变函数图象的位置或开口方 向、不改变其形状,因此,在研究二次函数图象的对称变换问题时,关键
是要抓住二次函数的顶点位置和 开口方向来解决问题.
2
例2 求把二次函数
y
=2
x
-4
x
+1的图象关于下列直线对称后所
y
x=-1
得到图象对应的函数解析式:
(1)直线
x
=-1;
(2)直线
y
=1.
2

解:(1)如图2.2-7,把二 次函数
y
=2
x
-4
x
+1的图象关于
直线
x
=-1作对称变换后,只改变图象的顶点位置,不改变其形状.
222
由于< br>y
=2
x
-4
x
+1=2(
x
-1)-1, 可知,函数
y
=2
x
-4
x
+1图
O
象 的顶点为
A
(1,-1),所以,对称后所得到图象的顶点为
A
1
( -3,1),
2
A(1,-1)
A
1
(-3,-1)
所 以,二次函数
y
=2
x
-4
x
+1的图象关于直线
x
=-1对称后所得到
22
图象的函数解析式为
y
=2(
x
+3)-1,即
y
=2
x
+12
x
+17. 2
(2)如图2.2-8,把二次函数
y
=2
x
-4
x
+1的图象关于直线
x
图2.2-7
=-1作对称变换后,只改变图象的顶点位置和开口方向,不改变其形
状.
222
由于
y
=2
x
-4
x
+1 =2(
x
-1)-1,可知,函数
y
=2
x
-4
x
+1图象的顶点为
A
(1,-1),所以,对称后所得到图象的顶点为
B(1,3),且开口向下,所以,二次
y
2
B(1,3)
函数
y
=2
x
-4
x
+1的图象关于直线
y
=1对称 后所得到图象的函数解析式为
y
=-
22
2(
x
-1)+3 ,即
y
=-2
x
+4
x
+1.
二、分段函数
一般地,如果自变量在不同取值范围内时,函数由不同的解析式给出,这
种函数,叫作分段函数.
例3 在国内投递外埠平信,每封信不超过20g付邮资
80分,超过20g不超过40 g付邮资160分,超过40g不超过
60g付邮资240分,依此类推,每封
x
g( 0<
x
≤100)的信应付
多少邮资(单位:分)?写出函数表达式,作出函数图象.
分析:由于当自变量
x
在各个不同的范围内时,应付邮
资的数量是不同的. 所以,可以用分段函数给出其对应的函
数解析式.在解题时,需要注意的是,当
x
在各 个小范围内
(如20<
x
≤40)变化时,它所对应的函数值(邮资)并不变
化(都是160分).
解:设每封信的邮资为
y
(单位:分),则
y
x
的函数.这
个函数的解析式为


O
A(1,-1)
图2.2-8
y=1

x
x

?
80,
?
160
?
?

y?
?
240,
?
320
?
?
?
400 ,

x?(0,20]
x?(20,40]
x?940,80]

x?(60,80]
x?(80,100]
18


由上述的函数解析式,可以得到其图象如图2.2-9所示.


例4如图9-2所 示,在边长为2的正方形
ABCD
的边上有一个动点
P
,从点
A出发
D
沿折线
ABCD
移动一周后,回到
A
点.设点
A
移动的路程为
x
,Δ
PAC
的面积为
y

(1)求函数
y
的解析式;
(2)画出函数
y
的图像;
(3)求函数
y
的取值范围.



A


2.2

10

分析:要对点
P
所在的位置进行分类讨论.
解:(1)①当点
P
在线段
AB
上移动(如图2.2-10①),即0<
x
≤2时,
y

1
2
AP?BC

x

②当点
P
在线段
BC
上移动(如图2.2-10②),即2<
x<4时,
y

1
2
PC?AB

1
2
(4?x)?2
=4-
x

③当点
P
在线段
CD
上移动(如图2.2-10③),即4<
x
≤6时,
y

1
2
PC?AD

1
2
(x?4)?2

x
-4;
④当点
P
在线段
DA
上移动(如 图2.2-10④),即6<
x
<8时,

2.3 方程与不等式
2.3.1 二元二次方程组解法
方程
x
2
?2xy?y
2
?x?y?6?0

是一个含 有两个未知数,并且含有未知数的项的最高次数是2的整式方程,这样的方程叫做二元二次方程.其
中< br>x
2
,
2xy
,
y
2
叫做这个方程的二次项 ,
x
,
y
叫做一次项,6叫做常数项.
我们看下面的两个方程组:
?
?
x
2
?4y
2
?x?3y?1?0,
x?y?1?0;

?
2

?
?
?
x
2
?y
2
?20,
?
?
x
2
?5xy?6y
2
?0.

第一个方程组是由一个二元 二次方程和一个二元一次方程组成的,第二个方程组是由两个二元二次方
程组成的,像这样的方程组叫做 二元二次方程组.
下面我们主要来研究由一个二元二次方程和一个二元一次方程组成的方程组的解法.
一个二元二次方程和一个二元一次方程组成的方程组一般可以用代入消元法来解.
例1 解方程组

?
?
x
2
?4y
2< br>?4?0,

?
x?2y?2?0.


分析:二 元二次方程组对我们来说较为生疏,在解此方程组时,可以将其转化为我们熟悉的
形式.注意到方程②是 一个一元一次方程,于是,可以利用该方程消去一个元,再代入到方程①,得到一

19
C
P
B


个一元二次方程,从而将所求的较为生疏的问题转化为我们所熟悉的问题.

解:由②,得

x
=2
y
+2, ③
把③代入①,整理,得
2
8
y
+8
y
=0,

y
(
y
+1)=0.

解得
y
1
=0,
y
2
=-1.

y
1
=0代入③, 得
x
1
=2;

y
2
=-1代入③, 得
x
2
=0.
所以原方程组的解是

?

?
x
1
?2,
?
x
2
?0,

?

?
y
1
?0,
?
y
2
??1.
说明:在解类似于本例的二元二次方程组时,通常采用本例所介绍的代入消元法来求解.
例2 解方程组

?
?
x?y?7,

?
xy?12.


解法二:对这个方程组,也可以根据一元二次
方程的根与系数的关系,把
x,y
看作一个一元二次
方程的两个根,通过解这个一元二次方程来求
x,y

这个方程组的
x,y
是一元二次方程

z?7z?12?0

的两个根,解这个方程,得

z?3
,或
z?4

所以原方程组的解是

?
2
解法一:由①,得

x?7?y.

把③代入②,整理,得

y?7y?12?0

解这个方程,得

y
1
?3,y
2
?4


y
1
?3
代入③,得
x
1
?4


y2
?4
代入③,得
x
2
?3

所以原方程的解是
2
?
x
1
?4,
?
x
2
?3,

?

?

y?3,y?4.
?
1
?
2
练 习
1.下列各组中的值是不是方程组
(3)
?
x
1
?4,
?
x
2
?3,

?

?
y
1
?3;
?
y
2?4.
?
x
2
y
2
?1,
?
?
?
x
2
?y
2
?13,

54
?

?
?
y?x?3;
?
x?y?5
?
2
的解?
?
?
y?2x,
(4)
?
2

?
x?2,
?
x?3,
?
x?1,
2
(1)
?
(2)
?
(3)
?

?
?
x?y?8 .
?
y?3;
?
y?2;
?
y?4;

?
x??2,
2.3.2 一元
(4)
?

?
y??3;
二次不等式解
2.解下列方程组:
(1)
?
x?y?3,
(2)
?

xy??10;
?
?
y?x?5,

?
22
x?y?625;
?
二次函数
y
2

x

x
-6的对
应值表与图象如
下:


20


x
y

-3 -2 -1 0 1
6 0 -4 -6 -6
由对应值表及函数图象(如图2.3-1)可
2
-4
3
0
4
6

x
=-2,或
x
=3时,
y
=0,即
x
2

x
=6=0;

x
<-2,或
x
>3时,
y
>0, 即
x
2

x
-6>0;
当-2<
x
<3 时,
y
<0,即
x
2

x
-6<0.
这就是说,如果抛物线
y
=
x
2

x
- 6与
x
轴的交点是(-2,0)与(3,0),那么
一元二次方程
(1)
x
2

x
-6=0
的解就是
x
1
=-2,
x
2
=3;
同样,结合抛物线与
x
轴的相关位置,
可以得到
一元二次不等式
x
2

x
-6>0
的解是

x
<-2,或
x
>3;
一元二次不等式
x
2

x
-6<0
的解是
-2<
x
<3.
上例表明:由抛物线与
x
轴的交点可以
确 定对应的一元二次方程的解和对应的一元
二次不等式的解集.
那么,怎样解一元二次不等 式
ax

bx

c

0(
a
≠0 )呢?
我们可以用类似于上面例子的方法,借助于二
2
次函数
y

ax

bx

c
(
a
≠0)的图象来 解一元二次
2
不等式
ax

bx

c
>0 (
a
≠0).
为了方便起见,我们先来研究二次项系数
a
>0
时的一元二次不等式的解.
2
我们知道,对于一元二次方程
ax

bx

c
= 0(
a

2
0),设△=
b
-4
ac
,它 的解的情形按照△>0,△
=0,△<0分别为下列三种情况——有两个不相等
的实数解、有两 个相等的实数解和没有实数解,相
2
应地,抛物线
y

ax

bx

c

a
>0)与
x
轴分别有两个公共点、一个公共点和没有公共点(如图2.3-
2所示),因此,我们可以分下列三种情况讨 论对应
22
的一元二次不等式
ax

bx

c>0(
a
>0)与
ax

bx

c
< 0(
a
>0)的解.
2
(1)当Δ>0时,抛物线
y

ax

bx

c

a

2
0)与
x
轴有两个公共点(
x
1
,0)和(
x
2
,0),方程
ax

bx

c
=0有两个不相等的 实数根
x
1

x
2
(
x
1
x
2
),
由图2.3-2①可知
2
不等式
ax

bx

c
>0的解为

x

x
1
,或
x
x
2

2
不等式
ax

bx

c
<0的解为

x
1

x

x
2

2
(2)当Δ=0时,抛物线
y

ax

bx

c< br>(
a

2
0)与
x
轴有且仅有一个公共点,方程ax

bx

c
=0有两个相等的实数根
x
1

x
2
=- ,由图2.3
2
a
-2②可知
2
不等式
ax

bx

c
>0的解为

x
≠- ;
2
a
2
不等式
ax

bx

c
<0无解.
2
(2) 如果△<0,抛物线
y

ax

bx< br>+
c

a
2
>0)与
x
轴没有公共点,方程
ax

bx

c
=0没有实数了;
2
(3) ‘
x

bx

c
<0无解.
今后,我们在解一元二次不等式时,如果二次
项系数大于零,可以利用上面的结论直接求解; 如
果二次项系数小于零,则可以先在不等式两边同乘
以-1,将不等式变成二次项系数大于零的 形式,再
利用上面的结论去解不等式.
2
b
b
例3 解不等式:
由于上式对任意实数
x
都成立,
∴原不等式的解为一切实数.
(4)整理,得
(
x
-3)
2
≤0.
由于当
x
=3时,(
x
-3)
2
=0成立;而对
任意的实数
x
,(
x
-3)
2
<0都不成立,
∴原不等式的解为

x
=3.
(5)整理,得



x
2

x
+4>0. Δ<0,所以,原不等式的解为一切实数.
2
2
例4 已知不等式
ax?bx?c?0(a?0)
的解是x?2,或x?3
求不等式
bx?ax?c?0
的解.
2
解: 由不等式
ax?bx?c?0(a?0)
的解为
x?2,或x?3
,可知 < br>a?0
,且方程
ax
2
?bx?c?0
的两根分别为2和3,
bc

??5,?6

aa
bc

??5,?6

aa
2
由于
a?0
,所以不等式
bx?ax?c?0
可变为
b
2
c

x?x??0

aa
2
即 -
5x?x?6?0,

整理,得

5x?x?6?0,
2
2

所以,不等式
bx?ax?c?0
的解是
6

x
<-1,或
x
> .
5
说明:本例利用了方程与不等式之间的相互关系来解决问题.
2
例5 解关于
x
的一元二次不等式
x?ax?1?0(a
为实数).
分析 对于一元二次不等式,按其一般解题步骤,首先应该将二次项系数变成正数,本题已满足这一要
求,欲求 一元二次不等式的解,要讨论根的判别式
?
的符号,而这里的
?
是关于未知系 数的代数式,
?
的符
号取决于未知系数的取值范围,因此,再根据解题的需要,对< br>?
的符号进行分类讨论.
解:
?
?a?4
,
①当
??0,即a??2或a?2时,

方程x?ax?1?0的解是

2
2
?a?a
2
? 4?a?a
2
?4
x
1
?,x
2
?.
< br>22
?a?a
2
?4?a?a
2
?4
所以,原不等式 的解集为
x?

,

x?
22
②当Δ=0,即
a
=±2时,原不等式的解为

x
≠- ;
2
③当
??0,即?2?a?2时,原不等式的解
为一切实数 .
综上,当
a
≤-2,或
a
≥2时,原不等式的解是
a
?a?a
2
?4?a?a
2
?4

x?

,

x?
22

?2?a?2时,原不等式的解
为一切实数.
例6 已知函数
y

x
-2
ax
+1(
a
为常数)在-2≤
x
≤1上的最小值为
n
,试将
n

a
表示出来.
分析:由该函数的图象可知,该函数的最小值与抛物线 的对称轴的位置有关,于是需要对对称轴的位
置进行分类讨论.
22
解:∵
y
=(
x-a
)+1-
a

2
∴抛物线
y

x
-2
ax
+1的对称轴方程是
x< br>=
a

(1)若-2≤
a
≤1,由图2.3-3① 可知,当
x

a
时,该函数取最小值
2

n
=1-
a

(2)若
a
<-2时, 由图2.3-3②可知, 当
x

-
2时,该函数取最小值


2



n
=4
a
+5;
(2)若
a
>1时, 由图2.3-3③可知, 当
x
=1时,该函数取最小值

n
=-2
a
+2.
综上,函数的最小值为
2.3 方程与不等式
2.3.1 二元二次方程组解法
练 习
1.(1)(2)是方程的组解; (3)(4)不是方程组的解.
2.(1)
?
?
x
1
?15,
?
y
1
?20,
?
x
2
??20,
?
x
1
?5,
( 2)
??
y??15;
?
2
?
y
1
??2 ,
?
x
2
??2,

?
y?5;
?
2
5
?
x?,
?
?
x
1
?2,
?
x
2
?2,
?
3
(3)
?
(4)
?

?

?
y
1
?2,
?
y
2
??2.
?
y??
4
.
?
3
?

2.3.2 一元二次不等式解法
练 习

4
1.(1)
x
<-1,或
x
> ; (2)-3≤
x
≤4; (3)
x
<-4,或
x
>1;
3
(4)
x
=4.
2.不等式可以变为(
x
+1+
a
)(
x
+1-
a
)≤0,
(1)当-1-
a
<-1+< br>a
,即
a
>0时,∴-1-
a

x
≤-1+
a

2
(2)当-1-
a
=-1+
a
,即
a
=0时,不等式即为(
x
+1)≤0,∴
x
=-1;
(3)当-1-
a
>-1+
a
,即
a
<0时,∴-1+a

x
≤-1-
a

综上,当
a>0时,原不等式的解为-1-
a

x
≤-1+
a


a
=0时,原不等式的解为
x
=-1;

a
<0时,原不等式的解为-1+
a

x
≤-1-
a


习题2.3
A 组
1 0
24
?
?
x?,
x?,
?
?
?
x
1
?2,
?
x
1
?0,
?
2
3
?
2
5
1.(1)
?

?
(2)
?

?

y?0,y?0,
12
4< br>?
1
?
1
?
y??.
?
y?.
2< br>2
?
?
5
3
?
?
?
?
x< br>1
?3?2,
?
?
x
2
?3?2,
(3)
?

?
?
?
y
1
?3?2,< br>?
?
y
2
?3?2;
?
x
3
??3 ,
??
?
x?3,
?
?
x
2
?3,
??
x
4
??3,
(4)
?
1

???
?
y
1
?1,
?
?
y
2
??1,
?
?
y
4
??1.
?
y
3
?1,
??


2323
?x?

33
(3)1-2≤
x
≤1+2 (4)
x
≤-2,或
x
≥2

2.(1)无解 (2)
?
B 组
1.消去
y
,得
4x?4(m?1)x?m?0

22
1
时,方程有一个实数解.
2
1
?
x?,
1
?

m?
代入原方程组,得方程组的解为
?
4

2
?
?
y?1.

??16(m?1)?16m?0
,即
m?
22
2.不等式可变形为(
x
-1)(
x

a
)<0.
∴当
a
>1时,原不等式的解为1<
x

a


a
=1时,原不等式的无实数解;

a
<1时,原不等式的解为
a

x
<1.

C 组
1.由题意,得 -1和3是方程2
x

bx

c
=0的两根,
∴-1+3=- ,-1×3=- , 即
b
=-4,
c
=6.
22
222
∴等式
bx

cx
+4≥0就为-4
x
+6
x
+4≥0,即2
x
-3
x
-2≤0,
1
∴- ≤
x
≤2.
2
2.∵
y
=-
x

mx
+2=-(
x
- )+2+ ,
24
∴当0≤ ≤2,即0≤
m
≤4时,
k
=2+ ;
24
当 <0,即
m
<0时,
k
=离开就
2
2
2
bc
m
2
m
2
mm
2
m


3.1 相似形
3.1.1.平行线分线段成比例定理
在解决几何问题时,我们常涉及到一些线段的长度、长 度比
的问题.在数学学习与研究中,我们发现平行线常能产生一些重
要的长度比.
在 一张方格纸上,我们作平作直线
b

l
1
,l
2
, l
3
于点
A',B',C'

A'B'AB2
??.

B'C'BC3
我们将这个结论一般化,归纳出平行线分线段成比例定理:
三条平行线截两条直线,所得的对应线段成比例.
ABDEABDE
如图3.1-2 ,
l
1
l
2
l
3
,有.当然,也可以得出.在运用 该定理解决问题
=?
BCEFACDF
的过程中,我们一定要注意线段之间的对应关系 ,是“对应”线段成比例.
图3.1-1
不难发现
例1 如图3.1-2,
l
1
l
2
l
3


AB=2,BC=3,DF=4,

DE,EF
.

Ql
1
l
2
l
3
,
ABDE2
= =,

BCEF3
28312
DE?DF?,EF?DF?.

2?352?35

图3.1-2
例2 在
ABC
中,
D,E
为边
AB,AC
上的点,
DEBC

求证:
ADAEDE
.
??
ABACBC
证明(1)
DEBC,??ADE??ABC,?AED??ACB,

ADAEDE
??.

ABACBC
证明(2) 如图3.1-3,过
A
作直线
lBC

?ADE

ABC

?
lDEBC,

?
ADAE
?
.
ABAC

E

EFAB

AB

D
,得
BDEF

因而
DE?BF.

AEBFDE
EFAB,???.

ACBCBC
ADAEDE
???.

ABACBC


图3.1-3



从上例可以得出如下结论:
平行于三角形的一边的直线截其它两边(或两边的延长线),所得的对应线段成比例.
平行于 三角形的一边,并且和其它两边相交的直线,所截得的三角形的三边与原三角形的
三边对应成比例.

例3 已知
ABC

D

AC
上,< br>AD:DC?2:1
,能否在
AB
上找到一点
E
,使得线段< br>EC
的中
点在
BD
上.
解 假设能找到,如图3.1-4 ,设
EC

BD

F
,则
F

E C
的中点,作
EGAC

BD

G
.
EGAC,EF?FC

?
EGF?CDF
,且
EG?DC


ABBD
证:.
=
ACDC
证明 过
C
CE

AD
,交
BA
延长线于
E

BABD
QADCE,=.

AEDC
Q
AD
平分
衆BAC,?BAD?DAC,

ADCE

?BAD
?E?ACE,即AE
行E,DAC=? ACE,

AC,

图3.1-5
ABBD
.
=
ACDC
例4的结论也称为角平分线性质定理,可叙述为角平分线分对边成比例(等于该角的 两边
之比).

练习1

1.如图3.1-6,
l
1
l
2
l
3
,下列比例式正确的是( )
A.
C.


ADCEADBC
B.
==
DFBCBEAF
CEADAFBE
==
D.
DFBCDFCE
图3.1-6
2.如图3.1-7,
DEBC,EFAB ,AD=5cm,DB=3cm,FC=2cm,

BF
.






图3.1-7


3.如图,在< br>VABC
中,
AD
是角
BAC
的平分线,
AB
=5cm,
AC
=4cm,
BC
=7cm,求
BD
的长.



图3.1-8



4.如图, 在
VABC
中,
?BAC
的外角平分线
AD

BC
的延长线于点
ABBD
.
=
D
,求证:
ACDC


图3.1-9

5.如图,在
VABC
的边
AB

AC
上分别取
D

E
两点,使
BD
=
CE
,< br>DE
延长线交
BC
的延长线于
DFAC
F
.求证:.
=
EFAB






图3.1-10


3.1.2.相似形
我们学过三角形相似的 判定方法,想一想,有哪些方法可以判定两个三角形相似?有哪些
方法可以判定两个直角三角形相似?
例5 如图3.1-11,四边形
ABCD
的对角线相交于点
O
,求证:
?BAC?CDB

?DAC?CBD
.
证明 在
VOAB

VODC
中,
?AOB行DOC,OAB=?ODC,


VOAB

VODC

OAOBOAOD
,即.
==
ODOCOBOC

VOAD

VOBC
中,
?AOD?BOC

图3.1-11

VOAD

VOBC


?DAC?CBD
.
例6 如图3.1-12,在直角三角形
ABC
中,
?BAC
为直角,
AD^BC于D
.
求证:( 1)
AB
2
=BD?BC

AC
2
=CD?CB< br>;
(2)
AD=BD?CD



2
图3.1-12


证明 (1)在
RtVBAC

RtVBDA
中,
?B?B

BABC
=,即AB
2
=BD?BC.

VBAC

VBDA


BDBA
同理可证得
AC
2
=CD?CB
.
(2)在
RtVABD

RtVCAD
中,
?C90
o
-?CAD?BAD

RtVABD
∽< br>RtVCAD


ADDC
=,即AD
2
=BD?DC .

BDAD
我们把这个例题的结论称为射影定理,该定理对直角三角形的运算很有用.
例7 在
VABC
中,
AD^BC于D,DE^AB于E,DF^AC于 F
,求证:
AE?AB
证明
QAD^BC


VADB
为直角三角形,又
DE^AB

由射影定理,知
AD
2
=AE?AB
.
同理可得
AD
2
=AF?AC
.
AF?AC
.
AE?ABAF?AC
.
图3.1-13
例8 如图3.1-14,在
VABC
中,
D
为边
BC
的中点,
E
为边
AC
上的任意一点,
BE

AD


O< br>.某学生在研究这一问题时,发现了如下的事实:
图3.1-14

(1) 当
AE11AO22
====
时,有.(如图3.1-14a)
AC21+ 1AD32+1
AE11AO22
====
时,有.(如图3.1-14b)
AC31+2AD42+2
AE11AO22
====
时,有.(如图3.1-14 c)
AC41+3AD52+3
AE1
AO
=
时,参照上述研究结 论,请你猜想用
n
表示的一般结
AC1+n
AD
(2) 当
(3) 当
在图3.1-14d中,当
论,并给出证明(其中
n
为正整数).
解:依题意可以猜想:当

AE1AO2
==
时,有成立.
AC1+nAD2+n


证明 过点
D

DF

BE

AC
于点
F

Q
D

BC
的中点,

F

EC
的中点,

AE1
AE2AE2
AE1
=
=,=.
. 可知
=


AC1+n
EFnAF2+n
ECn
AOAE 2
==.

ADAF2+n

AO1AE
=
,则
=?

ADnAC
本题中采用了从特殊到一般的思维方法.我们常从一些具体的问题中发现一些规律,进而作出一般性的猜想,然后加以证明或否定 .数学的发展史就是不断探索的历史.

练习2
1.如图3.1-15,
D

VABC
的边
AB
上的一点,过
D
点作
DE

BC

A C

E
.已
想一想,图3.1-14d中,若

AD

DB
=2:3,则
S
VADE
:S
四边形BCDE等于( )
图3.1-15
A.
2:3
B.
4:9
C.
4:5
D.
4:21


2.若一个梯形的中位线长为15,一条对角线把中位线分成两条线段.这两条线段的比是< br>3:2

则梯形的上、下底长分别是__________.
3.已知:VABC
的三边长分别是3,4,5,与其相似的
VA'B'C'
的最大边长是1 5,求
A'B'C'
的面积
S
VA'B'C'
.


4.已知:如图3.1-16,在四边形
ABCD
中,
E

F

G

H
分别是
AB

B C

CD

DA
的中点.
(1) 请判断四边形
EFGH
是什么四边形,试说明理由;
(2) 若四边形
AB CD
是平行四边形,对角线
AC

BD
满足什么条件时,
E FGH
是菱形?是正方形?



5.如图3.1-17,点C

D
在线段
AB
上,
VPCD
是等边三角形 ,
(1) 当
AC

CD

DB
满足怎样的关系 时,
VACP

VPDB

(2) 当
VACP

VPDB
时,求
?APB
的度数.






习题3.1


图3.1-16
图3.1-17


A组
1.如图3.1- 18,
VABC
中,
AD
=
DF
=
FB

AE
=
EG
=
GC

FG
=4,则( )
A.
DE
=1,
BC
=7 B.
DE
=2,
BC
=6
C.
DE
=3,
BC
=5 D.
DE
=2,
BC
=8



2. 如图3.1-19,
BD

CE

VABC
的中线,
P

Q
分别是
BD

CE
的中点,则
P Q:BC
等于( )
A.1:3 B.1:4
C.1:5 D.1:6



3.如图3.1-20,
YABCD
中,
E

A
B延长线上一点,
DE
BC
于点
F
,已知
BE

图3.1-18
图3.1-19
AB
=2:3,
S
VBEF
=4
,求
S
VCDF
.



4.如图3.1-21 ,在矩形
ABCD
中,
E

CD
的中点,
BE^A C

AC

F
,过
图3.1-20
F

FG

AB

AE

G
,求证:
A G
2
=AF?FC
.




B组 < br>1.如图3.1-22,已知
VABC
中,
AE

EB
=1:3,
BD

DC
=2:1,
AD

CE< br>相交于
F

EFAF
则的值为( )
+
FCFD
13
A. B.1 C. D.2
22


2.如图3.1-23,已知
VABC
周长为1, 连结
VABC
三边的中点构成第二个三角形,
再连结第二个对角线三边中点构成第三个 三角形,依此类推,第2003个三角
形周长为( )
1111
A. B. C.
2002
D.
2003

2002200322




图3.1-21
图3.1-22
图3.1-23



3.如图3.1-24 ,已知
M

YABCD
的边
AB
的中点,
CM
BD
于点
E
,则图中阴影部分的面积
图3.1-24

YABCD
面积的比是( )
1
1
1
5
A. B. C. D.
36
412



4.如图3.1-25,梯形
A BCD
中,
AD

BC

EF
经过梯形对角线的交点
O
,且
EF

AD
.
(1) 求证:
OE
=
OF

图3.1-25
OEOE
(2) 求的值;
+
ADBC
112
(3) 求证:.
+=
ADBCEF



C组
1.如 图3.1-26,
VABC
中,
P
是边
AB
上一点,连结< br>CP
.
(1) 要使
VACP

VABC
,还要补 充的一个条件是____________.
(2) 若
VACP

VAB C
,且
AP:PB=2:1
,则
BC:PC
=_____.
图3.1-26



2.如图3.1-27,点E是四边形ABCD
的对角线
BD
上一点,且
.
?BAC?BDC?DA
(1) 求证:
BE?ADCD?AE

BC
(2) 根据图形的特点,猜想可能等于那两条线段的比(只须写出图中已有
DE
线段的一组比即可)?并证明你的猜想.
图3.1-27



3.如图3.1-28,在
RtVABC
中,
AB
=
AC< br>,
?A90
o
,点
D

BC
上任一点,DF^AB

F

DE^AC

E

M

BC
的中点,试判断
VMEF
是什么形状
的三角形,并 证明你的结论.




图3.1-28


4.如图3.1-29a,
AB^BD,CD^BD,
垂足分别为B

D

AD

BC
相交于
E

EF^BD

F

我们可以证明

若将图3.1-29
a
中的垂直改为斜交,如图3.1-29
b

ABCD,AD、BC
相交于
E
,EFAB

BD

F
,则:
111
(1) 还成立吗?如果成立,请给出证明;如果不成立,请说明理由;
+=
ABCDEF
(2) 请找出
S
VABD
,S
VBCD

S
VEBD
之间的关系,并给出证明.
图3.1-29
111
成立.
+=
ABCDEF

3.1 相似形
练习1
1.D
DEADx51010
?,??,x?
,即
BF?
.
3< br>BCABx?283
ABBD535
3.
??,?BD?cm.
ACDC49
ABBDABBD
4.作
CFAB

AD

F
,则,又
?AFC??FAE??FAC

AC?CF,
?
.
??
CFDCACDC
EGCEACCEDBDFAC
5. 作
EGAB

BC

G
,.
??,??
CEGCAB,??,

ABEGEGEFAB
ABAC
2.设
BF ?x,

练习2
1.
C

2.12,18
115
2
??3?4?6,?S?()?6?54.

ABCA'B 'C'
25
1
4.(1)因为
EHBDFG,
所以
EFGH
是平行四边形;(2)当
AC?BD
时,
EFGH
为菱形;当
2
3.
S
AC?BD,AC?BD
时,
EFGH
为正方形 .
5.(1)当
CD?AC?BD
时,
ACP
2o
(2)
?APB?120
.
PDB

习题3.1
A组
1.B 2.B 3.
S
CDF
?9

22
4.
BF
为直角三角形
ABC
斜边上的高,
BF?AF?FC
,又可证
AG?BF,
?AG?AF?FC
.
B组
1.C 2.C 3.A

10


EOAEDEOFOEO EAEBE
???,EO?OF
.(2)
????1.
(3)由(2)
BCABDCBCADBCABAB
1112

???.

ADBCOEEF
C组
4.(1)
ADBC,?
2
1.( 1)
AC?AP?AB

?ACP??B
.(2)
BC:PC?3: 2
.
BEAEBCABAD
;(2).
?
ADEACB,???
CDAD
DEAEAC
3.连
AD

EF

O
,连
OM

ABC
为等腰直角三角形,且
AEDF为矩形,
?OM

RtAMD
斜边
11
的中线,得M

M
OM?AD?EF,
?MEF
为直角三角形.又可证BMF?AME

F?ME

EF
22
2.(1)先证
AEBADC
,可得
为等腰直角三角形.
4.(1)成立,

111
EFEFFDBF111
??
,证略.
????1,??? .
(2)
SSS
ABCDBDBDABCDEF
ABDBCDEBD

3.2 三角形
3.2.1 三角形的“四心”
三角形是最重要的基本平面图形,很多较复杂的图形问题可以化归为三角形的问题.

图3.2-1 图3.2-2
图3.2-3
如图3.2-1 ,在三角形
VABC
中,有三条边
AB,BC,CA
,三个角
行A,B,?C
, 三个顶点
A,B,C
,在三角形中,角平分线、中线、高(如图3.2-2)是三角形中的三种 重要线段.
三角形的三条中线相交于一点,这个交点称为三角形的重心.三角形的重心 在三角形的内
部,恰好是每条中线的三等分点.
例1 求证三角形的三条中线交于一点,且被该交点分成的两段长度之比为2:1.
已知
D< br>、
E

F
分别为
VABC
三边
BC

CA

AB
的中点,
求证
AD

BE

CF
交于一点,且都被该点分成2:1.
证明 连结
DE
,设
AD

BE
交于点
G
, < br>1
Q
D

E
分别为
BC

AE的中点,则
DE

AB
,且
DE=AB

2
VGDE

VGAB
,且相似比为1:2,

11


AG=2GD,BG=2GE
.
图3.2-4
AD

CF
交于点
G'
,同理可得,
AG' =2G'D,CG'=2G'F.


G

G'
重合,


AD

BE

CF
交于一点,且都被该 点分成
2:1
.


三角形的三条角平分线相交于一点,是三角形的内心. 三角形的内
心在三角形的内部,它到三角形的三边的距离相等.(如图3.2-5)



例2 已知
VABC
的三边长分别为
BC=a,A C=b,AB=c
,I为
图3.2-5
VABC
的内心,且I在
V ABC
的边
BC、AC、AB
上的射影分别为
b+c-a
.
D、E、F
,求证:
AE=AF=
2
证明 作
VABC
的内切圆,则
D、E、F
分别为内切圆在三边上的切
点,
QAE,AF
为圆的从同一点作的两条切线,
AE=AF

图3.2-6
同理,
BD
=
BF

CD
=
CE
.
b+c-a=AF+BF+AE+CE-BD-CD

=AF+AE=2AF=2AE
b+c-a
.
2
例3若三角形的内心与重心为同一点,求证:这个三角形为正三角形.
已知
O
为三角形
ABC
的重心和内心.
求证 三角形
ABC
为等边三角形.
证明 如图,连
AO
并延长交
BC

D
.
Q
O
为三角形的内心,故
AD
平分
?BAC

ABBD
(角平分线性质定理)
=
图3.2-7
ACDC
Q
O
为三角形的重心,
D

BC
的中点,即
BD
=
DC
.
AB
=1
,即
AB=AC
.
AC
同理可得,
AB
=
BC
.
VABC
为等边三角形.

三角形的三条高所在直线相交于一点,该点称为 三角形的垂心.锐角三角形的垂心一定在
三角形的内部,直角三角形的垂心为他的直角顶点,钝角三角形 的垂心在三角形的外部.(如
图3.2-8)

AE=AF=

12



例4 求证:三角形的三条高交于一点.
已知
VABC
中,
AD^BC于D,BE^AC于E,
AD

B E
交于
H
点.
求证
CH^AB
.
证明 以
CH
为直径作圆,
QAD^BC,BE^AC,?HDC?HEC90
o
,

图3.2-9
图3.2-8

D、E
在以
CH
为直径的圆上,
?FCB?DEH
. < br>同理,
E

D
在以
AB
为直径的圆上,可得
?BED
?BCH?BAD


VABD

VCBF有公共角
?B

?CFB

?BAD
.
90
o
,即
CH^AB
.
?ADB
过不共线的三 点
A

B

C
有且只有一个圆,该圆是三角形
AB C
的外接圆,圆心
O
为三角形
的外心.三角形的外心到三个顶点的距离相等, 是各边的垂直平分线的交点.


练习1
1.求证:若三角形的垂心和重心重合,求证:该三角形为正三角形.

2. (1) 若三角形
ABC
的面积为
S
,且三边长分别为
a、b、c< br>,则三角形的内切圆的半径
是___________;
(2)若直角三角形的三边长 分别为
a、b、c
(其中
c
为斜边长),则三角形的内切圆的半
径是 ___________. 并请说明理由.




3.2.2 几种特殊的三角形
等腰三角形底边上三线(角平分线、中线、高线)合一.因而在等腰三角形
ABC
中,三角
形的内心
I
、重心
G
、垂心
H必然在一条直线上.
例5 在
ABC
中,
AB?AC?3,BC?2.


13 < /p>


(1)
ABC
的面积
S
ABC

AC
边上的高
BE

(2)
ABC
的内切圆的半径
r

(3)
ABC
的外接圆的半径
R
.
解 (1)如图,作
AD?BC

D
.
AB?AC,?D

BC
的中点,
图3.2-10
?AD?AB
2
?BD
2
?22,

1
? S
ABC
??2?22?22.
2

S
ABC
?< br>42
1
.
AC?BE,
解得
BE?
3
2< br>(2)如图,
I
为内心,则
I
到三边的距离均为
r


IA,IB,IC



S
ABC
图3.2-11
?S
IAB
?S
IBC
?S
IAC


22?
解得
r?
111
AB?r?BC?r?CA?r

222
2
.
2
图3.2-12
(3)
ABC
是等腰三角形,
?
外心
O

AD
上,连
BO


RtOBD
中,
OD?AD?R,
OB
2
?BD
2
?OD
2
,

?R
2
?(22?R)
2
?1
2
,
解得
R?
92
.

8

在直角三角形
ABC
中,
?A
为直角,垂心为直角顶点A, 外心< br>O
为斜边
BC

b+c-a
中点,内心I在三角形的内部,且 内切圆的半径为(其中
a,b,c
分别为
2
三角形的三边
BC
,
CA
,
AB
的长),为什么?
该直角三角形的三边长满足勾 股定理:
AC
2
+AB
2
=BC
2
.

例6 如图,在
VABC
中,
AB
=
AC
P

BC
上任意一点.求证:
AP
2
=AB
2
-PB?PC
.
图3.2-13
证明:过
A

AD^BC

D
.

14



RtVABD
中,
AD
2
=AB
2
-BD
2
.

RtVAPD
中,
AP
2
=AD
2
-DP
2
.
AP
2< br>=AB
2
-BD
2
+DP
2
=AB
2
-(BD+DP)(BD-DP).

图3.2-14
QAB=AC,AD^BC,BD=DC
.
BD-DP=CD- DP=PC
.
AP
2
=AB
2
-PB?PC
.

正三角形三条边长相
等,三个角相等,且四心(内
心、重心、垂心、外心) 合
一,该点称为正三角形的中
心.
例7 已知等边三角形
图3.2-15
ABC
和点
P
,设点
P< br>到三边
AB

AC

BC
的距离分别为
h< br>1
,h
2
,h
3
,三角形
ABC
的高为h

“若点
P
在一边
BC
上,此时
h
3
=0
,可得结论:
h
1
+h
2
+h
3
=h
.”
请直接应用以上信息解决下列问题:
当(1)点
P
VABC
内(如图b),(2)点在
VABC
外(如图c),这两种情 况时,上述结
论是否还成立?若成立,请给予证明;若不成立,
h
1
,h2
,h
3

h
之间有
什么样的关系,请给出你的猜想( 不必证明).
解 (1)当点
P

VABC
内时,
法一 如图,过
P

B'C'
分别交
AB,AM,AC< br>于
B',M',C'

由题设知
AM'=PD+PE


AM'=AM-PF


PD+PE+PF=AM
,即
h
1
+h
2
+h
3
=h
.
法二 如图,连结,
QS
VABC
=S
VPAB
+S
VPAC< br>+S
VPBC

图3.2-17
图3.2-16
11
BC?AMAB?PD
22

AB=BC=AC


1
AC?PE
2
1
BC?PF

2AM=PD+PE+PF
,即
h
1
+h
2
+h
3
=h
.
(2)当点
P

VABC
外如图位置时 ,
h
1
+h
2
+h
3
=h
不成立,

15


猜想:
h
1
+h
2
-h
3
=h
.
注意:当点
P

VABC
外的 其它位置时,还有可能得到其它的结论,如
h
1
-h
2
+h
3
=h

h
1
-h
2
-h
3
= h
(如图3.2-18,想一想为什么?)等.
图3.2-18
在解决上述问题时 ,“法一”中运用了化归的数学思想方法,“法二”中灵活地运用了面积
的方法.


练习2
1.直角三角形的三边长为3,4,
x
,则
x=
________.

2.等腰三角形有两个内角的和是100°,则它的顶角的大小是_________.

3.满足下列条件的
VABC
,不是直角三角形的是( )
A.
b
2
=a
2
-c
2
B.
?C
C.
行A:B:?C

?A?B

3:4:5
D.
a:b:c=12:13:5

4.已知直角三角形的周长为
3?3
,斜边上的中线的长为1,求这个三角形的面积.

5.证明:等腰三角形底边上任意一点到两腰的距离之和为一个常量.


习题3.2
A组
1.已知:在
ABC
中,
AB
=
AC

?BAC?120
o
,AD

BC
边上的高,则下列结论中,正确的是()
A.
AD?
32
1
AB
B.
AD?AB
C.
AD?BD
D.
AD?BD

22
2

2.三角形三边长分别是6、8、10,那么它最短边上的高为( )
A.6 B.4.5 C.2.4 D.8

3.如果等腰三角形底边上的高等于腰长的一半,那么这个等腰三角形的顶角等于_________.

4.已知:
a,b,c

ABC
的三条边,
a? 7,b?10
,那么
c
的取值范围是_________。

、a、8
,且
a
是整数,则
a
的值是_________。 5.若三角形的三边长分别为
1


16



B组

1.如图3.2-19,等边
ABC
的周长为12,
CD
是边
AB
上的中线,
E

CB
延长线上一点 ,且
BD
=
BE


CDE
的周长为()
A.
6?43
B.
18?123

C.
6?23
D.
18?43


2.如图 3.2-20,在
ABC
中,
?C??ABC?2?A

BD
是边
AC

的高,求
?DBC
的度数。






图3.2-19
图3.2-20
图3.2-21
3.如图3.2-21,
RtABC,?C?90
o
,M

AB
的中点,
AM
=
AN

MN AC
,求证:
MN=AC



4.如图3.2-22, 在
ABC
中,
AD
平分
?BAC

AB
+
BD
=
AC
.求
?B:?C
的值。








1
5.如图3.2-23, 在正方形
ABCD
中,
F

DC
的中点,
E

BC
上一点,且
EC=BC

4
求证:
?EF A




90
o
.
图3.2-23
图3.2-22
C组
1.已知
k?1,b?2k,a?c?2k
2
,ac?k
4
?1
,则以
a、b、c
为边的三角形是( )
A.等边三角形 B.等腰三角形 C.直角三角形 D.形状无法确定

17




2.如图3.2-24,把
ABC
纸片沿
DE
折叠,当点
A
落在四边形
BCDE
内部时,则
?A

?1??2
之间有一种数量关系始终保持不变,请试着找一找这个规律 ,你发现的规律是()
图3.2-24
A.
?A??1??2
B.
2?A??1??2

C.
3?A??1??2
D.
3?A?2(?1??2)




3.如图3.2- 25,已知
BD
是等腰三角形
ABC
底角平分线,且
AB
=
BC
+
CD

求证:
?C






90
o
.
图3.2-25
图3.2-26
4.如图3.2-26,在等腰
RtABC

?C ?90
o

D
是斜边
AB
上任一点,
AE?CD< br>于
E

BF?CD

CD
的延长线于
F
CH?AB

H
,交AE于
G
.求证:
BD
=
CG
.


3.2 三角形
练习1
1.证略 2.(1)
练习2
oo
1.5或
7
2.
20

80
3.C
2Sa?b?c
;(2).
a?b?c2
22
4.设两直角边长为
a,b
,斜边长为2,则
a?b?1?3
,且
a?b?4
, 解得
ab?3

?S?
1
ab?23
.
2
5.可利用面积证.
习题3.2
A组
1.B 2. D 3.
120
4.
3?c?17
5.8
o
B组
1.A 2.
18

3.连
BM
,证
MAB?AMN
.
4.在
AC< br>上取点
E
,使
AE=AB
,则
o
ABD?

?B??AED
.又
BD=DE=EC

AE

18


??C??EDC,??B:?C?2:1.

5.可 证
ADFFCE
,因而
?AFD

?CFE
互余,得
?EFA?90
o
.
C组
1.C.不妨设
a?c
,可 得
a?k?1,c?k?1,a?b?c
,为直角三角形.
2.B
3.< br>22222

AB
上取
E
使
BE=BC
,则
BC?D

B

AE=ED=DC

?C??BE D?2?A??A??B?180
o
??C,??C?90
o
.
< br>4.先
证明
ACE?CBF
,得
CE=BF
,再证
C GE?BDF
,得
BD=CG
.

3.3圆
3.3.1 直线与圆,圆与圆的位置关系
设有直线
l
和圆心为
O
且半径为r
的圆,怎样判断直线
l
和圆
O
的位置关系?


图3.3-2

图3.3-1
观察图3.3-1,不难发现直 线与圆的位置关系为:当圆心到直线的距离
d>r
时,直线和
圆相离,如圆
O
与直线
l
1
;当圆心到直线的距离
d=r
时,直线和圆相切 ,如圆
O
与直线
l
2
;当
圆心到直线的距离
d时,直线和圆相交,如圆
O
与直线
l
3
.
在直线 与圆相交时,设两个交点分别为
A

B
.若直线经过圆心,则
AB< br>为直径;若直线不
经过圆心,如图3.3-2,连结圆心
O
和弦
AB< br>的中点
M
的线段
OM
垂直于这条弦
AB
.且在
RtVOMA
中,
OA
为圆的半径
r

OM
为圆 心到直线的距离
d

MA
为弦长
AB
的一半,根据勾
股定理,有
AB
2
r
2
-d
2
=()
.
2

当直线与圆相切时,如图3.3-3,
PA,PB
为圆
O
的切线,可得
PA?PB

OA?PA.
,且在
RtPO A
中,
PO
2
?PA
2
?OA
2
. 如图3.3-4,
PT
为圆
O
的切线,
PAB
为圆O
的割线,我们可以证得

19
图3.3-3


PAT


PTB
,因而
PT
2
?PA?PB
.
图3.3-4
例1 如图3.3-5,已知⊙
O
的半径
OB< br>=5cm,弦
AB
=6cm,
D

AB
的中点,求弦
BD
的长度。
解 连结
OD
,交
AB
于点
E

BD?AD,O是圆心,
?OD?B,BE?AE?
1
AB?3cm.

2
RtBOE
中,
OB
=5cm,
BE
=3cm,?OE?OB
2
?BE
2
?4cm.

图3.3-5
OD?5cm,?DE?1cm.


RtBDE
中,
BE
=3cm,
DE
=1cm,
?BD?10cm.

例2 已知圆的两条平行弦的长度分别为6和
26
,且这两条线的距离
为3.求这个圆的半径 .
解 设圆的半径为
r
,分两种情况(如图3.3-6):
(1) 若
O
在两条平行线的外侧,
如图(1),
AB
=6,
CD
=
26

则由
OM-ON=3
,得
r
2
-9-
图3.3-6
r
2
-24=3
,解得
r=5
.
(2)若
O
在两条平行线的内侧(含线上),
AB
=6,
CD
=
2 6

则由
OM+ON=3
,得
r
2
-9+r2
-24=3
,无解.
综合得,圆的半径为5.

设圆
O
1
与圆
O
2
半径分别为
R,r(R?r)< br>,它们可能有哪几种位置关系?

20


图3.3-7


观察图3.3-7,两圆的圆心距为
O
1
O
2
,不难发现:当
O
1
O
2
?R?r
时,两圆相内切 ,如图
(1);当
O
1
O
2
?R?r
时,两圆相外 切,如图(2);当
O
1
O
2
?R?r
时,两圆相内含,如 图(3);

R?r?O
1
O
2
?R?r
时,两圆 相交,如图(4);当
O
1
O
2
?R?r
时,两圆相外切, 如图(5).
例3 设圆
O
1
与圆
O
2
的半径 分别为3和2,
O
1
O
2
?4

A,B
为 两圆的交
点,试求两圆的公共弦
AB
的长度.
解 连
AB

O
1
O
2

C

O
1
O
2
?AB
,且
C

AB
的中点,

AC?x
,则
O
1
C?9?x< br>2
,O
2
C?4?x
2
,O
1
O
2
?9?x
2
?4?x
2
?4

解得
x?< br>


练习 1
1.如图3.3-9,⊙
O
的半径 为17cm,弦
AB
=30cm,
AB
所对的劣弧和优弧的中点分别为
D

C
,求
图3.3-9

AC

BD
的长。






21
图3.3-8
315315
。故弦
AB
的长为
2x?
.
84< /p>


2.已知四边形
ABCD
是⊙
O
的内接梯形,
AB

CD

AB
=8cm,
CD
=6cm, ⊙
O
的半径等于5cm,求梯

ABCD
的面积。

图3.3-10

3.如图3.3-10,⊙
O
的直径
A B
和弦
CD
相交于点
E

AE?1cm,EB?5cm,? DEB?60
o
,

CD

长。


4.若两圆的半径分别为3和8,圆心距为13,试求两圆的公切线的长度.



3.3.2 点的轨迹
在几何中,点的轨迹就是点按照某个条件运动形成的图形, 它是符合某个条件的所有点组
成的.例如,把长度为
r
的线段的一个端点固定,另一个 端点绕这个定点旋转一周就得到一个
圆,这个圆上的每一个点到定点的距离都等于
r
; 同时,到定点的距离等于
r
的所有点都在这
个圆上.这个圆就叫做到定点的距离等于定 长
r
的点的轨迹.
我们把符合某一条件的所有的点组成的图形,叫做符合这个条件的 点的轨迹.这里含有两
层意思:(1)图形是由符合条件的那些点组成的,就是说,图形上的任何一点都 满足条件;(2)
图形包含了符合条件的所有的点,就是说,符合条件的任何一点都在图形上.
下面,我们讨论一些常见的平面内的点的轨迹.
从上面对圆的讨论,可以得出:
(1) 到定点的距离等于定长的点的轨迹是以定点为圆心,定长为半径的圆.
我们学过,线 段垂直平分线上的每一点,和线段两个端点的距离相等;反过来,和线段两
个端点的距离相等的点,都在 这条线段的垂直平分线上.所以有下面的轨迹:
(2) 和已知线段两个端点的距离相等的点的轨迹,是这条线段的垂直平分线.
由角平分线性质定理和它的逆定理,同样可以得到另一个轨迹:
(3) 到已知角的两边距离相等的点的轨迹,是这个角的平分线.

图3.3-11
例3 ⊙
O
过两个已知点
A

B
,圆心
O
的轨迹 是什么?画出它的图形.
分析 如图3.3-11,如果以点
O
为圆心的圆经过点
A

B
,那么
OA=OB
;反过来,
如果一个点< br>O

A

B
两点距离相等,即
OA=OB
, 那么以
O
为圆心,OA为半径的
圆一定经过
A

B
两点.
这就是说,过
A

B
点的圆的圆心的轨迹,就是到
A

B
两点距离相等的点的轨迹,即和
线段
AB
两个端点距 离相等的点的轨迹.
答:经过
A

B
两点的圆的圆心
O< br>的轨迹是线段
AB
的垂直平分线.

练习2
1.画图说明满足下列条件的点的轨迹:
(1) 到定点
A
的距离等于
3cm
的点的轨迹;
(2) 到直线
l
的距离等于
2cm
的点的轨迹;
(3) 已知直线
ABCD
,到
AB

CD
的距离相等的点的轨迹.

22



2.画图说明,到直线
l
的距离等于定长
d
的点的轨迹.

习题3.3
A组
1. 已知弓形弦长为4,弓形高为1,则弓形所在圆的半径为( )
A.
3
B.
5
C.3 D.4
2

2. 在半径等于4的圆中,垂直平分半径的弦长为( )
A.
43
B.
33
C.
23
D.
3


3.
AB
为⊙
O
的直径,弦
CD?AB

E
为垂足,若
BE
=6,
AE
=4,则
CD
等于( )
A.
221
B.
46
C.
82
D.
26


4. 如图3.3-12,在⊙
O
中,
E
是弦
AB
延长线上的一点,已知
OB
=10cm,
OE
=12cm,
?OEB ?30,

AB


图3.3-12
o
B组
1. 如图3.3-13,已知在
RtABC
中,
?C?90,AC?5cm ,BC?12cm,

C
为圆心,
C
A为
半径的圆交斜边于
D
,求
AD








2. 如图3.3-14,在直径为100mm的半圆铁片上切去一块高为20m m的弓形铁片,求弓形的

AB
的长。



3. 如图3.3-15,
ABC
内接于⊙
O

D

BC
的中点,
AE?BC

E
。求证:
AD平分
?OAE




23
图3.3-13
o
图3.3-14
图3.3-15





4. 如图3.3-16,
?AOB?90< br>,
C

D

AB
的三等分点,
AB
分别交
OC

OD
于点
E

F
,求
证:
AE
=
BF
=
CD



图3.3-16


5. 已知线段
AB=4cm
.画出 到点
A
的距离等于
3cm
的点的轨迹,再画出到点
B
的距离 等于
2cm
的点的
轨迹,指出到点
A
的距离等于
3cm,且到点
B
的距离等于
2cm
的点,这样的点有几个?

o
3.3 圆
练习1
1.取
AB
中点
M,连
CM

MD
,则
CM?A,BD?M

A

B
C,O,M,D
共线,
?D33
.
4cm< br>OM?17
2
?15
2
?8,CM?25,DM?9,
AC? 534cm,B
2.
O

AB,CD
的距离分别为3cm,4cm, 梯形的高为1cm或7cm,梯形的面积为7或49
cm
.
3. 半径为3cm,< br>OE
=2cm.,
OF
=
3,CD?26cm
.
4.外公切线长为12,内公切线长为
43
.
2
练习2
1.(1)以
A
为圆心,3cm为半径的圆;(2)与
l
平行,且与
l
距离为2cm的两条平行线;(3)与
AB
平行,且

AB,CD
距离相等的一条直线.
2.两条平行直线,图略.
习题3.3
A组
1.B 2.A 3.B 4.
AB
=8cm.
B组 < br>1.作
CM?AD

M

AB
=13cm,
CM?
6010
,AD?133cm
.
1313
2.
AB
=120cm.
3.先证
?BAO??EAC
,再证
?OAD??DAE
.
4.先证明
?AEC??ACE?75,
再证
AE=BF=AC=CD
.
5.有2个,图略.

o
?
4a?5,a??2,
?

n?
?
1?a
2
,?2?a?1,

?
?2a?2,a?1.
?

24



练 习
1.解下列不等式:
(1)3
x

x
-4>0; (2)
x

x
-12≤0;
北京北京考虑评评’
22
kl

(3)
x
+3
x
-4>0; (4)16-8
x

x
≤0.

22
2.解关于
x
的不等式
x
+2
x
+1-a
≤0(
a
为常数).

习题2.3
A 组
1.解下列方程组:


B 组
1.
m
取什么值时,方程组
22
?
y
2
?4x,

?
y?2x?m
?
有一个实数解?并求出这时方程组的解.
22.解关于
x
的不等式
x
-(1+
a
)
x
a
<0(
a
为常数).

C 组
2< br>1.已知关于
x
不等式2
x

bx

c>0的解为
x
<-1,或
x
>3.试解关于
x
的不等式
bx
2

cx
+4≥0.
2
2.试求关于
x
的函数
y
=-
x

mx
+2在0≤
x
≤2上的最大值
k



25

天津市招聘高中数学教师-高中数学工作业绩简述


高中数学数列的教材地位和作用-高中数学竞赛资料-平面几何篇


苏教版高中数学几何定理图-高中数学必修1练习


高中数学优质课随机抽样-高中数学课堂教学叙事


高中数学公共教研活动如何开展-高中数学风险与决策电子课本


高中数学解题思想之换元法-高中数学指针解题模型建哥


高中数学课本必修三-犀牛在线高中数学必修一第十集


高中数学教师资格证数学考试内容-高中数学利息计算



本文更新与2020-09-18 11:46,由作者提供,不代表本网站立场,转载请注明出处:https://www.bjmy2z.cn/gaokao/402942.html

2018-2019学年初高中数学衔接超好教材word版含答案的相关文章

2018-2019学年初高中数学衔接超好教材word版含答案随机文章