关键词不能为空

当前您在: 主页 > 数学 >

初高中衔接型中考数学试题12套

作者:高考题库网
来源:https://www.bjmy2z.cn/gaokao
2020-09-18 12:13
tags:初高中数学衔接

代写高中数学职称论文-高中数学的逻辑推理

2020年9月18日发(作者:班婕妤)


第一讲 数与式

1.1 数与式的运算

1.1.1.绝对值
绝对值的代数意义:正数的绝对值是它的本身,负数的绝对值是它的相反 数,
零的绝对值仍是零.即
?
a,a?0,
?
|a|?
?
0,a?0,
?
?a,a?0.
?
绝对值的几何意义:一个数的绝对值,是数轴上表示它的点到 原点的距离.
两个数的差的绝对值的几何意义:
a?b
表示在数轴上,数
a
和数
b
之间的
距离.
例1 解不等式:
x?1?x?3
>4.
解法一:由
x?1?0
,得x?1
;由
x?3?0
,得
x?3

①若
x?1
,不等式可变为
?(x?1)?(x?3)?4


?2x?4
>4,解得x<0,
又x<1,
∴x<0;
②若
1?x?2
,不等式可变为
(x?1)?(x?3)?4

即1>4,
∴不存在满足条件的x;
③若
x?3
,不等式可变为
(x?1)?(x?3)?4


2x?4
>4, 解得x>4.
又x≥3,
∴x>4.
综上所述,原不等式的解为
x<0,或x>4.
解法二:如图1.1 -1,
x?1
表示x轴上坐标为x的点P到坐标为1的点A
之间的距离|PA|,即| PA|=|x-1|;|x-3|表示x轴上点P到坐标为2的点B之间的
距离|PB|,即|PB|= |x-3|.
|x-3|
所以,不等式
x?1?x?3
>4的几何
意义即为
|PA|+|PB|>4.
由|AB|=2,可知
点P 在点C(坐标为0)的左侧、或点P
在点D(坐标为4)的右侧.
x<0,或x>4.
练 习
1.填空:
(1)若
x?5
, 则x=_________;若
x??4
,则x=_________.
P
x
C
0
|x-1|
图1.1-1
A
1
B
D
3 4
x


(2)如果
a?b? 5
,且
a??1
,则b=________;若
1?c?2
,则c= ________.
2.选择题:
下列叙述正确的是 ( )
(A)若
a?b
,则
a?b
(B)若
a?b
,则
a?b

(C)若
a?b
,则
a?b
(D)若
a?b
,则
a??b

3.化简:|x-5|-|2x

13|(x>5).





1.1.2. 乘法公式
我们在初中已经学习过了下列一些乘法公式:
(1)平方差公式
(a?b)(a?b)?a
2
?b
2

(2)完全平方公式
(a?b)
2
?a
2
?2ab?
2

b

我们还可以通过证明得到下列一些乘法公式:
(1)立方和公式
(a?b)(a
2
?ab?
2
b)?
3
a?

3
b

(2)立方差公式
(a?b)(a
2
?ab?
2
b)?
3
a?

3
b

(3)三数和平方公式
(a?b?c)
2
?a
2
?
2
b?
2
c2?(ab?bc?

)

a
(4)两数和立方公式
(a?b)
3
?a
3
?3a
2
b?3a
2
b?

3
b

(5)两数差立方公式
(a?b)
3
?a
3
? 3a
2
b?3a
2
b?

b

对上面列出的五个公式,有兴趣的同学可以自己去证明.
例1 计算:
(x?1) (x?1)(x
2
?x?1)(x
2
?x?1)

解法一 :原式=
(x
2
?1)
?
?
(x
2
?1)
2
?x
2
?
?

=
(x
2
?1)(x
4
?x
2
?1)

=
x
6
?1

解法二:原式=
(x?1)(x
2
?x?1)(x?1)(x
2
?x?1)

=
(x
3
?1)(x
3
?1)

=
x
6
?1

例2 已知
a?b?c?4
,< br>ab?bc?ac?4
,求
a
2
?b
2
?c
2
的值.
解:
a
2
?b
2
?c
2?(a?b?c)
2
?2(ab?bc?ac)?8

练 习
1.填空:
(1)
1
9
a
2
?
14
b
2
?(
1
2
b?
1
3
a )
( );
(2)
(4m?

)
2
?16m
2
?4m?(

)

(3 )
(a?2b?c)
2
?a
2
?4b
2
?c
2
?(

)

2.选择题:
(1)若
x
2
?
1
2
mx?k
是一个完全平方式,则
k
等于 (
(A)
m
2
(B)
1
2
1
2
4
m
(C)
1
2
3
m
(D)
16
m

c


(2)不论a

b
为何实数,
a?b?2a?4b?8
的值 ( )
(A)总是正数 (B)总是负数
(C)可以是零 (D)可以是正数也可以是负数

22

1.1.3.二次根式
一般地,形如
a(a?0)
的代数式叫做二次根式.根号下含有字母、且不 能
够开得尽方的式子称为无理式. 例如
3a?a
2
?b?2b

a
2
?b
2
等是无理式,

2x
2
?
2
x?1

x
2
?2xy?y
2
,< br>a
2
等是有理式.
2
1.分母(子)有理化
把分母(子) 中的根号化去,叫做分母(子)有理化.为了进行分母(子)
有理化,需要引入有理化因式的概念.两个 含有二次根式的代数式相乘,如果它
们的积不含有二次根式,我们就说这两个代数式互为有理化因式,例 如
2

2

3a

a

3?6< br>与
3?6

23?32

23?32
,等等. 一 般
地,
ax

x

ax?by

ax?b y

ax?b

ax?b
互为有理化因式.
分母有理化的 方法是分母和分子都乘以分母的有理化因式,化去分母中的根
号的过程;而分子有理化则是分母和分子都 乘以分母的有理化因式,化去分子中
的根号的过程
在二次根式的化简与运算过程中,二次根式 的乘法可参照多项式乘法进行,
运算中要运用公式
ab?ab(a?0,b?0)
;而 对于二次根式的除法,通常先写
成分式的形式,然后通过分母有理化进行运算;二次根式的加减法与多项 式的加
减法类似,应在化简的基础上去括号与合并同类二次根式.
2.二次根式
a
2
的意义
a
2
?a?
?
?
a,a?0,

?a,a?0.
?
例1 将下列式子化为最简二次根式:
(1)
12b
; (2)
a
2
b(a?0)
; (3)
4x
6
y(x?0)

解: (1)
12b?23b

(2)
a
2
b?ab?ab(a?0)

(3)< br>4x
6
y?2x
3
y??2x
3
y(x?0)

例2 计算:
3?(3?3)

3?3
3?(3?3)

(3?3)(3?3)

33?3

9?3
解法一:
3?(3?3

)
3


3(3?1)

6
3?1
=.
2
3
解法二:
3?(3

?3

)
3?3

3

3(3?1)
1

3?1



3?1

(3?1)(3?1)
3?1

2
例3 试比较下列各组数的大小:
(1)
12?11

11?10
; (2)
解: (1)∵
12?11?

11?
2

22-6
.
6?4
12?11(12?11)(12?11)1

??
112?1112?11
11?
1
10
?
1

10
(1?110)(?1110)
?
11?101?1

12?1 1?11?10


12?11

11?10

10?
22-6(22-6)(22+6)2
??,

1
22+622+6
又 4>22,
∴6+4>6+22,
2
∴<
22-6
.
6?4
例4 化简:
(3?2)
2004
?(3?2)
2005

(2)∵
22-6?
解:
(3?2)
2004
?(3?2)
2005


(3?2)
2004
?(3?2)
2004
?(3?2)

?

?
?
(3?2)?(3?2)
?

1
2004
?(3?2)


3?2

2004
?(3?2)

例 5 化简:(1)
9?45
; (2)
x
2
?
解:(1)原式
?5?45?4

1
?2(0?x?1)

2
x


22

?(5)?2?2?5?2

?(2?5)
2

?2?5

?5?2

(2)原式=
(x?< br>1
x
)
2
?x?
1
x


0?x?1


1
x
?1?x

所以,原式=
1
x
?x

例 6 已知
x?
3?23?2
3?2
,y?
3?2
,求3x
2
?5xy?3y
2
的值 .
解: ∵
x?y ?
3?2
3?2
?
3?2
3?2
?(3?2)
2< br>?(3?2)
2
?10

xy?
3?2
3?2?
3?2
3?2
?1


3x
2< br>?5xy?3y
2
?3(x?y)
2
?11xy?3?10
2
?11?289

练 习
1.填空:
(1)
1?3
1?3
=__ ___;
(2)若
(5?x)(x?3)
2
?(x?3)5?x
,则
x
的取值范围是_ _ ___;
(3)
424?654?396?2150?
__ ___;
(4)若
x?
5
2
,则
x?1?x?1
x?1?x?1
?
x?1?x?1
x?1?x?1
?
______ __.
2.选择题:
等式
xx
x?2
?
x?2
成立的条件是 (
(A)
x?2
(B)
x?0
(C)
x?2
(D)
0?x?2

?
a
2
?1?1?a
2
3.若
b
a?1
,求
a?b的值.
4.比较大小:2-3 5-4(填“>”,或“<”).








1.1.4.分式

1.分式的意义
形如
分式
AA
的式子,若B中含有字母,且
B?0
,则称为分式.当M≠0时,< br>BB
A
具有下列性质:
B
AA?M
?

BB?M
AA?M
?

BB?M
上述性质被称为分式的基本性质.

2.繁分式
a
m?n?p

b
,这样,分子或分母中又含有分式的分式叫做繁分式.
2m
c?d
n?p
5x?4AB
??
例1 若,求常数
A,B
的值.
x(x?2)xx?2
ABA(x?2)?Bx( A?B)x?2A5x?4
???
解: ∵
?

xx?2x(x?2)x(x?2)x(x?2)
?
A?B?5,

?

2A?4,
?
解得
A?2,B?3

111
??
例2 (1)试证:(其中n是正整数);
n(n?1)nn?1
111
??
?
?
(2)计算:

1?22?39?10
1111
??
?
??

(3)证明:对任意大于1的正整数n, 有

2?33?4n(n?1)2
11(n ?1)?n1
??
(1)证明:∵
?

nn?1n(n?1)n(n?1)
111
??
∴(其中n是正整数)成立.
n(n?1)nn?1
(2)解:由(1)可知
111
??
?
?


1?22?39?10
11111
???(?

)

?(1?)?(?)
223910
1

?1?

10



9
10

(3)证 明:∵
1
2?3
?
11
3?4
?
?
?n(n?1)


(
111111
2
?
3
)?(
3
?
4
)?
?
?(< br>n
?
n?1
)


11
2
?
n?1

又n≥2,且n是正整数,

1
n+1
一定为正数,

111
1
2?3
?
3?4
?
?
?
n(n?1)

2

例3 设
e?
c
a
,且e>1,2c
2
-5ac+ 2a
2
=0,求e的值.
解:在2c
2
-5ac+2a
2
=0两边同除以a
2
,得
2e
2
-5e+2=0,
∴(2e

1)(e-2)=0,
∴e=
1
2
<1,舍去;或e=2.
∴e=2.
练 习
1.填空题:
对任意的正整数n,
1
n(n?2)
?
(
11
n
?
n?2
);
2.选择题:

2x?y
x?y
?
2
3
,则
x
y

(A)1 (B)
5
4
(C)
46
5
(D)
5
3.正数
x, y
满足
x
2
?y
2
?2xy
,求
x?y< br>x?y
的值.
4.计算
111
1?2
?
2?3?
3?4
?...?
1
99?100








习题1.1
A 组
1.解不等式:
(1)
x?1?3
; (2)
x?3?x?2?7

)(


(3)
x?1?x?1?6

2.已知
x?y?1
,求
x
3
?y
3
?3xy
的值.
3.填空:
(1 )
(2?3)
18
(2?3)
19
=________;
22
(2)若
(1?a)?(1?a)?2
,则
a
的取值范围是__ ______;
(3)

11111
?????
________.
1?22?33?44?55?6
B 组
1.填空:
11
3a
2
?ab
?
____ ____; (1)< br>a?

b?
,则
2
23
3a?5ab?2b
2
x
2
?3xy?y
2
22
(2)若
x?xy?2 y?0
,则
?
__ __;
22
x?y
2. 已知:
x?
yy
11
,y?
,求的值.
?
23
x?yx?y
C 组
,则 ( )
1.选择题:
b??b??a
(1)若
?a?b?2a
(A)
a?b
(B)
a?b
(C)
a?b?0
(D)
b?a?0

1
等于 ( )
a
(A)
?a
(B)
a
(C)
??a
(D)
?a

11
2
2.解方程
2(x?
2
)?3(x?)?1?0

xx
1111
???
?
?
3.计算:

1?32?43?59?11
111
1
??
?
?
4.试证: 对任意的正整数n,有


1?2?32?3?4n(n?1)(n?2)
4
(2)计算
a?










1.2 分解因式
因式分解的主要方法有:十字相乘法、提取公因式法、公式法、分组分 解法,
另外还应了解求根法及待定系数法.
1.十字相乘法


例1 分解因式:
(1)x
2
-3x+2; (2)x
2
+4x-12;
(3)
x
2
?(a?b)xy?aby
2
; (4)
xy?1?x?y

解:(1)如图1.2-1,将二次项x
2
分解成图中的两个x的积,再将常数项
2分解成-1与-2的乘积,而图中的对角线上的两 个数乘积的和为-3x,就是
x
2
-3x+2中的一次项,所以,有
x
2
-3x+2=(x-1)(x-2).

1
x
x
1
-1 -2
-ay
-1


1
x
x
1 6
-2
-by
-2

图1.2-3
图1.2-1
图1.2-4
图1.2-2

说明:今后在分解与本例类似的二次三项式时,可以直接将图1.2-1中的
两个x用1来表示(如图1.2-2所示).
(2)由图1.2-3,得
x
2
+4x-12=(x-2)(x+6).
(3)由图1.2-4,得

x
2
?(a?b)xy?aby
2

( x?ay)(x?by)

(4)
xy?1?x?y
=xy+(x-y)-1
=(x-1) (y+1) (如图1.2-5所示).
2.提取公因式法与分组分解法
例2 分解因式:
(1)
x
3
?9?3x
2
?3x
; (2)
2x
2
?xy?y
2
?4x?5y?6

解: (1)
x
3
?9?3x
2
?3x
=
(x
3
?3x
2
)?(3x?9)
=
x
2
(x?3)?3(x?3)

=
(x?3)(x
2
?3)


x
3
?9?3x
2
?3x

(x
3
?3x< br>2
?3x?1)?8

(x?1)
3
?8

(x?1)
3
?2
3


[(x?1 )?2][(x?1)
2
?(x?1)?2?2
2
]


(x?3)(x
2
?3)

(2)
2x
2
?xy?y
2
?4x?5y?6
=
2x
2
?(y ?4)x?y
2
?5y?6

=
2x
2?(y?4)x?(y?2)(y?3)
=
(2x?y?2)(x?y?3)


2x
2
?xy?y
2
?4x?5y?6
=
(2x
2
?xy?y
2
)?(4x?5y)?6

=
(2x?y)(x?y)?(4x?5y)?6

=
(2x?y?2)(x?y?3)

3.关于x的二次三项式ax
2
+bx+c(a≠0)的因式分解.
若关于 x的方程
ax
2
?bx?c?0(a?0)
的两个实数根是
x
1

x
2
,则二次三项式
x
y
图1.2-5
-1
1
ax
2
?bx?c(a?0)
就可分解为
a(x?x
1
)(x?x
2
)
.


例3 把下列关于x的二次多项式分解因式:
(1)
x
2
?2x?1
; (2)
x
2
?4xy?4y
2

解: (1)令
x
2
?2x?1
=0,则解得
x
1
??1?2
,< br>x
2
??1?2

???

x< br>2
?2x?1
=
?
?
x?(?1?2)
??
x?(?1?2)
?

=
(x?1?2)(x?1?2)

(2)令
x
2
?4x y?4y
2
=0,则解得
x
1
?(?2?22)y

x
1
?(?2?22)y


x
2
?4xy?4y
2
=
[x?2(1?2)y][x?2(1?2)y]

练 习
1.选择题:
多项式
2x
2
?xy?15y
2
的一个因式为 ( )
(A)
2x?5y
(B)
x?3y
(C)
x?3y
(D)
x?5y

2.分解因式:
(1)x
2
+6x+8; (2)8a
3
-b
3

(3)x
2
-2x-1; (4)
4(x?y?1)?y(y?2x)

习题1.2
1.分解因式:
(1)
a?1
; (2)
4x?13x?9

(3)
b?c?2ab?2ac?2bc
; (4)
3x
2
?5xy?2y
2
?x?9y?4

2.在实数范围内因式分解:
(1)
x?5x?3
; (2)
x?22x?3

(3)
3x
2
?4xy?y
2
; (4)
(x
2
?2x)
2
?7(x
2
?2x)?1 2

3.
?ABC
三边
a

b

c
满足
a?b?c?ab?bc?ca
,试判定
?ABC
的形状.
4.分解因式:x
2
+x-(a
2
-a).
222
2
22
342
2


第二讲 函数与方程

2.1 一元二次方程

2.1.1根的判别式

我们知道,对于一元二次方程ax
2
+bx+c=0(a≠0),用配方法 可以将其变
形为
b
2
b
2
?4ac

(x?)?
. ①
2a4a
2
因为a≠0,所以,4a
2
>0.于是
(1) 当b
2
-4ac>0时,方程①的右端是一个正数,因此,原方程有两个不
相等的实数 根
?b?b
2
?4ac
x
1

2
=;
2a
2
(2)当b-4ac=0时 ,方程①的右端为零,因此,原方程有两个等的实数

x
1
=x
2
=-
b

2a
b
2
)
2a
(3)当b
2
-4ac<0时,方程①的右端是一个负数,而 方程①的左边
(x?
一定大于或等于零,因此,原方程没有实数根.
由此可知,一元 二次方程ax
2
+bx+c=0(a≠0)的根的情况可以由b
2
-4ac< br>来判定,我们把b
2
-4ac叫做一元二次方程ax
2
+bx+c=0 (a≠0)的根的判别式,
通常用符号“Δ”来表示.
综上所述,对于一元二次方程ax
2
+bx+c=0(a≠0),有
(1) 当Δ>0时,方程有两个不相等的实数根
?b?b
2
?4ac
x
1

2
=;
2a
(2)当Δ=0时,方程有两个相等的实数根
b
x
1
=x
2
=-;
2a
(3)当Δ<0时,方程没有实数根.
例1 判定下列关于x的方程的根的情况(其中a为常数),如果方程有实
数根,写出方程的实数根.
(1)x
2
-3x+3=0; (2)x
2
-ax-1=0;
(3) x
2
-ax+(a-1)=0; (4)x
2
-2x+a=0.
解:(1)∵Δ=3
2
-4×1×3=-3<0,∴方程没有实数根.
(2 )该方程的根的判别式Δ=a
2
-4×1×(-1)=a
2
+4>0,所以方 程一定有
两个不等的实数根
a?a
2
?4a?a
2
?4

x
2
?

x
1
?
22
(3)由于该方程的根的判别式为

Δ=a
2
-4×1×(a-1)=a
2
-4a+4=(a
2)
2

所以,
①当a=2时,Δ=0,所以方程有两个相等的实数根
x
1
=x
2
=1;
②当a≠2时,Δ>0, 所以方程有两个不相等的实数根
x
1
=1,x
2
=a

1.
(3)由于该方程的根的判别式为
Δ=2
2
-4×1×a=4-4a=4(1

a),
所以
①当Δ>0,即4(1

a) >0,即a<1时,方程有两个不相等的实数根

x
1
?1?1?a

x
2
?1?1?a

②当Δ=0,即a=1时,方程有两个相等的实数根
x
1
=x
2
=1;
③当Δ<0,即a>1时,方程没有实数根.
说明:在第3,4小题中,方程的根的判别式的符号随着 a的取值的变化而
变化,于是,在解题过程中,需要对a的取值情况进行讨论,这一方法叫做分类
讨论.分类讨论这一思想方法是高中数学中一个非常重要的方法,在今后的解题
中会经常地运用这一方 法来解决问题.

2.1.2 根与系数的关系(韦达定理)
若一元二次方程ax+bx+c=0(a≠0)有两个实数根
2

?b?b
2
?4ac?b?b
2
?4ac

x
1
?

x
2
?

2a2a
则有
?b?b
2
?4ac?b?b
2
?4ac?2bb

x
1
?x
2
?????

2a2a2aa
2
?b?b
2
?4ac?b?b
2
?4acb
2
?(b?4ac)4acc

x
1
x
2
????
2
?

2
2a2a4a4aa
所以,一元二次方程的根与系数之间存在下列关系:
b
如果ax
2
+bx+c=0(a≠0)的两根分别是x
1
,x
2
,那么x
1
+x
2

?
,x1
·
x
2
a
c
=.这一关系也被称为韦达定理.
a
特别地,对于二次项系数为1的一元二次方程x
2
+px+q=0,若x
1
,x
2
是其
两根,由韦达定理可知
x1
+x
2
=-p,x
1
·
x
2
=q,
即 p=-(x
1
+x
2
),q=x
1
·
x
2

所以,方程x
2
+px+q=0可化为 x
2
-(x
1
+x
2
)x+x
1
·
x
2
=0,由于x
1
,x
2
是一
元二次方程x2
+px+q=0的两根,所以,x
1
,x
2
也是一元二次方程 x
2
-(x
1
+x
2
)x
+x
1
·
x
2
=0.因此有
以两个数x
1
,x
2
为根的一元二次方程(二次项系数为1)是

< p>
x
2
-(x
1
+x
2
)x+x
1·
x
2
=0.
例2 已知方程
5x?kx?6?0
的一个根是2,求它的另一个根及k的值.
分析:由于 已知了方程的一个根,可以直接将这一根代入,求出k的值,再
由方程解出另一个根.但由于我们学习了 韦达定理,又可以利用韦达定理来解题,
即由于已知了方程的一个根及方程的二次项系数和常数项,于是 可以利用两根之
积求出方程的另一个根,再由两根之和求出k的值.
解法一:∵2是方程的一个根,
∴5×2
2
+k×2-6=0,
∴k=-7.
3
所以,方程就为5x
2
-7x-6=0,解得x< br>1
=2,x
2
=-.
5
3
所以,方程的另一个根为-,k的值为-7.
5
63
解法二:设方程的另一个根为x
1
,则 2x
1
=-,∴x
1
=-.
55
3k
由 (-)+2=-,得 k=-7.
55
3
所以,方程的另一个根为-,k的值为-7.
5
例3 已知关于x的方程x
2
+2(m

2)x+m
2
+4
=0有两个实数根,并且这
两个实数根的平方和比两个根的积大21,求m的值.
分析: 本题可以利用韦达定理,由实数根的平方和比两个根的积大21得到
关于m的方程,从而解得m的值.但 在解题中需要特别注意的是,由于所给的
方程有两个实数根,因此,其根的判别式应大于零.
解:设x
1
,x
2
是方程的两根,由韦达定理,得
x
1
+x
2
=-2(m

2),x
1
·x
2
=m
2
+4.
22

x
1
+x
2
-x
1
·x
2
=21,
2
∴(x
1
+x
2
)-3 x
1
·x
2
=21,
2
即 [-2(m

2)]-3(m
2
+4
)=21,
化简,得 m
2
-16m-17=0,
解得 m=-1,或m=17.
当m=-1时,方程为x
2
+6x+5=0,Δ>0,满足题意;
当m=1 7时,方程为x
2
+30x+293=0,Δ=30
2
-4×1×293<0 ,不合题意,
舍去.
综上,m=17.
说明:(1)在本题的解题过程中,也可以 先研究满足方程有两个实数根所对
应的m的范围,然后再由“两个实数根的平方和比两个根的积大21” 求出m的值,
取满足条件的m的值即可.
(1)在今后的解题过程中,如果仅仅由韦达定理解 题时,还要考虑到根的
判别式Δ是否大于或大于零.因为,韦达定理成立的前提是一元二次方程有实数根.
例4 已知两个数的和为4,积为-12,求这两个数.
分析:我们可以设出 这两个数分别为x,y,利用二元方程求解出这两个数.也
可以利用韦达定理转化出一元二次方程来求解 .
2


解法一:设这两个数分别是x,y,
则 x+y=4, ①
xy=-12. ②
由①,得 y=4-x,
代入②,得
x(4-x)=-12,
即 x
2
-4x-12=0,
∴x
1
=-2,x
2
=6.
?
x??2,
?
x?6,

?
1

?
2

?
y
1
?6,
?
y2
??2.
因此,这两个数是-2和6.
解法二:由韦达定理可知,这两个数是方程
x
2
-4x-12=0
的两个根.
解这个方程,得
x
1
=-2,x
2
=6.
所以,这两个数是-2和6.
说明:从上面的两种解法我们不难发现,解法二(直接利用韦达定理来解题)
要比解法一简捷.
例5 若x
1
和x
2
分别是一元二次方程2x
2
+5x-3=0的两根.
(1)求| x
1
-x
2
|的值;
11
(2)求
2
?
2
的值;
x
1
x
2
(3)x
1
3
+x
2
3

解:∵x
1
和x
2
分别是一元二次方程2x
2
+ 5x-3=0的两根,
53

x
1
?x
2
??

x
1
x
2
??

22
53
(1)∵| x
1
-x
2
|
2
=x
1
2
+ x
2
2
-2 x
1
x
2
=(x
1
+x
2
)
2
-4 x
1
x
2

(?)
2
?4?(?)

22
2549
=+6=,
44
7
∴| x
1
-x
2
|=.
2
5325
(?)
2
?2?(?)?3
222
x< br>1
?x
2
(x
1
?x
2
)?2x
1
x
2
1137
224
(2)
2
?
2
?
22
?

???
2
39
x
1
x
2
x
1
?x
2< br>(x
1
x
2
)9
(?)
2
24
( 3)x
1
3
+x
2
3
=(x
1
+x
2
)( x
1
2
-x
1
x
2
+x
2
2
)=(x
1
+x
2
)[ ( x
1
+x
2
)
2
-3x
1
x
2
]
553215
=(-)×[(-)
2
-3×(
?
)]=-.
2228
说明:一元二次方程的两根之差的绝对值是一个重要的量,今后我们经常会
遇到求这一个量的问题,为了 解题简便,我们可以探讨出其一般规律:
设x
1
和x
2
分别是一元 二次方程ax
2
+bx+c=0(a≠0),则


?b?b
2
?4ac?b?b
2
?4ac

x
2
?

x
1
?
2a2a
?b?b
2
?4ac?b?b2
?4ac2b
2
?4ac
∴| x
1
-x
2
|=
??
2a2a2a
b
2
?4ac?

?

?
|a|a||
于是有下面的结论:
若x
1
和x
2
分别是一元二次方程ax
2
+bx+c=0(a≠0),则 | x
1
-x
2
|=
?
(其
|a|
中Δ= b
2
-4ac).
今后,在求一元二次方程的两根之差的绝对值时,可以直接利用上面的结论.
例6 若关于 x的一元二次方程x
2
-x+a-4=0的一根大于零、另一根小于零,求实数
a的取 值范围.
解:设x
1
,x
2
是方程的两根,则
x
1
x
2
=a-4<0, ①
且Δ=(-1)
2
-4(a-4)>0. ②
由①得 a<4,
17
由②得 a<
4

∴a的取值范围是a<4.
练 习
1.选择题:
(1)方程
x?23kx?3k?0
的根的情况是 ( )
(A)有一个实数根 (B)有两个不相等的实数根
(C)有两个相等的实数根 (D)没有实数根
(2)若关于x的方程mx
2
+ (2m+1)x+m=0有两个不相等的实数根,则实数m的取值
范围是 ( )
(A)m<
22
11
(B)m>-
44
11
(C)m<,且m≠0 (D)m>-,且m≠0
44
2.填空:
(1)若方程x
2
-3x-1=0的两根分别是x
1
和x
2
,则
11
?
= .
x
1
x
2
(2)方程mx2
+x-2m=0(m≠0)的根的情况是 .
(3)以-3和1为根的一元二次方程是 .
3.已知
a
2
?8a?16?|b?1|?0
,当k取何值时, 方程kx
2
+ax+b=0有两个不相等的实
数根?
4.已知方程x
2
-3x-1=0的两根为x
1
和x
2
,求(x
1
-3)( x
2
-3)的值.



习题2.1
A 组
1.选择题:


(1)已知关于x的方程x
2+kx-2=0的一个根是1,则它的另一个根是( )
(A)-3 (B)3 (C)-2 (D)2
(2)下列四个说法:
①方程x
2
+2x-7=0的两根之和为-2,两根之积为-7;
②方程x
2
-2x+7=0的两根之和为-2,两根之积为7;
③方程3 x
2
-7=0的两根之和为0,两根之积为
?
7

3
④方程3 x
2
+2x=0的两根之和为-2,两根之积为0.
其中正确说法的个数是 ( )
(A)1个 (B)2个 (C)3个 (D)4个
(3)关于x的一元二次方程a x
2
-5x+a
2
+a=0的一个根是0,则a的值是( )
(A)0 (B)1 (C)-1 (D)0,或-1
2.填空:
(1)方程kx
2
+4x-1=0的两根之和为-2,则k= . < br>(2)方程2x
2
-x-4=0的两根为α,β,则α
2
+β
2
= .
(3)已知关于x的方程x
2
-ax-3a=0的一个根是-2,则它的另一个根是

(4)方程2x
2
+2x-1=0的两根 为x
1
和x
2
,则| x
1
-x
2
|= .

3.试判定当m取何值时,关于x的一元二次方程m
2
x
2< br>-(2m+1) x+1=0有两个不相等的
实数根?有两个相等的实数根?没有实数根?
4.求一个一元二次方程,使它的两根分别是方程x
2
-7x-1=0各根的相反数.
B 组
1.选择题:
若关于x的方程x
2
+(k
2
-1) x+k+1=0的两根互为相反数,则k的值为
( )
(A)1,或-1 (B)1 (C)-1 (D)0
2.填空:
(1)若m,n是方程x
2
+2005x-1=0的两个实数根 ,则m
2
n+mn
2
-mn的值等
于 . < br>(2)如果a,b是方程x
2
+x-1=0的两个实数根,那么代数式a
3+a
2
b+ab
2
+b
3
的值
是 .
3.已知关于x的方程x
2
-kx-2=0.
(1)求证:方程有两个不相等的实数根;
(2)设方程的两根为x
1
和x
2
,如果2(x
1
+x
2
)>x
1
x2
,求实数k的取值范围.
4.一元二次方程ax
2
+bx+c=0( a≠0)的两根为x
1
和x
2
.求:
(1)| x
1-x
2
|和
(2)x
1
3
+x
2
3< br>.
5.关于x的方程x
2
+4x+m=0的两根为x
1
,x
2
满足| x
1
-x
2
|=2,求实数m的值.
x
1
?x
2

2
C 组
1.选择题:
(1)已知一个直角三角形的两条直角边长恰好是方程2x
2
-8x+7=0的两根,则这个直
角三角形的斜边长等于 ( )
(A)
3
(B)3 (C)6 (D)9
(2)若x
1
,x
2
是方 程2x
2
-4x+1=0的两个根,则
x
1
x
2
?
的值为 ( )
x
2
x
1
3
(A)6 (B)4 (C)3 (D)
2


(3)如果关于x的方程x
2
-2(1-m)x+m
2
=0有两实数根α,β ,则α+β的取值范围为
( )
(A)α+β≥
11
(B)α+β≤ (C)α+β≥1 (D)α+β≤1
22
c
(4)已知a,b,c是ΔABC的三边长,那么方程 cx
2
+(a+b)x+=0的根的情况是
4
( )
(A)没有实数根 (B)有两个不相等的实数根
(C)有两个相等的实数根 (D)有两个异号实数根
2.填空:
若方程x
2
-8x+m=0的两根为 x
1
,x
2
,且3x
1
+2x
2
=18, 则m= .
3. 已知x
1
,x
2
是关于x的一元二次方程 4kx
2
-4kx+k+1=0的两个实数根.
(1)是否存在实数k,使(2x
1
-x
2
)( x
1
-2 x
2
)=-
在,说明理由;
3
成立? 若存在,求出k的值;若不存
2
x
1
x
2
?
-2的 值为整数的实数k的整数值;
x
2
x
1
x
(3)若k=- 2,
?
?
1
,试求
?
的值.
x
2
(2)求使
m
2
?0
. 4.已知关于x的方 程
x?(m?2)x?
4
2
(1)求证:无论m取什么实数时,这个方程总有 两个相异实数根;
(2)若这个方程的两个实数根x
1
,x
2
满足 |x
2
|=|x
1
|+2,求m的值及相应的x
1
,x2

5.若关于x的方程x
2
+x+a=0的一个大于1、零一根小于 1,求实数a的取值范围.

2.2 二次函数
问题1 函数y=ax
2
与y=x
2
的图象之间存在怎样的关系?
1
为了研究这一问题,我们可以先画出y=2x
2
,y=x
2
,y=-2x< br>2
的图象,通
2
2
过这些函数图象与函数y=x的图象之间的关系,推 导出函数y=ax
2
与y=x
2

图象之间所存在的关系.
先画出函数y=x
2
,y=2x
2
的图象.
先列表:
x … 0 1 2 3 …
-3 -2 -1
x
2
… 9 4 1 0 1 4 9 …
2x
2
… 18 8 2 0 2 8 18
从表中不难看出,要得到2x
2
的值,只要把相应
y
2
2
y=x
2

的x的值扩大两倍就可以了.
y=2x
再描点、连线,就分别得到了函数y=x
2
,y=
2x< br>2
的图象(如图2-1所示),从图2-1我们可以
得到这两个函数图象之间的关系:函 数y=2x
2
的图
象可以由函数y=x
2
的图象各点的纵坐标变为原 来

2.2.1 二次函数y=ax
2
+bx+c的图像和性质

O
图2.2-1
x


的两倍得到.
1
2
x,y=-2x
2
的图象,并
2
2
研究这两个函数图象与 函数y=x的图象之间的关系.
通过上面的研究,我们可以得到以下结论:
y
2 2
二次函数y=ax(a≠0)的图象可以由y=x
y=2(x+1)
2
+1
的图象各点的纵坐标变为原来的a倍得到.在
二次函数y=ax
2
(a≠0) 中,二次项系数a决定了
y=2(x+1)
2

图象的开口方向和在同一个坐标系中的开口的
y=2x
2

大小.
问题2 函数y=a(x+h)
2
+k与y=ax
2
的图
象之间存在怎样的关系?
同样地,我们可以利用几个特殊的函数图象
之间的关系来研究它们之 间的关系.同学们可
以作出函数y=2(x+1)
2
+1与y=2x
2
的图象(如
x
-1
O
图2-2所示),从函数的同学我们不难发现,
只要把函数y=2x
2
的图象向左平移一个单位,
图2.2-2
再 向上平移一个单位,就可以得到函数y=2(x
+1)
2
+1的图象.这两个函数图象 之间具有“形状相同,位置不同”的特点.
类似地,还可以通过画函数y=-3x
2
,y=-3(x-1)
2
+1的图象,研究它们
图象之间的相互关系.
通过上面的研究,我们可以得到以下结论:
二次函数y=a(x+h)
2
+ k(a≠0)中,a决定了二次函数图象的开口大小及方向;
h决定了二次函数图象的左右平移,而且“ h正左移,h负右移”;k决定了二次
函数图象的上下平移,而且“k正上移,k负下移”.
由上面的结论,我们可以得到研究二次函数y=ax
2
+bx+c(a≠0)的图象的方
法:
bb
b
2
b
2
222
由于y=ax+bx +c=a(x+
x
)+c=a(x+
x

2
)+c-
aa
4a
4a
b
2
b
2
?4ac

?a(x?)?

2a4a
2
所以,y=ax+bx+c(a≠0 )的图象可以看作是将函数y=ax
2
的图象作左右平
移、上下平移得到的,于是,二 次函数y=ax
2
+bx+c(a≠0)具有下列性质:
b4ac?b
2< br>2
,)
,(1)当a>0时,函数y=ax+bx+c图象开口向上;顶点坐标为
(?
2a4a
bbb
对称轴为直线x=-;当x<
?
时,y随着x 的增大而减小;当x>
?
时,y随着
2a2a2a
b
4ac?b2
x的增大而增大;当x=
?
时,函数取最小值y=.
2a
4a
b4ac?b
2
2
,)
, (2)当a< 0时,函数y=ax+bx+c图象开口向下;顶点坐标为
(?
2a4a
bbb
对称轴为直线x=-;当x<
?
时,y随着x的增大而增大;当x>
?
时, y随着
2a2a2a
同学们也可以用类似于上面的方法画出函数y=


b
4ac?b
2
x的增大而减小;当x=
?
时,函数取最大值y=.
2a
4a
上述二次函数的性质可以分别通过图2.2-3和图2.2-4直观地表示 出来.因此,在
今后解决二次函数问题时,可以借助于函数图像、利用数形结合的思想方法来解决问题.

2

y
b4ac?b
y
b
,)
A
(?

x=-
2a4a
2a





O
x
O
x


b4ac?b
2
b
(?,)
A
x=-

2a4a
2
2a
例1 求二次函数y=

3x-6x+1图象的开口方向、对称轴、顶点坐标、
图2.2-4
图2.2-3
最大值(或最小值),并指出当x取何值时,y随x的增大而增大(或减小)? 并
画出该函数的图象.
解:∵y=

3x
2
-6x+1= -3(x+1)
2
+4,
A(-1,4)
y
∴函数图象的开口向下;
对称轴是直线x=-1;
顶点坐标为(-1,4);
当x=-1时,函数y取最大值y=4;
当x<-1时,y随着x的增大而增大;当x>
D(0,1)
-1时,y随着x的增大而减小;
采用描点法画图,选顶点A(-1,4)),与x轴
O
B
x
C
23?323?3
,0)
和C
(?,0)
,与y轴的交交于点B(
33
点为D(0,1),过这五点画出图象(如图2-5所示).
x=-1
说明:从这个例题可以看出,根据配方后得到的
图2.2-5
性质画函数的图象,可以直接选出关键点,减少了选
点的盲目性,使画图更简便、图象更精确.
例2 某种产品的成本是120元件,试销阶段每件产品的售价x(元)与产
品的日销售量y (件)之间关系如下表所示:
130 150 165
x 元
70 50 35
y件
若日销售量y是销售价x的一次函数,那么,要使每天所获得最大的利润,
每件 产品的销售价应定为多少元?此时每天的销售利润是多少?
分析:由于每天的利润=日销售量y×(销 售价x-120),日销售量y又是销售
价x的一次函数,所以,欲求每天所获得的利润最大值,首先需 要求出每天的利
润与销售价x之间的函数关系,然后,再由它们之间的函数关系求出每天利润的
最大值.
解:由于y是x的一次函数,于是,设y=kx+

B


将x=130,y=70;x=150,y=50代入方程,有


?
70?130k?b,

?
?
50?150k?b,
解得 k=-1,b=200.
∴ y=-x+200.
设每天的利润为z(元),则
z=(-x+200)(x-120)=-x
2
+320x-24000
=-(x-160)
2
+1600,
∴当x=160时,z取最大值1600.
答:当售价为160元件时,每天的利润最大,为1600元.
例3 把二次函数y=x< br>2
+bx+c的图像向上平移2个单位,再向左平移4个单位,得到
函数y=x
2
的图像,求b,c的值.
b
2
b
22
解法一:y=x+ bx+c=(x+)
?c?
,把它的图像向上平移2个单位,再向左平移4
4
2
bb
2
2
个单位,得到
y?(x??4)?c??2
的图 像,也就是函数y=x
2
的图像,所以,
24
?
b
??4?0,
?
?
2

?
解得b=-8,c=14.
2
b
?
c??2?0,
?
4
?
解法二: 把二次函数y=x
2
+bx+c的图像向上平移2个单位,再向左平移4个单位,
得到 函数y=x
2
的图像,等价于把二次函数y=x
2
的图像向下平移2个单位, 再向右平移4
个单位,得到函数y=x
2
+bx+c的图像.
由于把二次 函数y=x
2
的图像向下平移2个单位,再向右平移4个单位,得到函数y=
(x-4 )
2
+2的图像,即为y=x
2
-8x+14的图像,∴函数y=x
2
-8x+14与函数y=x
2
+bx+c
表示同一个函数,∴b=-8,c =14.
说明:本例的两种解法都是利用二次函数图像的平移规律来解决问题,所以,同学们要
牢固掌握二次函数图像的变换规律.
这两种解法反映了两种不同的思维方法:解法一,是直接利用条 件进行正向的思维来解
决的,其运算量相对较大;而解法二,则是利用逆向思维,将原来的问题等价转化 成与之等
价的问题来解,具有计算量小的优点.今后,我们在解题时,可以根据题目的具体情况,选择恰当的方法来解决问题.
例4 已知函数y=x
2
,-2≤x≤a,其中a ≥-2,求该函数的最大值与最小值,并求出函
数取最大值和最小值时所对应的自变量x的值.
分析:本例中函数自变量的范围是一个变化的范围,需要对a的取值进行讨论.
解:(1) 当a=-2时,函数y=x
2
的图象仅仅对应着一个点(-2,4),所以,函数的最
大值和最小值都是4,此时x=-2;
(2)当-2<a<0时,由图2.2-6①可知,当x=-2 时,函数取最大值y=4;当x
=a时,函数取最小值y=a
2

(3)当 0≤a<2时,由图2.2-6②可知,当x=-2时,函数取最大值y=4;当x=0
时,函数取最小 值y=0;
(4)当a≥2时,由图2.2-6③可知,当x=a时,函数取最大值y=a
2
;当x=0时,
函数取
最小值y
y
y
y
y
=0.
2
4
a
4




a
-2
a

2
a
2

x
-2

O
a
2
x




-2

4

O


a
x





O


图2.2-6










说明:在本例中,利用了分类讨论的方法,对a的所有可能情形进行讨 论.此
外,本例中所研究的二次函数的自变量的取值不是取任意的实数,而是取部分实
数来研究 ,在解决这一类问题时,通常需要借助于函数图象来直观地解决问题.
练 习
1.选择题:
(1)下列函数图象中,顶点不在坐标轴上的是 ( )
(A)y=2x
2
(B)y=2x
2
-4x+2
(C)y=2x
2
-1 (D)y=2x
2
-4x
(2)函数y=2(x-1)
2
+2是将函数y=2x
2
( )
(A)向左平移1个单位、再向上平移2个单位得到的
(B)向右平移2个单位、再向上平移1个单位得到的
(C)向下平移2个单位、再向右平移1个单位得到的
(D)向上平移2个单位、再向右平移1个单位得到的
2.填空题
(1)二次函数y=2x
2
-mx+n图象的顶点坐标为(1,-2),则m= ,n= .
(2)已知二次函数y=x
2
+(m-2)x-2m,当m= 时,函数图象的顶点在y轴上;当
m= 时,函数图象的顶点在x轴上;当m= 时,函数图象经过原点.
(3)函数y=-3(x+2)
2
+5的图象的开口向 ,对称轴为 ,顶点坐标
为 ;当x= 时,函数取最 值y= ;当x
时,y随着x的增大而减小.
3.求下列抛物线的开口方向、对称轴、顶点坐标、最大(小) 值及y随x的变化情况,
并画出其图象.
(1)y=x
2
-2x-3; (2)y=1+6 x-x
2

4.已知函数y=-x
2
-2x+ 3,当自变量x在下列取值范围内时,分别求函数的最大值
或最小值,并求当函数取最大(小)值时所对 应的自变量x的值:
(1)x≤-2;(2)x≤2;(3)-2≤x≤1;(4)0≤x≤3.


















2.2.2 二次函数的三种表示方式

通过上一小节的学习,我们知道,二次函数可以表示成以下两种形式:
1.一般式:y=ax
2
+bx+c(a≠0);
2.顶点式:y=a(x+h)
2
+k (a≠0),其中顶点坐标是(-h,k).
除了上述两种表示方法外,它还可以用另一种形式来表示.为了研究另一种
表示方式,我们先来 研究二次函数y=ax
2
+bx+c(a≠0)的图象与x轴交点个数.
当抛物线y=ax
2
+bx+c(a≠0)与x轴相交时,其函数值为零,于是有
ax
2
+bx+c=0. ①
并且方程①的解就是抛物线y=a x
2
+bx+c(a≠0)与x轴交点的横坐标(纵坐
标为零),于是,不难发现,抛 物线y=ax
2
+bx+c(a≠0)与x轴交点个数与方程①
的解的个数有关,而方 程①的解的个数又与方程①的根的判别式Δ=b
2
-4ac有
关,由此可知,抛物线y =ax
2
+bx+c(a≠0)与x轴交点个数与根的判别式Δ=b
2
-4a c存在下列关系:
(1)当Δ>0时,抛物线y=ax
2
+bx+c(a≠0)与x 轴有两个交点;反过来,
若抛物线y=ax
2
+bx+c(a≠0)与x轴有两个交点 ,则Δ>0也成立.
(2)当Δ=0时,抛物线y=ax
2
+bx+c(a≠0)与 x轴有一个交点(抛物线的
顶点);反过来,若抛物线y=ax
2
+bx+c(a≠0 )与x轴有一个交点,则Δ=0也成
立.
(3)当Δ<0时,抛物线y=ax
2+bx+c(a≠0)与x轴没有交点;反过来,若
抛物线y=ax
2
+bx+c (a≠0)与x轴没有交点,则Δ<0也成立.
于是,若抛物线y=ax
2
+bx+ c(a≠0)与x轴有两个交点A(x
1
,0),B(x
2
,0),
则x
1
,x
2
是方程ax
2
+bx+c=0的两根,所以
bc
x
1
+x
2

?
,x
1x
2
=,
aa
bc
即 =-(x
1
+x
2
), =x
1
x
2

aa
bc
所以,y=ax
2
+bx+c=a(
x
2
?x?
)
aa
2
= a[x-(x
1
+x
2
)x+x
1
x
2
]
=a(x-x
1
) (x-x
2
).
由上面的推导过程可以得到下面结论:
若抛物线y=ax
2
+b x+c(a≠0)与x轴交于A(x
1
,0),B(x
2
,0)两点,则其函 数


关系式可以表示为y=a(x-x
1
) (x-x
2
) (a≠0).
这样,也就得到了表示二次函数的第三种方法:
3.交点式:y=a(x-x
1
) (x-x
2
) (a≠0),其中x
1
,x
2
是二次函数图象与x轴交
点的横坐标.
今后,在求二次函数的表达式时,我们可以根据题目所提供的条件,选用一
般式、顶点式、交点 式这三种表达形式中的某一形式来解题.
例1 已知某二次函数的最大值为2,图像的顶点在直线 y=x+1上,并且图象经过点
(3,-1),求二次函数的解析式.
分析:在解本例时,要 充分利用题目中所给出的条件——最大值、顶点位置,从而可以
将二次函数设成顶点式,再由函数图象过 定点来求解出系数a.
解:∵二次函数的最大值为2,而最大值一定是其顶点的纵坐标,
∴顶点的纵坐标为2.
又顶点在直线y=x+1上,
所以,2=x+1,∴x=1.
∴顶点坐标是(1,2).
设该二次函数的解析式为
y?a(x?2)
2
?1(a?0)

∵二次函数的图像经过点(3,-1),

?1?a(3?2)
2
?1
,解得a=-2.
∴二次函 数的解析式为
y??2(x?2)
2
?1
,即y=-2x
2
+8x-7.
说明:在解题时,由最大值确定出顶点的纵坐标,再利用顶点的位置求出顶点坐标,然< br>后设出二次函数的顶点式,最终解决了问题.因此,在解题时,要充分挖掘题目所给的条件,
并巧 妙地利用条件简捷地解决问题.
例2 已知二次函数的图象过点(-3,0),(1,0),且顶点 到x轴的距离等于2,求此二
次函数的表达式.
分析一:由于题目所给的条件中,二次函数的 图象所过的两点实际上就是二次函数的图
象与x轴的交点坐标,于是可以将函数的表达式设成交点式.
解法一:∵二次函数的图象过点(-3,0),(1,0),
∴可设二次函数为y=a(x+3) (x-1) (a≠0),
展开,得 y=ax
2
+2ax-3a,
?12a
2
?4a
2
??4a
, 顶点的纵坐标为
4a
由于二次函数图象的顶点到x轴的距离2,
∴|-4a|=2,即a=
?
1

2
1
2
313
x?x?
,或y=-
x
2
?x?

2222
所以,二次函数的表达式为y=
分析二:由于二次函数的图象过点(-3, 0),(1,0),所以,对称轴为直线x=-1,又
由顶点到x轴的距离为2,可知顶点的纵坐标为2 ,或-2,于是,又可以将二次函数的表达
式设成顶点式来解,然后再利用图象过点(-3,0),或( 1,0),就可以求得函数的表达式.
解法二:∵二次函数的图象过点(-3,0),(1,0),
∴对称轴为直线x=-1.
又顶点到x轴的距离为2,
∴顶点的纵坐标为2,或-2.
于是可设二次函数为y=a(x+1)
2
+ 2,或y=a(x+1)
2
-2,
由于函数图象过点(1,0),
∴0=a(1+1)
2
+2,或0=a(1+1)
2
-2.


∴a=-
11
,或a=.
22
11
(x+ 1)
2
+2,或y=(x+1)
2
-2.
22
说明:上 述两种解法分别从与x轴的交点坐标及顶点的坐标这两个不同角度,
利用交点式和顶点式来解题,在今后 的解题过程中,要善于利用条件,选择恰当
的方法来解决问题.
例3 已知二次函数的图象过点(-1,-22),(0,-8),(2,8),求此二次函
数的表达式.
解:设该二次函数为y=ax
2
+bx+c(a≠0).
由函数图象过点(-1,-22),(0,-8),(2,8),可得
?
?22?a?b?c,
?

?
?8?c,
?
8?4a?2b?c,
?
所以,所求的二次函数为y=

解得 a=-2,b=12,c=-8.
所以,所求的二次函数为y=-2x
2
+12x-8.
通过上面的几道例题 ,同学们能否归纳出:在什么情况下,分别利用函数的
一般式、顶点式、交点式来求二次函数的表达式?

练 习
1.选择题:
(1)函数y=-x
2
+x-1图象与x轴的交点个数是 ( )
(A)0个 (B)1个 (C)2个 (D)无法确定
1
(2)函数y=- (x+1)
2
+2的顶点坐标是 ( )
2
(A)(1,2) (B)(1,-2) (C)(-1,2) (D)(-1,-2)
2.填空:
(1)已知二次函数的图象 经过与x轴交于点(-1,0)和(2,0),则该二次函数的解析式可
设为y=a (a≠0) .
(2)二次函数y=-x
2
+23x+1的函数图象与x轴两交点之间的距离为 .
3.根据下列条件,求二次函数的解析式.
(1)图象经过点(1,-2),(0,-3),(-1,-6);
(2)当x=3时,函数有最小值5,且经过点(1,11);
(3)函数图象与x轴交于两点(1-2,0)和(1+2,0),并与y轴交于(0,-2).


2.2.3 二次函数的简单应用


一、函数图象的平移变换与对称变换
1.平移变换

问题1 在把二次函数的图象进行平移时,有什么特点?依据这一特点,可以怎样来研
究二次函数的图象平移?
我们不难发现:在对二次函数的图象进行平移时,具有这样的特点——只改变函数图象
的位置 、不改变其形状,因此,在研究二次函数的图象平移问题时,只需利用二次函数图象
的顶点式研究其顶点 的位置即可.


例1 求把二次函数y=x
2
-4x+3的图象经过 下列平移变换后得到的图象所对应的函数
解析式:
(1)向右平移2个单位,向下平移1个单位;
(2)向上平移3个单位,向左平移2个单位.
分析:由于平移变换只改变函数图象的位置而不改变其形状(即不改变二次
项系数),所以只 改变二次函数图象的顶点位置(即只改变一次项和常数项),所
以,首先将二次函数的解析式变形为顶点 式,然后,再依据平移变换后的二次函
数图象的顶点位置求出平移后函数图像所对应的解析式.
解:二次函数y=2x
2
-4x-3的解析式可变为
y=2(x-1)
2
-1,
其顶点坐标为(1,-1).
(1)把函 数y=2(x-1)
2
-1的图象向右平移2个单位,向下平移1个单位
后,其函数图 象的顶点坐标是(3,-2),所以,平移后所得到的函数图象对应的
函数表达式就为
y=2(x-3)
2
-2.
(2)把函数y=2(x-1)
2
- 1的图象向上平移3个单位,向左平移2个单位
后,其函数图象的顶点坐标是(-1, 2),所以,平移后所得到的函数图象对应
的函数表达式就为
y=2(x+1)
2
+2.


2.对称变换


问题2 在把二次函数的图象关于与坐标轴平行的直线进行对称变换时,有什么特点?依据这一特点,可以怎样来研究二次函数的图象平移?
我们不难发现:在把二次函数的图象关于 与坐标轴平行的直线进行对称变换时,具有这
样的特点——只改变函数图象的位置或开口方向、不改变其 形状,因此,在研究二次函数图
象的对称变换问题时,关键是要抓住二次函数的顶点位置和开口方向来解 决问题.
例2 求把二次函数y=2x
2
-4x+1的图象关于下列直线对称后 所得到图象对应的函数
解析式:
y
(1)直线x=-1;
x=-1
(2)直线y=1.
解:(1)如图2.2-7,把二次函
数y=2x
2
-4x+1的图象关于直线x=
-1作对称变换后,只改变图象的顶点
位置,不改变其 形状.
O
x
22
由于y=2x-4x+1=2(x-1)-
A(1,-1)
A
1
(-3,-1)
2
1,可知,函数y=2x-4x+1图象的
顶点为A(1,-1),所以,对称后所得到
图2.2-7
图象的顶点为A
1
(-3,1),所以,二
次函数y=2x
2
-4x+1的图象关于直线x= -1对称后所得到图象的函数解析式
为y=2(x+3)
2
-1,即y=2x
2
+12x+17.
(2)如图2.2-8,把二次函数y=2x
2
-4x
y
+1的图象关于直线x=-1作对称变换后,只改
B(1,3)
变图象的顶点位置和开口方向,不改变其形状.
由于y=2x
2
-4x+1=2(x-1)
2
-1,可知,函
y=1
数y=2x
2
-4x+1图象的顶点为A(1,-1),所以,
对称后所得到 图象的顶点为B(1,3),且开口向

O
A(1,-1)
图2.2-8
x


下,所以,二次函数y=2x
2
-4x+1的图象关于直 线y=1对称后所得到图象的
函数解析式为y=-2(x-1)
2
+3,即y=-2x
2
+4x+1.
二、分段函数

一般地,如果自变量在不同取值 范围内时,函数由不同的解析式给出,这种函数,
叫作分段函数.

例3 在国 内投递外埠平信,每封信不超过20g付邮资80分,超过20g不
超过40g付邮资160分,超过4 0g不超过60g付邮资240分,依此类推,每封
xg(0<x≤100)的信应付多少邮资(单位: 分)?写出函数表达式,作出函数图象.
分析:由于当自变量x在各个不同的范围内时,应付邮资的数 量是不同的.所
以,可以用分段函数给出其对应的函数解析式.在解题时,需要注意的是,当x
在各个小范围内(如20<x≤40)变化时,它所对应的函数值(邮资)并不变化
(都是160分).
解:设每封信的邮资为y(单位:分),则y是x的函数.这个函数的解析式

?
80,x?(0,20]
?
160x?(20,40]
?
?

y?
?
240,x?940,

80]
?
320x ?(60,80]
?
?
?
400,x?(80,100]

由上述的函数解析式,可以得到其图象如图2.2-9所示.

y(分)
400
320
240
160
80
O
20 40 60 80 100
x(克)
图2.2-9
例4如图9-2所示,在边 长为2的正方形ABCD的边上有一个动点P,从点A出发沿
折线ABCD移动一周后,回到A点.设点 A移动的路程为x,ΔPAC的面积为y.
(1)求函数y的解析式;
D
C
(2)画出函数y的图像;
(3)求函数y的取值范围.





分析:要对点P所在的位置进行分类讨论.
解:(1)①当点P在线段AB上移动(如图2.2
10①),即0<x≤2时,
P
A

2.2

10
B


y=
AP?BC
=x;
②当点P在线段BC上移动(如图2.2-10②),即2<x<4时,
y=
PC?AB

(4?x)?2
=4-x;
③当点P在线段CD上移动(如图2.2-10③),即4<x≤6时,
y=
PC?AD

(x?4)?2
=x-4;
④当点P在线段DA上移动(如图2.2-10④),即6<x<8时,
y=

1< br>2
1
2
1
2
1
2
1
2
11
PA?CD

(8?x)?2
=8-x.
22
综上所述,函数f(x)的解析式为
D
C D P C
C
D
C
D
P
P
A
P

B
A

B
A
B
A


B

2.2

10
?
x, 0?x?2,
?
4?x, 2?x?4,
?
y?
?

?
x?4, 4?x?6,
?
?
8?x, 6?x?8.



(2)函数y的图像如图2.2-11所示
(3)由函数图像可知,函数y的取值范围是0<y≤2.
y
2
O
2
4 6 8
x
图2.2-11


练 习
1.选择题:
(1)把函数y=-(x

1)
2
+4 的图象向左平移2个单位,向下平移3个单位,所得图象对
应的解析式为 ( )
(A)y= (x+1)
2
+1 (B)y=-(x+1)
2
+1
(C)y=-(x-3)
2
+4 (D)y=-(x-3)
2
+1


(2)把函数y=-2(x+3)< br>2
+3的图象关于直线x=-1对称后,所得图象对应的函数解析
式为 ( )
(A)y=-2 (x+1)
2
+3 (B)y=-2 (x-1)
2
+3
(C)y=2 (x+1)
2
-3 (D)y=-2 (x-1)
2
-3
(3)把函数y=2(x-3)
2
+3的 图象关于直线y=2对称后,所得图象对应的函数解析式为
( )
(A)y=-2 (x+1)
2
+3 (B)y=-2 (x-3)
2
+3
(C)y=-2 (x-3)
2
+1 (D)y=-2 (x-3)
2
-3
2.填空:
(1)已知函数
y?
?
x?2,
?
x?2,
则当x=4时,y= ;当x=-4时,y= .
?
?2x?4,x?2< br>(2)把二次函数y=-2x
2
+43x+1的函数图象向 平移 单位后,得到的图象所对
应的解析式为y=-2x
2
+7;再向 平移 个单位后,得到的图象所对应的
解析式为y=-2x
2
+1;再将其关于 对称后得到的图象所对应的函数
解析式为y=2x
2
+5.
3.已知点P是 边长为1的正方形ABCD的顶点A出发,顺次经过B,C,D移动一周后回
到点A,设x表示点P的行 程,y表示线段PA的长,试求y关于x的函数.

习题2.2
A 组
1.选择题:
(1)把函数y=-(x

1)
2
+4的图象的顶点坐标是 ( )
(A)(-1,4) (B)(-1,-4) (C)(1,-4) (D)(1,4)
(2)函数y=

x
2
+4x+6的最值情况是 ( )
(A)有最大值6 (B)有最小值6
(C)有最大值10 (D)有最大值2
(3)函数y=2x
2
+4x-5中,当-3≤x<2时,则y值的取值范围是 ( )
(A)-3≤y≤1 (B)-7≤y≤1
(C)-7≤y≤11 (D)-7≤y<11
2.填空:
(1)已知某二次函数的图象与x轴交于A(-2 ,0),B(1,0),且过点C(2,4),则该二
次函数的表达式为 .
(2)已知某二次函数的图象过点(-1,0),(0,3),(1,4),则该函数的表达式为 .
3.把已知二次函数y=2x
2
+4x+ 7的图象向下平移3个单位,在向右平移4个单位,求所
得图象对应的函数表达式.
4.已知 某二次函数图象的顶点为A(2,-18),它与x轴两个交点之间的距离为6,求该
二次函数的解析式 .
B 组
1.填空:
(1)将二次函数y=2x
2
+4x+ 7的图象关于直线x=1对称后,所得图象对应的函数表达
式为 ;再将该图象关于直线y=2对称,所得图象对应的函数表
达式为 .
(2)函数y=-x
2
+4x+2在0≤x≤3上的最大值为 ,最小值为 .
(3)函数y=x
2
+4ax+2在x≤6时,y随着x的 增大而减小,则a的取值范围是 .
2. 某市空调公共汽车的票价按下列规则制定:
(1)5km以内,票价2元;
(2)5km以上,每增加5km,票价增加1元(所增加的里程,不足5km的按5km的
按5km计算).


已知两个相邻的公共汽车站间相距1km,如 果沿途(包括起点站和终点站)有21个汽
车站,请根据题意,写出票价与里程之间的函数关系式,并画 出函数图象.

C 组
11
1.已知二次函数y=a(x- )
2
+25的最大值为25,且方程a(x- )
2
+25=0两根的立方和为
22
19,求函数表达式.
2.如 图,某农民要用12m的竹篱笆在墙边围出一块一面为
墙、另三面为篱笆的矩形地供他圈养小鸡.已知墙 的长
度为6m,问怎样围才能使得该矩形面积最大?


3.把二次函数y =

2x
2
-4x+3的图象向下平移3个单位后,
所得图象记为C
1
;再把C
1
向右平移2个单位的图象再将C
2
沿着直线y =2对称得图象
C
3
;最后,再将C
3
以原点为对称中心作其中心对 称图形得到C
4
.分别求出C
1
,C
2

C
3
,C
4
所对应函数的表达式.


第2题
2.3 方程与不等式
2.3.1 二元二次方程组解法
方程

x
2
?2xy?y
2
?x?y?6?0

是一个含 有两个未知数,并且含有未知数的项的最高次数是2的整式方程,这样的
方程叫做二元二次方程.其中< br>x
2
,
2xy
,
y
2
叫做这个方程的二次项 ,
x
,
y
叫做一次
项,6叫做常数项.
我们看下面的两个方程组:
?
x
2
?4y
2
?x?3y?1?0,

?
?
2x?y?1?0;
22
?
?
x?y?20,

?
2

2
?
?
x ?5xy?6y?0.
第一个方程组是由一个二元二次方程和一个二元一次方程组成的,第二个方
程组是由两个二元二次方程组成的,像这样的方程组叫做二元二次方程组.
下面我们主要来研究由一个二元二次方程和一个二元一次方程组成的方程
组的解法.
一个二元二次方程和一个二元一次方程组成的方程组一般可以用代入消元
法来解.
例1 解方程组
?
x
2
?4y
2
?4?0,


?


?
x?2y?2?0.
分析:二元二次方程组对我 们来说较为生疏,在解此方程组时,可以将其转化为我们熟
悉的形式.注意到方程②是一个一元一次方程 ,于是,可以利用该方程消去一个元,再代入


到方程①,得到一个一元二次方程,从而将 所求的较为生疏的问题转化为我们所熟悉的问题.
解:由②,得
x=2y+2, ③

把③代入①,整理,得
8y
2
+8y=0,
即 y(y+1)=0.
解得 y
1
=0,y
2
=-1.
把y
1
=0代入③, 得 x
1
=2;
把y
2
=-1代入③, 得x
2
=0.
所以原方程组的解是
?
x?2,
?
x?0,

?
1

?
2

?
y
1?0,
?
y
2
??1.
说明:在解类似于本例的二元二次方程组 时,通常采用本例所介绍的代入消
元法来求解.
例2 解方程组
?
x?y?7,


?


?
xy?12.
解法一:由①,得

x?7?y.

把③代入②,整理,得

y
2
?7y?1?2

0
解这个方程,得

y
1
?3,y
2
?4


y
1
?3
代入③,得
x
1
?4


y2
?4
代入③,得
x
2
?3

所以原方程的解是
?
x
2
?3,
?
x?4,

?
1

?

?
y
2
?4 .
?
y
1
?3,
解法二:对这个方程组,也可以根据一元二次方程的 根与系数的关系,把
x,y
看作一个一元二次方程的两个根,通过解这个一元二次方程来求x,y

这个方程组的
x,y
是一元二次方程
2

0

z
2
?7z?1?
的两个根,解这个方程,得
z?3,或
z?4

所以原方程组的解是
?
x?4,
?
x
2
?3,

?
1

?

?
y
1
?3;
?
y
2
?4.
练 习
1.下列各组中的值是不是方程组
?
x
2
?y
2
?13,

?
?
x?y?5


的解?
?
x?2,?
x?3,
?
x?1,
?
x??2,
(1)
?
(2)
?
(3)
?
(4)
?
?
y?3;
?
y?2;
?
y?4;
?
y??3 ;
2.解下列方程组:
?
y?x?5,
?
x?y?3,
(1)
?
2
(2)
?
2
xy??10;
?
?
x?y?625;
?
x
2
y
2
2
?
?1,
?
y?2x,
?
?
(3)
?
5
(4)
?
2

4
2
?
?
x?y?8.?
y?x?3;
?

2.3.2 一元二次不等式解法
二次函数y=x
2
-x-6的对应值表与图象如下:
x -3 -2 -1 0 1 2
y 6 0 -4 -6 -6 -4
由对应值表及函数图象(如图2.3-1)可知
当x=-2,或x=3时,y=0,即x
2
-x=6=0;
当x<-2,或x>3时,y>0,即x
2
-x-6>0;
y
y>0

y=x
2
-x-6

y>0
3
0
4
6
-2
O
y<0
3
x
图2.3-1
当-2<x<3时,y<0,即x
2
-x-6<0.
这就是说,如果抛物线y= x
2
-x-6与x轴的交点是(-2,0)与(3,0),那么
一元二次方程
x
2
-x-6=0
的解就是
x
1
=-2,x
2
=3;
同样,结合抛物线与x轴的相关位置,可以得到
一元二次不等式
x
2
-x-6>0
的解是


x<-2,或x>3;
一元二次不等式
x
2
-x-6<0
的解是
-2<x<3.
上例表明:由抛物线与x轴的交点 可以确定对应的一元二次方程的解和对应
的一元二次不等式的解集.
那么,怎样解一元二次不等式ax
2
+bx+c>0(a≠0)呢?
我们可以用 类似于上面例子的方法,借助于二次函数y=ax
2
+bx+c(a≠0)的图象来解
一元二次不等式ax
2
+bx+c>0(a≠0).
为了方便起见,我们先来研究二次项系数a>0时的一元二次不等式的解.
我们知道,对于一元二次方 程ax
2
+bx+c=0(a>0),设△=b
2
-4ac,它的解的情形按 照△
>0,△=0,△<0分别为下列三种情况——有两个不相等的实数解、有两个相等的实数解
和没有实数解,相应地,抛物线y=ax
2
+bx+c(a>0)与x轴分别有两个公共点、 一个公
共点和没有公共点(如图2.3-2所示),因此,我们可以分下列三种情况讨论对应的一元二次
不等式ax
2
+bx+c>0(a>0)与ax
2
+bx+c<0( a>0)的解.
(1)当Δ>0时,抛物线y=ax
2
+bx+c(a>0)与x 轴有两个公共点(x
1
,0)和(x
2
,0),
y
y
y
x
1
O
x
2
x
O
x
1
= x
2
x

O

x


图2.3-2
方程ax
2
+bx+ c=0有两个不相等的实数根x
1
和x
2
(x
1
<x
2
),由图2.3-2①可知
不等式ax
2
+bx+c>0的解为
x<x
1
,或x>x
2

不等式ax
2
+bx+c<0的解为
x
1
<x<x
2

(2)当Δ=0时,抛物线y=ax< br>2
+bx+c(a>0)与x轴有且仅有一个公共点,方程ax
2
b
+ bx+c=0有两个相等的实数根x
1
=x
2
=- ,由图2.3-2②可知
2a
不等式ax
2
+bx+c>0的解为
b
x≠-
2a

不等式ax
2
+bx+c<0无解.
(3)如果△<0,抛物线y=ax
2
+bx+c(a>0)与x轴没有公共点,方 程
ax
2
+bx+c=0没有实数根

由图2.3-2③可知
不等式ax
2
+bx+c>0的解为一切实数;
不等式ax
2
+bx+c<0无解.
今后,我们在解一元二次不等式时, 如果二次项系数大于零,可以利用上面
的结论直接求解;如果二次项系数小于零,则可以先在不等式两边 同乘以-1,
将不等式变成二次项系数大于零的形式,再利用上面的结论去解不等式.


例3 解不等式:
(1)x
2
+2x-3≤0; (2)x

x
2
+6<0;
(3)4x
2
+4x+1≥0; (4)x
2
-6x+9≤0;
(5)-4+x-x
2
<0.
解:(1)∵Δ>0,方程x
2
+2x-3=0的解是
x
1
=-3,x
2
=1.
∴不等式的解为
-3≤x≤1.
(2)整理,得
x
2
-x

6>0.
∵Δ>0,方程x
2
-x

6=0的解为
x
1
=-2,x
2
=3.
∴所以,原不等式的解为
x<-2,或x<3.
(3)整理,得
(2x+1)
2
≥0.
由于上式对任意实数x都成立,
∴原不等式的解为一切实数.
(4)整理,得
(x-3)
2
≤0.
由于当x=3时,(x-3)
2
=0成立;而 对任意的实数x,(x-3)
2
<0都不成立,
∴原不等式的解为
x=3.
(5)整理,得
x
2
-x+4>0.
Δ<0,所以,原不等式的解为一切实数.
2
例4 已知不等式
ax?b x?c?0(a?0)
的解是
x?2,或x?3
求不等式
bx
2?ax?c?0
的解.
2
解:由不等式
ax?bx?c?0(a?0)
的解为
x?2,或x?3
,可知
a?0
,且方程
ax2
?bx?c?0
的两根分别为2和3,
bc
?6
, ∴
??5,
aa
bc
?6
. 即
??5,
aa
2
由于
a?0
,所以不等式
bx?ax?c ?0
可变为
b
2
c

x?x??0

aa
2
即 -
5x?x?6?0,

整理,得

5x?x?6?0,
2
2

所以,不等式
bx?ax?c?0
的解是
6
x<-1,或x> .
5
说明:本例利用了方程与不等式之间的相互关系来解决问题.
2
例5 解关于
x
的一元二次不等式
x?ax?1?0(a
为实数).


分析 对于一元二次不等式,按其一般解题步骤,首先应该将二次项系数变成正数,本 题
已满足这一要求,欲求一元二次不等式的解,要讨论根的判别式
?
的符号,而这里的
?
是关于
未知系数的代数式,
?
的符号取决于未知系数的取值范围 ,因此,再根据解题的需要,对
?

符号进行分类讨论.
2
解:
?
?a?4
,
①当
??0,即a??2或a?2时,

方程x
2
?ax?1?0的解是

?a?a
2
?4 ?a?a
2
?4
x
1
?,x
2
?.
22
?a?a
2
?4?a?a
2
?4
所以,原不等式的 解集为
x?

,

x?
22
②当Δ=0,即a=±2时,原不等式的解为
a
x≠- ;
2
③当
??0,即?2?a?2时,原不等式的解
为一切实数 .
综上,当a≤-2,或a≥2时,原不等式的解是
?a?a
2
?4?a?a
2
?4

x?

,

x?
22

?2?a?2时,原不等式的解
为一切实数.
例6 已知函数y=x
2
-2ax+1(a为常数)在-2≤x≤1上的最 小值为n,试将n用a表示
出来.
分析:由该函数的图象可知,该函数的最小值与抛物线的 对称轴的位置有关,于是需要
对对称轴的位置进行分类讨论.
解:∵y=(x

a)
2
+1-a
2

∴抛物线y=x
2
-2ax+1的对称轴方程是x=a.
(1)若-2≤a≤1,由图2.3-3①可知,当x=a时,该函数取最小值
n=1-a
2

(2)若a<-2时, 由图2.3-3②可知, 当x=-2时,该函数取最小值
n=4a+5;
(2)若a>1时, 由图2.3-3③可知, 当x=1时,该函数取最小值
n=-2a+2.
综上,函数的最小值为
?
4a?5,a??2,
?
2

n?
?
1?a,?2?a?1,

?
?2a?2,a?1.
?
y
x=a
x=a
y
y
x=a
-2
O
1
x
-2
O
1
x
-2
O
1
x


图2.3-3


练 习
1.解下列不等式:
(1)3x
2
-x-4>0; (2)x
2
-x-12≤0;
(3)x
2
+3x-4>0; (4)16-8x+x
2
≤0.

22
2.解关于x的不等式x+2x+1-a
≤0(a为常数).

习题2.3
A 组
1.解下列方程组:
?
x
2?
(x?3)
2
?y
2
?9,
?
?y
2
?1,
(1)
?
4
(2)
?

?
x?2y?0;
?
x?y?2?0;
?
22
?
?
x?y?4,
(3)
?
2

2
?
?
x?y?2.
2.解下列不等式:
(1)3x
2
-2x+1<0; (2)3x
2
-4<0;

(3)2x-x
2
≥-1; (4)4-x
2
≤0.

B 组
1.
m
取什么值时,方程组
?
y
2
?4x,

?
?
y?2x?m
有一个实数解?并求出这时方程组的解.
2.解关于x的不等式x
2
-(1+a)x+a<0(a为常数).

C 组
1.已知关于x不等式2x+bx-c>0的解为x<-1,或x>3.试解关于x的不等式
bx
2
+cx+4≥0.
2.试求关于x的函数y=-x
2
+mx+2在0≤x≤2上的最大值k.

2


第三讲 三角形与圆
3.1 相似形
3.1.1.平行线分线段成比例定理
在解决几何问题时,我们常涉及到一些线段的长度、长 度比的问题.在数学
学习与研究中,我们发现平行线常能产生一些重要的长度比.
在一张方格 纸上,我们作平行线
,直线
a

l
1
,l
2
,l
3
l
1
,l
2
,l
3
(如图3.1 -1)

A,B,C

AB?2,BC?3
,另作直线
'< br>不难发现交
l
1
,l
2
,l
3
于点
A',B',C

A'B'AB2
??.

B'C'BC3
图3.1-1
我们将这个结论一般化,归纳出平行线分线段成比例定理:
三条平行线截两条直线,所得的对应线段成比例.
ABDEABDE
=?
如 图3.1-2,
l
1
l
2
l
3
,有.当然,也可以 得出.在运用该
BCEFACDF
定理解决问题的过程中,我们一定要注意线段之间的对应关系 ,是“对应”线段成
比例.

b
例1 如图3.1-2,
l
1
l
2
l
3


AB=2,BC=3,DF=4,

DE,EF
.

Ql
1
l
2
l
3
,
ABDE2
= =

,
BCEF3
28312
DE?DF?,EF?DF?.

2?352?35

图3.1-2
例2 在
?ABC
中 ,
D,E
为边
AB,AC
上的点,
DEBC

求证:
ADAEDE
??
.
ABACBC
证明(1)
?DEBC,??ADE??ABC,?AED??ACB,

??ADE

?ABC

?
ADAEDE
??.

ABACBC
证明(2) 如图3.1-3,过
A
作直线
lBC

?lDEBC,

?
ADAE
?
.
ABAC



E< br>作
EFAB

AB

D
,得
?BDEF
因而
DE?BF.

AEBFDE
图3.1-3
?EFAB,???.

ACBCBC
ADAEDE
???.

ABACBC

从上例可以得出如下结论:
平行于三角形的一边的直线截其它两边(或两边的延长线),所得的对应线
段成比例.
平行于三角形的一边,并且和其它两边相交的直线,所截得的三角形的三边
与原三角形的三边对应成比 例.

例3 已知
?ABC

D

AC
上,
AD:DC?2:1
,能否在
AB
上找到一点
E
,使
得线段
EC
的中点在
BD
上.
解 假设能找到,如图3 .1-4,设
EC

BD

F
,则
F
为< br>EC
的中点,作
EGAC

BD

G
.
?EGAC,EF?FC

?
?EGF??CDF
,且
EG?DC

1BEEG1
?EGAD,?BEG??BAD

??,

2BAAD2
?E

AB
的中点.
可见,当
E

AB
的中点时,
EC
的中点在
BD
上.
图3.1-4
我们在探索一些存在性问题时,常常先假设其存在,再解之,有解则存在,无解或矛盾则不存在.
ABBD
=
例4 在
VABC
中,
AD

?BAC
的平分线,求证:.
ACDC
证明 过C作CEAD,交BA延长线于E,
BABD
QADCE,=.

AEDC
Q
AD平分
衆BAC,?BAD

ADCE

?BAD
?DAC,

行E,DAC=?ACE,

?E

?ACE,即AEAC,

图3.1-5
ABBD
=
.
ACDC
例4的结论也称为 角平分线性质定理,可叙述为角平分线分对边成比例(等
于该角的两边之比).

练习1


1.如图3.1-6,
l
1
l
2< br>l
3
,下列比例式正确的是
( )
AD
=
A.
DF
CE
=
C.
DF


2.
CEAD
=
B.
BCBE
ADAF
=
D.
BCDF
BC

AF
BE

CE
图3.1-6
如图3.1-7,

BF
.
DEBC,EFAB,AD=5cm,DB=3cm,FC=2cm,

图3.1-7



3.如图,在
VABC
中,AD是角BAC的平分< br>线,AB=5cm,AC=4cm,BC=7cm,求BD的长.


图3.1-8




4.如图,在
VABC< br>中,
?BAC
的外角平分
线
AD

BC
的延 长线于点
D
,求证:
ABBD
=
.
ACDC

图3.1-9

5.如图,在
VABC
的边AB、AC上分别取D 、E两点,使BD=CE,DE延长线
DFAC
=
交BC的延长线于F.求证:.
EFAB






图3.1-10


3.1.2.相似形
我们学过三角形相似的判定方法,想一想,有哪些 方法可以判定两个三角形


相似?有哪些方法可以判定两个直角三角形相似?
例5 如图3.1-11,四边形ABCD的对角线相交于点O,
?BAC
?DA C?CBD
.
证明 在
VOAB

VODC
中,
?AOB行DOC,OAB=?ODC,

?CDB
,求证:

VOAB

VODC

OAOBOAOD
==
,即.
ODOCOBOC

VOA D

VOBC
中,
?AOD

VOAD

V OBC


?DAC?CBD
.
?BOC

图3.1-11
例6 如图3.1-12,在直角三角形ABC中,
?BAC< br>为直角,
AD^BC于D
.
求证:(1)
AB
2
= BD?BC

AC
2
=CD?CB

(2)
AD
2
=BD?CD

证明 (1)在
RtVBAC

RtVBDA
中,
?B?B
, < br>BABC
VBAC

VBDA

=,即AB
2
=BD?BC.

BDBA
同理可证得
AC
2
=CD?CB
.
(2 )在
RtVABD

RtVCAD
中,
?C
RtVABD< br>∽
RtVCAD


图3.1-12
90
o
-?CAD?BAD

ADDC
=,即AD
2
=BD?DC.

BDAD
我们把这个例题的结论称为射影定理,该定理对直角三角形的运算很有用.
例7 在
VABC
中,
AD^BC于D,DE^AB于E,DF^AC于 F
,求证:
AE?ABA?F
.
AC
证明
QAD^BC


VADB
为直角三角形,又
DE^AB

由射影定理,知
AD
2
=AE?AB
.
同理可得
AD
2
=AF?AC
.
AE?ABAF?AC.
图3.1-13
例8 如图3.1-14,在
VABC
中,
D< br>为边
BC
的中点,
E
为边
AC
上的任意一点,
BE

AD
于点
O
.某学生在研究这一问题时,发现了如下的事实 :


图3.1-14

(1) 当
AE11AO22
====
时,有.(如图3.1-14a)
AC21+ 1AD32+1
AE11AO22
====
时,有.(如图3.1-14b)
AC31+2AD42+2
AE11AO22
====
时,有.(如图3.1-14 c)
AC41+3AD52+3
AE1
=
时,参照上述研究结论,请你猜想 用n表示
AC1+n
(2) 当
(3) 当
在图3.1-14d中,当
AO
的一般结论,并给出证明(其中n为正整数).
AD
解:依题意可以猜想:当
AE1AO2
==
时,有成立.
AC1+nAD2+n
证明 过点D作DFBE交AC于点F,
Q
D是BC的中点,

F是EC的中点,

AE1
AE1AE2AE2
=

==,=.
. 可知
ECn
AC1+nEFnAF2+n

AOAE2
==.

ADAF2+n
AO1AE
=
,则
=?

ADnA C
本题中采用了从特殊到一般的思维方法.我们常从一些具体的问题中发现一
些规律,进而作出 一般性的猜想,然后加以证明或否定 .数学的发展史就是不断
探索的历史.

练习2
1.如图3.1-15,D是
VABC
的边AB上的一点,过D点< br>作DEBC交AC于E.已知AD:DB=2:3,则
想一想,图3.1-14d中,若
等于( )
S
VADE
:S
四边形BCDE


A .
2:3
B.
4:9
C.
4:5
D.
4:21

图3.1-15

2.若一个梯形的中位线长为1 5,一条对角线把中位线分成两条线段.这两条线段
的比是
3:2
,则梯形的上、下底 长分别是__________.
3.已知:
VABC
的三边长分别是3,4,5, 与其相似的
VA'B'C'
的最大边长是
15,求
?A'B'C'
的 面积
S
VA'B'C'
.


4.已知:如图3.1-16,在四边形ABCD 中,E、F、
G、H分别是AB、BC、CD、DA的中点.
(1) 请判断四边形EFGH是什么四边形,试说明
理由;
(2) 若四边形ABCD是平行四边形 ,对角线AC、
BD满足什么条件时,EFGH是菱形?是正方
图3.1-16
形?

5.如图3.1-17,点C、D在线段AB上,
VPCD

等边三角形,
VACP
(1) 当AC、CD、DB满足怎样的关系时,

VPDB

(2) 当
VACP

VPDB
时,求
?APB
的度数.
图3.1-17






习题3.1
A组
VABC
中,1.如图3.1-18,AD=DF=FB ,AE=EG=GC,
FG=4,则( )
A.DE=1,BC=7 B.DE=2,BC=6
C.DE=3,BC=5 D.DE=2,BC=8

图3.1-18



2.如图3.1-19,BD、 CE是
VABC
的中线,P、Q分别
是BD、CE的中点,则
PQ:BC等于( )
A.1:3 B.1:4
C.1:5 D.1:6



图3.1-19



3.如图3.1-20,
YABCD
中,E是AB延长线上一点,DE交BC于点F, 已知
BE:AB=2:3,
S
VBEF
=4
,求
S
VCDF
.




4.如图3.1-21,在矩形AB CD中,E是CD的中点,
BE^AC
交AC于F,过F作FGAB交AE于G,
求证 :
AG
2
=AF?FC
.




图3.1-20
图3.1-21
B组
1.如图3.1-22,已知VABC
中,AE:EB=1:3,BD:DC=2:
EFAF
+
1,A D与CE相交于F,则的值为( )
FCFD
13
A. B.1 C. D.2
22

图3.1-22

2.如图3. 1-23,已知
VABC
周长为1,连结
VABC
三边的中点构成第二个三角 形,
再连结第二个对角线三边中点构成第三个三角形,依
此类推,第2003个三角形周长为( )
1111
A. B. C.
2002
D.
2003

2002200322


图3.1-23

3.如图3.1-24,已知M为
YABCD
的 边AB的中
点,CM交BD于点E,则图中阴影部分的面积

YABCD
面积 的比是( )
1115
A. B. C. D.
34612

图3.1-24


4.如图3.1-25,梯形ABCD中,ADBC,EF经过梯形对角线的交点O,且EFAD.


(1) 求证:OE=OF;
OEOE
+
(2) 求的值;
ADBC
112
+=
(3) 求证:.
ADBCEF



图3.1-25
C组
1.如图3.1-26,
VABC
中,P是边AB上一点,连结CP.
(1) 要使
VACP

VABC
,还要补充的一个条件是
____________.
:P=B2:
,则(2) 若
VACP
VABC
,且
AP
BC:PC
=_____.

图3.1-26


2.如图3.1-27,点E是四边形ABCD的对角 线BD上一点,且
?BAC?BDC?D
.
A
(1) 求证:
BE?ADCD?AE

BC
(2) 根据图形的特点,猜想可能等 于那两条线段
DE
的比(只须写出图中已有线段的一组比即可)?
并证明你的猜想.


图3.1-27

3.如图3.1-28,在
RtV ABC
中,AB=AC,
?A90
o

点D为BC上任一点,
DF^AB
于F,
DE^AC

E,M为BC的中点,试判断
VM EF
是什么形状的
三角形,并证明你的结论.




图3.1-28
4.如图3.1-29a,
AB^BD,CD^BD,
垂足 分别为B、D,AD和BC相交于E,
EF^BD
于F,我们可以证明
111
+=
成立.
ABCDEF


图3.1-29

若将图3.1-29a中的垂直改为斜交,如图3.1-29 b,
ABCD,AD、BC
相交于
E,EFAB交BD于F,则:
111
+=
(1) 还成立吗?如果成立,请给出证明;如果不成立,请
ABCDEF
说明理由;
(2) 请找出
S
VABD
,S
VBCD

S
VEBD之间的关系,并给出证明.


3.2 三角形
3.2.1 三角形的“四心”
三角形是最重要的基本平面图形,很多较复杂的图形问题可以化归为三角形
的问题.

图3.2-1 图3.2-2
A,B,?C
,如图3.2-1 ,在三角形
VABC
中,有三条边
AB,BC,CA
,三个角

三个顶点
A,B,C
,在三角形中,角平分线、中线、高(如图3.2-2)是三角形中
的三种重要线 段.
三角形的三条中线相交于一点,这个交点称为三角
形的重心.三角形的重 心在三角形的内部,恰好是每条中
线的三等分点.
例1 求证三角形的三条中线交于一点,且被该交点分
成的两段长度之比为2:1.
已知 D、E、F分别为
VABC
三边BC、CA、AB的中点,
求证 AD、BE、CF交于一点,且都被该点分成2:1.
证明 连结DE,设AD、BE交于点G,
图3.2-3


Q
D、E分别为BC、AE的中点,则DEAB,且< br>DE=
VGDE

VGAB
,且相似比为1:2,
1
AB

2
AG=2GD,BG=2GE
.
图3.2-4
设AD、CF交于点
G'
,同理可得,
AG'=2G 'D,CG'=2G'F.


G

G'
重合,

AD、BE、CF交于一点,且都被该点分成
2:1
.


三角形的三条角平分线相交于一点,是三角形的
内心. 三角形的内心在三角形的内部,它到三角形的
三边的距离相等.(如图3.2-5)



图3.2-5
例2 已知
VABC
的三边长分别 为
BC=a,AC=b,AB=c
,I为
VABC
的内心,
、A、C A

B
的射影分别为
D、E、F
,求证:且I在
VABC< br>的边
BC
b+c-a
AE=AF=
.
2
证明 作
VABC
的内切圆,则
D、E、F
分别为内切
圆在三边上的切点,
QAE,AF
为圆的从同一点作的两条切线,
AE=AF

同理,BD=BF,CD=CE.
b+c-a=AF+BF+AE+CE-BD- CD

=AF+AE=2AF=2AE
图3.2-6
b+c-a
.
2
例3 若三角形的内心与重心为同一点,求证:这个三角形为正三角形.
已知 O为三角形ABC的重心和内心.
求证 三角形ABC为等边三角形.
证明 如图,连AO并延长交BC于D.
Q
O为三角形的内心,故AD平分
?BAC

ABBD
=
(角平分线性质定理)
ACDC
Q
O为三角形的重心,D为BC的中点,即
BD=DC.
AB
=1
,即
AB=AC
.
AC

AE=AF=
图3.2-7


同理可得,AB=BC.
VABC
为等边三角形.
三角形的三条高所在直线相交于一点,该点称为三角形的垂心.锐角三角形
的垂心一定在三角形的内 部,直角三角形的垂心为他的直角顶点,钝角三角形的
垂心在三角形的外部.(如图3.2-8)

例4 求证:三角形的三条高交于一点.
已知
VABC
中,
AD^BC于D,BE^AC于E,
AD与BE交于H点.
求证
CH^AB
.
证明 以CH为直径作圆,
图3.2-8

QAD^BC,BE^AC,?HDC?HEC90
o
,

D、E
在以CH为直径的圆上,
?FCB?DEH
.
同理,E、D在以AB为直径的圆上,可得
?BED?BAD
.
?BCH?BAD

图3.2-9

VABD

VCBF
有公共角
?B

?CFB

?ADB90
,即
CH^AB
.
o
过不共线的三点A、B 、C有且只有一个圆,该圆是三角形ABC的外接圆,
圆心O为三角形的外心.三角形的外心到三个顶点 的距离相等,是各边的垂直平
分线的交点.


练习1
1.求证:若三角形的垂心和重心重合,求证:该三角形为正三角形.

2. (1) 若三角形ABC的面积为S,且三边长分别为
a、b、c
,则三角形的内
切圆 的半径是___________;
(2)若直角三角形的三边长分别为
a、b、c
(其中
c
为斜边长),则三角形
的内切圆的半径是___________. 并请说明理由.




3.2.2 几种特殊的三角形
等腰三角形底边上三线(角平分线、中线、高线)合一.因而在等腰三角形
ABC中,三角形的内心I、重心G、垂心H必然在一条直线上.
例5 在
?ABC
中,
AB?AC?3,BC?2.

(1)
? ABC
的面积
S
?
ABC

AC
边上的高
BE

(2)
?ABC
的内切圆的半径
r

(3)
?ABC
的外接圆的半径
R
.
解 (1)如图,作
AD?BC

D
.
?AB?AC,?D

BC
的中点,
?AD?AB
2
?BD
2
?22,

1
? S
?
ABC
??2?22?22.
2

S
?
ABC
?
1
42
AC?BE,
解得
BE?
.
2
3
图3.2-10
(2)如图,
I
为内心,则
I
到三边的距离均为
r


IA,IB,IC



S
?
ABC
?S
?
IAB
?S
?
IBC
?S
?
IAC


22?
解得
r?
111
AB?r?BC?r?CA?r

222
图3.2-11
2
.
2
(3)
??ABC
是等腰三角形,
?
外心
O

AD
上,连
BO


Rt?OBD
中,
OD?AD?R,
OB
2
?BD
2
?OD
2
,

?R
2
?(22?R)
2
?1
2
,
解得
R?

92
.

8
图3.2-12
在直角三角形ABC中,
?A
为直角,垂心为直角顶点A,
外心O为斜边B C的中点,内心I在三角形的内部,且内切
b+c-a
圆的半径为(其中
a,b,c< br>分别为三角形的三边
2
BC,CA,AB的长),为什么?


该直角三角形的三边长满足勾股定理:
AC
2
+AB
2
=BC
2
.

例6 如图,在
VABC
中,AB=AC,P为BC上 任意一点.
求证:
AP
2
=AB
2
-PB?PC
.
证明:过A作
AD^BC
于D.

RtVABD
中,AD
2
=AB
2
-BD
2
.

Rt VAPD
中,
AP
2
=AD
2
-DP
2
.
图3.2-14
图3.2-13
AP
2
=AB
2
-BD
2
+DP
2
=AB
2
-(BD+DP)(BD- DP).

QAB=AC,AD^BC,BD=DC
.
BD-DP=CD- DP=PC
.
AP
2
=AB
2
-PB?PC
.

正三角形三条边长相等,三个角相等,且四心(内心、重心、垂心、外心)
合一,该 点称为正三角形的中心.
例7 已知等边三角形ABC和点P,设点P到三边AB,AC,BC的 距离分别为
h
1
,h
2
,h
3
,三角形ABC的高 为
h

图3.2-15
“若点P在一边BC上,此时
h
3
=0
,可得结论:
h
1
+h
2
+h
3< br>=h
.”
请直接应用以上信息解决下列问题:
当(1)点P在
VA BC
内(如图b),(2)点在
VABC
外(如图c),这两种情
况时,上述 结论是否还成立?若成立,请给予证明;若不成立,
h
1
,h
2
,h
3

h

间有什么样的关系,请给出你的猜想(不必证明).
解 (1)当点P在
VABC
内时,
法一 如图,过P作
B' C'
分别交
AB,AM,AC

B',M',C'


由题设知
AM'=PD+PE


AM'=AM- PF


PD+PE+PF=AM
,即
h
1
+h
2
+h
3
=h
.
法二 如图,连结,
图3.2-16
QS
VABC
=S
VPAB
+S
VPAC
+S
VPBC

11
BC?AMAB?PD
22

AB=BC=AC


1
AC?PE
2
1
BC?PF

2
图3.2-17
AM=PD+PE+PF
,即
h
1+h
2
+h
3
=h
.
(2)当点P在
VAB C
外如图位置时,
h
1
+h
2
+h
3
=h
不成立,猜想:
h
1
+h
2
-h
3
=h< br>.
注意:当点P在
VABC
外的其它位置时,还有
可能得到其它的结论,如 < br>h
1
-h
2
+h
3
=h

h
1
-h
2
-h
3
=h
(如图3.2-18,
图3 .2-18
想一想为什么?)等.
在解决上述问题时,“法一”中运用了化归的数学思想方 法,“法二”中灵活地
运用了面积的方法.


练习2
1.直角三角形的三边长为3,4,
x
,则
x=
________.

2.等腰三角形有两个内角的和是100°,则它的顶角的大小是_________.

3.满足下列条件的
VABC
,不是直角三角形的是( )
A.
b
2
=a
2
-c
2
B.
?C
A:B:?C
C.


?A?B

3:4:5
D.
a:b:c=12:13:5

4.已知 直角三角形的周长为
3?3
,斜边上的中线的长为1,求这个三角形的面
积.

5.证明:等腰三角形底边上任意一点到两腰的距离之和为一个常量.


习题3.2
A组
1.已知:在
?ABC
中,AB=AC,
?BAC?120
o
,AD
为BC边上的高,则下列结论


中 ,正确的是()
A.
AD?
1
32
AB
B.
AD?AB
C.
AD?BD
D.
AD?BD

2
22

2.三角形三边长分别是6、8、10,那么它最短边上的高为( )
A.6 B.4.5 C.2.4 D.8

3.如果等腰三角形底边上的高等于腰长的一半 ,那么这个等腰三角形的顶角等
于_________.

4.已知:
a, b,c

?ABC
的三条边,
a?7,b?10
,那么
c< br>的取值范围是_________。

8
,且
a
是整数,则
a
的值是_________。 5.若三角形的三边长分别为
1、a、


B组

1.如 图3.2-19,等边
?ABC
的周长为12,CD是
边AB上的中线,E是CB延长 线上一点,且
BD=BE,则
?CDE
的周长为()
A.
6?43
B.
18?123

C.
6?23
D.
18?43

图3.2-19

2.如图3.2-20,在
?ABC
中,
?C??ABC?2?A
,BD是边AC
上的高,求
?DBC
的度数。






3.如图3.2-21,
Rt?ABC,?C?9 0
o
,M
是AB的中点,AM=AN,
MNAC,求证:MN=AC。





图3.2-20
图3.2-21



4.如图3.2-22,在
?ABC
中,AD平分
?BAC
,AB+BD=AC.求
?B:?C
的值。








5.如图3.2-23,在正方形ABCD中, F为DC的中点,E为
BC上一点,且
EC=
1
4
BC
,求 证:
?EFA90
o
.




图3.2-22
图3.2-23


C组
1.已知
k?1,b?2k,a?c?2k
2
,ac?k
4
?1
,则以
a、b、c
为边的三角形是( )
A.等边三角形 B.等腰三角形 C.直角三角形 D.形状无法确定


2.如图3.2-24,把
? ABC
纸片沿DE折叠,当点A落
在四边形BCDE内部时,则
?A

?1??2
之间有
一种数量关系始终保持不变,请试着找一找这个规
律,你发现的规 律是()
A.
?A??1??2
B.
2?A??1??2

C.
3?A??1??2
D.
3?A?2(?1??2)




3.如图3.2-25,已知BD是等腰三角形ABC底
角平 分线,且AB=BC+CD,求证:
?C






4.如图3.2-26,在等腰
Rt?ABC

?C?90
o
,D是
斜边AB上任一点,
AE?CD
于E,
BF?CD

CD的延长线于F,
CH?AB
于H,交AE于G.
求证:BD=CG.





图3.2-26
图3.2-24
90
o
.
图3.2-25
3.3圆
3.3.1 直线与圆,圆与圆的位置关系
设有直线
l
和圆心为
O
且半径为r
的圆,怎样判断直线
l
和圆
O
的位置关系?


图3.3-1


观察图3.3-1,不难发现直线与圆的 位置关系为:当圆心到直线的距离
d>r
时,直线和圆相离,如圆
O
与直线< br>l
1
;当圆心到直线的距离
d=r
时,直线和圆
相切,如圆< br>O
与直线
l
2
;当圆心到直线的距离
d时,直线 和圆相交,如圆
O

直线
l
3
.
在直线与圆相交 时,设两个交点分别为A、B.若直线
经过圆心,则AB为直径;若直线不经过圆心,如图3.3-2,
连结圆心
O
和弦
AB
的中点
M
的线段
OM
垂直于这条弦
AB
.且在
RtVOMA
中,
OA
为 圆的半径
r

OM
为圆心到
直线的距离
d

MA
为弦长
AB
的一半,根据勾股定理,

AB
2
r
2
-d
2
=()
.
2

当直线与圆相切时,如图3.3-3,
PA,PB
为圆
O
的切
线,可得
PA?PB

OA?PA.
,且在
Rt?POA
中,
图3.3-3
图3.3-2
PO?PA?OA
.
222
如图3.3-4,
PT
为圆< br>O
的切线,
PAB
为圆
O
的割线,
我们可以证得?PAT??PTB
,因而
PT
2
?PA?PB
.


例1 如图3.3-5,已知⊙O的半径OB=5cm,弦AB=6cm,
D是
?
AB
的中点,求弦BD的长度。
解 连结OD,交AB于点E。 < br>1
?
?
?
?BDAD,O
是圆心,
?OD?B,BE ?AE?AB?3cm.

2
Rt?BOE
在中,
图3.3-4 < /p>


OB=5cm,BE=3cm,
?OE?OB
2
?BE
2
?4cm.

?OD?5cm,?DE?1cm.

图3.3-5

Rt?BDE
中,BE=3cm,DE=1cm,
?BD?10cm.
例2 已知圆的两条平行弦的长度分别为6和
26
,且这两条线的距离为3.求这个圆的半径.
解 设圆的半径为
r
,分两种情况(如图3.3-6):
(1) 若
O
在两条平行线的外侧,
如图(1),AB=6,CD=
26

则由
OM- ON=3
,得
r
2
-9-

r=5
.
( 2)若
O
在两条平行线的内侧(含线上),AB=6,CD=
26

则由
OM+ON=3
,得
r
2
-9+r
2
-24 =3
,无解.
综合得,圆的半径为5.

设圆
O
1
与圆
O
2
半径分别为
R,r(R?r)
,它们 可能有哪几种位置关系?
r
2
-24=3
,解
图3.3-6
图3.3-7


观察图3.3-7,两圆的圆心距为
O
1
O
2
,不难发现:当
O
1
O
2
?R?r
时,两圆相
内切,如图(1);当
O
1
O
2
?R? r
时,两圆相外切,如图(2);当
O
1
O
2
?R?r时,
两圆相内含,如图(3);当
R?r?OO
;当
12
?R? r
时,两圆相交,如图(4)


O
1
O
2
?R ?r
时,两圆相外切,如图(5).
例3 设圆
O
1
与圆
O
2
的半径分别为3和2,
O
1
O
2
?4

A,B
为两圆的交点,试求
两圆的公共弦
AB
的长度.
解 连
AB

O
1
O
2

C

AB
的中点, 则
OO
12
?AB
,且
C


AC?x
,则
图3.3-8
O
1
C?9?x
2
,O
2
C?4?x
2
,
O
1
O
2
?9?x
2
?4?x
2
?4
,解得
x?
315
.
8
故弦
AB
的长为
2x?



315
.
4
练习 1
1.如图3.3-9 ,⊙O的半径为17cm,弦AB=30cm,AB所
对的劣弧和优弧的中点分别为D、C,求弦AC和 BD的长。




图3.3-9

2.已知四边形ABCD是⊙O的内接梯形,ABCD,AB=8cm,CD=6cm, ⊙O的半
径等于5cm,求梯形ABCD的面积。




3.如图3.3-10,⊙O的直径AB和弦CD相交于点E,
AE?1cm,EB?5cm,?DE B?60
o
,
求CD的长。

图3.3-10

4.若两圆的半径分别为3和8,圆心距为13,试求两圆的公切线的长度.



3.3.2 点的轨迹
在几何中,点的轨迹就是点按照某个条件运 动形成的图形,它是符合某个条
件的所有点组成的.例如,把长度为
r
的线段的一个端 点固定,另一个端点绕这个
定点旋转一周就得到一个圆,这个圆上的每一个点到定点的距离都等于
r
;同时,
到定点的距离等于
r
的所有点都在这个圆上.这个圆就叫做到定 点的距离等于定

r
的点的轨迹.
我们把符合某一条件的所有的点组成的图 形,叫做符合这个条件的点的轨迹.
这里含有两层意思:(1)图形是由符合条件的那些点组成的,就是 说,图形上的
任何一点都满足条件;(2)图形包含了符合条件的所有的点,就是说,符合条件
的任何一点都在图形上.
下面,我们讨论一些常见的平面内的点的轨迹.
从上面对圆的讨论,可以得出:
(1) 到定点的距离等于定长的点的轨迹是以定点为圆心,定长为半径的
圆.
我们学过,线段垂直平 分线上的每一点,和线段两个端点的距离相等;反过
来,和线段两个端点的距离相等的点,都在这条线段 的垂直平分线上.所以有下
面的轨迹:
(2) 和已知线段两个端点的距离相等的点的轨迹,是这条线段的垂直平分
线.
由角平分线性质定理和它的逆定理,同样可以得到另一个轨迹:
(3) 到已知角的两边距离相等的点的轨迹,是这个角的平分线.

例3 ⊙O过两个已知点A

B
,圆心
O
的轨迹是什么?画出
它的图形.
分析 如图3.3-11,如果以点
O
为圆心的圆经过点
A
B

那么
OA=OB
;反过来,如果一个点
O

A

B
两点距离相
等,即
OA=OB
,那么以
O
为圆心,OA为半径的圆一定经
图3.3-11

A

B
两点.
这就是说,过
A
B
点的圆的圆心的轨迹,就是到
A

B
两点距离相等的点
的轨迹,即和线段
AB
两个端点距离相等的点的轨迹.
答:经过
A

B
两点的圆的圆心O的轨迹是线段
AB
的垂直平分线.



练习2
1.画图说明满足下列条件的点的轨迹:
(1) 到定点
A
的距离等于
3cm
的点的轨迹;
(2) 到直线
l
的距离等于
2cm
的点的轨迹;
(3) 已知直线
ABCD
,到
AB

CD
的距离相等的点的轨迹.

2.画图说明,到直线
l
的距离等于定长
d
的点的轨迹.


习题3.3
A组
1. 已知弓形弦长为4,弓形高为1,则弓形所在圆的半径为( )
A.
3
B.
5
C.3 D.4
2

2. 在半径等于4的圆中,垂直平分半径的弦长为( )
A.
43
B.
33
C.
23
D.
3


3. AB为⊙O的直径,弦
CD?AB
,E为垂足,若BE=6,AE=4,则CD等于( )
A.
221
B.
46
C.
82
D.
26


4. 如图3.3-12,在⊙O中,E是弦AB延长线上的一 点,已知
OB=10cm,OE=12cm,
?OEB?30
o
,
求 AB。





图3.3-12
B组
1. 如图3.3-13,已知在
Rt?ABC
中,
?C9?
o0A,C?
交斜边于D,求AD。
5cm,

?
C
B
为圆心,
C
CA为半径的圆
cm







2. 如图3.3-14,在直径为100mm的半圆铁片上切去一块 高为20mm
的弓形铁片,求弓形的弦AB的长。




图3.3-13
图3.3-14


?
的中点,
AE ?BC
于E。
?ABC
内接于⊙O,3. 如图3.3-15,D为
BC
求证:AD平分
?OAE







4. 如图3.3-16,
?AOB? 90
,C、D是
?
AB
的三等分点,AB分别交
o
图3.3 -15
OC、OD于点E、F,求证:AE=BF=CD。







图3.3-16
5. 已知线段
AB= 4cm
.画出到点
A
的距离等于
3cm
的点的轨迹,再画出到点B
的距离等

2cm
的点的轨迹,指出到点
A
的距离等 于
3cm
,且到点
B
的距离等于
2cm
的点,这
样 的点有几个?

参考答案
第一讲 数与式
1.1.1.绝对值
1.(1)
?5

?4
(2)
?4

?1

3
2.D 3.3x-18
1.1.2.乘法公式
1111
1.(1)
a?b
(2)
,
(3)
4ab?2ac?4bc

3224
2.(1)D (2)A
1.1.3.二次根式
1. (1)
3?2
(2)
3?x?5
(3)
?86
(4)
5

2.C 3.1 4.>
1.1.4.分式
1
99
1.
2
2.B 3.
2?1
4.
100
习题1.1
A组
1.(1)
x??2

x?4
(2)-4<x<3 (3)x<-3,或x>3
2.1 3.(1)
2?3
(2)
?1?a?1
(3)
6?1

B组
1
35
1.(1) (2),或-
5
2.4.
72


C组
136
,x
2
?2
3.
255
1111
4.提示:
?[?]

n(n?1)(n?2)2n(n?1)(n?1)(n?2)
1.2分解因式
1. B
2.(1)(x+2)(x+4) (2)
(2a?b)(4a
2
?2ab?b
2
)

1.(1)C (2)C 2.
x
1
?
(3)
(x?1?2)(x?1?2)
(4)
(2?y)(2x?y?2)

习题1.2
1.(1)
?
a?1
?
?
a
2
?a?1
?
(2)< br>?
2x?3
??
2x?3
??
x?1
??
x ?1
?

(3)
?
b?c
??
b?c?2a
?
(4)
?
3y?y?4
??
x?2y?1
?

?
5?13
??
5?13
?
x?x?
2.(1)
?< br>; (2)
x?2?5x?2?5

???
????
2??
2
??
?
2?7
??
2?7
?
3
?
x?yx?y
?
(3); (4)
x?3
?
(x?1)(x?1?5)(x?1?5)

?
??
????
33
????
3.等边三角形
4.
(x?a?1)(x?a)

????
第二讲 函数与方程

2.1 一元二次方程
练习
1. (1)C (2)D
2. (1)-3 (2)有两个不相等的实数根 (3)x
2
+2x-3=0
3.k<4,且k≠0
4.-1 提示:
(x
1
-3)( x
2
-3)=x
1
x
2
-3(x
1
+x
2
)+9

习题2.1
A 组

1. (1)C (2)B 提示:②和④是 错的,对于②,由于方程的根的判别式
2
Δ<0,所以方程没有实数根;对于④,其两根之和应 为-

3
(3)C 提示:当a=0时,方程不是一元二次方程,不合题意.
17
2. (1)2 (2) (3)6 (3)
3

4
11
3.当m>-,且 m≠0时,方程有两个不相等的实数根;当m=-时,方程
44
1
有两个相等的实数根 ;当m<-时,方程没有实数根.
4
4.设已知方程的两根分别是
x
1和x
2
,则所求的方程的两根分别是-x
1
和-x
2
, ∵x
1
+x
2
=7,x
1
x
2
=-1,∴ (-x
1
)+(-x
2
)=-7,(-x
1
)×(-x2
)=x
1
x
2
=-1,∴所求的方程为y
2


+7y-1=0.

B组
1.C 提示:由于k=1时,方程为x
2
+2=0,没有实数根,所以k=-1.
2.(1)2006 提示:∵
m+n=-2005,mn=-1,∴m
2
n+mn
2
-mn=mn(m+n-1)=-
1×(-2005-1)=2006.
(2)-3 提示;∵a+b=-1,ab=-1,∴a
3
+a
2< br>b+ab
2
+b
3
=a
2
(a+b)+
b< br>2
(a+b)=(a+b)( a
2
+b
2
)=(a+b)[( a+b)
2
-2ab]=(-1)×[(-1)
2

2×(-1)]=-3.
3.(1)∵Δ=(-k)
2
-4×1×(-2)=k
2
+8>0,∴方程 一定有两个不相等的实数根.
(2)∵x
1
+x
2
=k,x< br>1
x
2
=-2,∴2k>-2,即k>-1.
x
1
?x
2
b
3abc?b
3
b
2
?4ac
3 3
4.(1)| x
1
-x
2
|=,=
?
;(2) x
1
+x
2
=.
3
22a
a
|a|
5.∵| x
1
-x
2
|=
16?4m?24?m?2
,∴m=3.把m=3代入方程,Δ>0,满
足题意,∴m=3.
C组
1.(1)B (2)A
1
,∴α+β=2(1-m)≥1.
2
(4)B 提示:∵
a,b,c是ΔABC的三边长,∴
a+b>c,∴Δ=(a+b)
2
-c
2
>0.
2.(1)12 提示:∵x
1
+x
2
=8 ,∴3x
1
+2x
2
=2(x
1
+x
2
) +x
1
=2×8+x
1
=18,∴
x
1
=2,∴x
2
=6,∴m=x
1
x
2
=12.
3
3.(1)假设存在实数k,使(2x
1
-x
2
)( x
1
-2 x
2
)=-成立.
2
∵一元二次方程4kx
2
-4kx+k+1=0有两个实数根,
∴k≠0,且Δ=16k
2
-16k(k+1)=-16k≥0,∴k<0.
k?1
∵x
1
+x
2
=1,x
1
x
2< br>=,
4k
∴ (2x
1
-x
2
)( x
1
-2 x
2
)=2 x
1
2
-5
1
x
2
+2 x
2
2

9(k?1)3
=2(x
1
+x
2
)
2
-9 x
1
x
2
=2-=-,
4k2
9(k?1)79
即=,解得k=,与k<0相矛盾,所以,不存在实数k,使
4k25
3
(2x1
-x
2
)( x
1
-2 x
2
)=-成立.
2
x
1
x
2
x
1
2
?x
2
2
(x
1
?x
2
)
2
?2x
1
x
2
(x
1
?x
2
)
2
(2)∵
?
-2=
?2??2??4

x
2
x
1< br>x
1
x
2
x
1
x
2
x
1< br>x
2
4k4k?4(k?1)4
?4???
=,
k?1k?1k?1
xx
∴要使
1
?
2
-2的值为整数, 只须k+1能整除4.而k为整数,
x
2
x
1
∴k+1只能取±1 ,±2,±4.又∵k<0,∴k+1<1, ∴k+1只能取-
1,-2,-4,∴k=-2,-3,-5.
(3)C 提示:由Δ ≥0,得m≤


x
1
x
2
?
-2的值为整数的 实数k的整数值为-2,-3和-5.
x
2
x
1
1
(3) 当k=-2时,x
1
+x
2
=1,① x
1
x
2
=, ②
8
1
xx

2
÷②,得
1
?
2
+2=8,即
?
?? 6
,∴
?
2
?6
?
?1?0

?
x
2
x
1
∴能使

?
?3?22

4.(1)Δ=
2(m?1)
2
?2?0

m
2
(2)∵x
1
x
2
=-
≤0,∴ x
1
≤0,x
2
≥0,或x
1
≥0,x
2
≤0.
4
①若x
1
≤0,x
2
≥0,则x< br>2
=-x
1
+2,∴x
1
+x
2
=2,∴m -2=2,∴m=4.此
时,方程为x
2
-2x-4=0,∴
x
1< br>?1?5

x
2
?1?5

②若x< br>1
≥0,x
2
≤0,则-x
2
=x
1
+2, ∴x
1
+x
2
=-2,∴m-2=-2,
∴m=0.此时,方程为 x
2
+2=0,∴x
1
=0,x
2
=-2.
5. 设方程的两根为x
1
,x
2
,则x
1
+x
2
=-1,x
1
x
2
=a,
由一根大于1、另一根小于1,得
(x
1
-1)( x
2
-1)<0, 即 x
1
x
2
-(x
1
+x
2
)+1<0,
∴ a-(-1)+1<0,∴a<-2.
此时,Δ=1
2
-4×(-2) >0,
∴实数a的取值范围是a<-2.

2.2 二次函数

2.2.1 二次函数y=ax
2
+bx+c的图象和性质
练 习
1.(1)D (2)D
2.(1)4,0 (2)2,-2,0 (3)下,直线x=-2,(-2,5);-2,大,
5;>-2.
3.(1)开口向上;对 称轴为直线x=1;顶点坐标为(1,-4);当x=1时,函数
有最小值y=-4;当x<1时,y随 着x的增大而减小;当x>1时,y
随着x的增大而增大.其图象如图所示.
(2)开口 向下;对称轴为直线x=3;顶点坐标为(3,10);当x=3时,函数
有最大值y=10;当x<3 时,y随着x的增大而增大;当x>3时,y随
着x的增大而减小.其图象如图所示.


y
y
2
x=1
y=x-2x-3
(3,10)
-1
O
3
x
1
O
y=-x
2
+6x+1
x
x=3
(2)
-3
(1,-4)
(1)
(第3题)

4.通过画出函数图象来解(图象略).
(1)当x=-2时,函数有最大值y=3;无最小值.
(2)当x=-1时,函数有最大值y=4;无最小值.
(3)当x=-1时,函数有最大值y=4;当x=1时,函数有最小值y=0.
(4)当x=0时,函数有最大值y=3;当x=3时,函数有最小值y=-12.

2.2.2 二次函数的三种表示方式
练 习
1.(1)A (2)C
2.(1)(x+1)(x

1) (2)4
3
3.(1)y=-x
2
+2x-3 (2)y=
2
(x-3)
2
+5
(3)y=2(x-1+2)( x+1-2)

2.2.3 二次函数的简单应用
练 习

1.(1)B (2)B (3)C
2.(1)2,12 (2)左,3;下,6;直线y=3
3.(1)当x∈[0,1]时,y=x;
(2) 当x∈(1,2]时,y=
1
2
?(x?1)
2
?x
2?2x?2

(3)当x∈(2,3]时,y=
1
2
?( 3?x)
2
?x
2
?6x?10

(4)当x∈(3,4
]
时,y=4-x.
0?x?1,
?
x,
?
2
?
x?2x?2,1?x?2,
综上所述:
y?
?

2
?
x?6x?10,2?x?3,
?
3?x ?4.
?
4?x,


习题2.2
A 组
1.(1)D (2)C (3)D
2.(1)y=x
2
+x-2 (2)y=-x
2
+2x+3
3.y=2x
2
-12x+20
4.y=2x
2
-8x-10
B组
1.(1)y=2x
2
-12x+23,y=-2x
2
+12 x-19
(2)6,2 (3)a≤-3
2.设票价为y (元),里程为xkm,由题意可知,汽车行驶的里程约为20km,
所以,x的取值范围是0<x≤2 0.所以,函数关系式为
?
2, 0?x?5,
?
3, 5?x?10,
?

y?
?

4, 10?x?15,
?
?
?
5, 15?x?20.
其图象如图所示.
y(元)
5
4
3
2
O
5 10 15 20
第2 题
x(km)

C组

1.y=-4x
2
+4x+24 提示:由最大值为25可得a<0,再利用韦达定理由立方和为19,
求出a=

4.
2.当长为6m,宽为3m时,矩形的面积最大.
3.C
1
:y=-2(x+1)
2
+2;C
2
:y=-2(x-1 )
2
+2;C
2
:y=2(x-1)
2
+2;
C
4
:y=-2(x+1)
2
-2.

2.3 方程与不等式
2.3.1 二元二次方程组解法


练 习
1.(1)(2)是方程的组解; (3)(4)不是方程组的解.
?
x?15,
?
x
2
??20,
?
x
1
?5,
?
x
2
??2,
2.(1)
?
1
(2) < br>???
?
y
1
?20,
?
y
2
?? 15;
?
y
1
??2,
?
y
2
?5;5
?
x?,
?
?
x?2,
?
x
2?2,
?
3
(3)
?
(4)
?
1

?

4
?
y
1< br>?2,
?
y
2
??2.
?
y??.
?
3
?

2.3.2 一元二次不等式解法
练 习

4
1.(1)x<-1,或x>
3
; (2)-3≤x≤4; (3)x<-4,或x>1;
(4)x=4.
2.不等式可以变为(x+1+a)( x+1-a)≤0,
(1)当-1-a<-1+a,即a>0时,∴-1-a≤x≤-1+a;
(2)当-1-a=-1+a,即 a=0时,不等式即为(x+1)
2
≤0,∴x=-1;
(3)当-1-a>-1+a,即a<0时,∴-1+a≤x≤-1-a.
综上,当a>0时,原不等式的解为-1-a≤x≤-1+a;
当a=0时,原不等式的解为x=-1;
当a<0时,原不等式的解为-1+a≤x≤-1-a.

习题2.3
A 组
10
?
x?,
?
?
x
1
?2,
?
x?0,
?
2
3
1.(1)
?

?
(2)
?
1

?
y
1
?0,
?
y
1
?0,
?
y?
4
.
2
?
3
?
?
?
x
1
?3?2 ,
?
?
x
2
?3?2,
(3)
?

?
?
?
y
1
?3?2,
?
?
y< br>2
?3?2;
?
x
3
??3,
??
?
x
1
?3,
?
?
x
2
?3,
??
x
4
??3,
(4)
?

???
??
?
y
1
?1,
?
?
y
2
??1,
?
?
y
4
??1.
?
y
3
?1,
2 4
?
x?,
?
?
2
5

?
?y??
12
.
2
?
5
?
2323
?x ?

33
(3)1-2≤x≤1+2 (4)x≤-2,或x≥2

2.(1)无解 (2)
?
B 组 1.消去
y
,得
4x
2
?4(m?1)x?m
2
?0


1
时,方程有一个实数解.
2
1
?
1
?
x?,

m?
代入原方程组,得方程组的解为
?
4

2
?
?
y?1.

??16(m?1)
2< br>?16m
2
?0
,即
m?
2.不等式可变形为(x-1)(x -a)<0.
∴当a>1时,原不等式的解为1<x<a;
当a=1时,原不等式的无实数解;
当a<1时,原不等式的解为a<x<1.

C 组
1.由题意,得 -1和3是方程2x
2
+bx-c=0的两根,
bc
∴-1+3=-
2
,-1×3=-
2
, 即b=-4,c=6.
∴等式bx
2
+cx+4≥0就为-4 x
2
+6x+4≥0,即2 x
2
-3x-2≤0,
1
∴-
2
≤x≤2.
m
2
m
2
2
2.∵ y=-x+mx+2=-(x-
2
)+2+
4

mm
2
∴当0≤
2
≤2,即0≤m≤4时,k=2+
4

m

2
<0,即m<0时,k=2;
m
当 >2,即m>4时,k=2m-2.
2
m?0,
?
2,
?
2
?
m

k?
?
?2,0?m?4,

?
4
m?4.
?
?
2m?2,
第二讲 三角形与圆
3.1 相似形
练习1
1.D
DEADx51010
?,??,x?
,即
BF?
.
BCABx?2833
ABBD535
??,?BD?cm.
3.
?
ACDC49
ABBD
??F

A
?
4.作CFAB

AD

F
,则,又
?AFC??FAECFDC
ABBD
?
AC?CF,
?
.
ACDCEGCE
?,
即5.作
EGAB

BC

G< br>,
??CEG??CAB,?
ABAC
2.设
BF?x,
?< /p>


ACCEDBDFAC
??,??
.
ABEGEGEFAB

练习2
1.
C

2.12,18
115
?3?4?6,?S
?
A'B'C'
?()
2
?6?54.

25
1
4.(1)因为
EHBDFG,
所以
EFGH
是平行四边形;(2)当
AC?BD
时 ,
EFGH

2
3.
?
S
?
ABC
?
菱形;当
AC?BD,AC?BD
时,
EFGH
为正方形. < br>5.(1)当
CD?AC?BD
时,
?ACP??PDB
;(2)?APB?120
.
2o
习题3.1
A组
1.B 2.B 3.
S
?
CDF
?9

2
4.
BF
为直角三角形
ABC
斜边上的高,
BF?AF?FC
,又可证
AG?BF,
?AG
2
?AF?FC
.
B组
1.C 2.C 3.A
EOAEDEOFOEOEAEBE
???,EO?OF

????1.
.2)
BCABDCBCADBCAB AB
1112
???.
(3)由(2)知
ADBCOEEF
C组
?ADBC,?
4.(1)
1.(1)
AC?AP?AB

?ACP??B
.(2)
BC:PC?3:2
.
2
BEAEBCABAD
???ADE??ACB,???
;(2). CDADDEAEAC
3.连
AD

EF

O
,连
OM

??ABC
为等腰直角三角形,且AEDF为矩形,
?O M

11
Rt?AMD
斜边的中线,
OM?AD?EF,
? ?MEF
为直角三角形.又可证
22
?BMF??AME
,得
MF? ME
,故
?MEF
为等腰直角三角形.
2.(1)先证
?AEB? ?ADC
,可得
?
4.(1)成立,
证略.


EFEFFDBF111
111
????1,???.
2)
??
(,
ABCDBDBDABCDEF
S
?
ABD
S
?
B CD
S
?
EBD
3.2 三角形


练习1
1.证略 2.(1)
练习2
1.5或
7
2.
20

80
3.C
4.设两直角边长为
a,b
,斜边长为2,则
a?b?1?3
,且
a?b?4
, 解得
ab?3

22
oo
2Sa?b?c
;(2).
a?b?c2
?S?
1
ab?23
. 5.可利用面积证.
2
习题3.2
A组
1.B 2. D 3.
120
4.
3?c?17
5.8
o
B组
1.A 2.
18

3.连
BM
,证
?MAB??AMN
.
4.在AC上取点E,使AE=AB,则
?ABD??AED

?B??A ED
.又BD=DE=EC,
o
??C??EDC,??B:?C?2:1.

o
5.可证
?ADF??FCE
,因而
?AFD

?CFE
互余,得
?EFA?90
.
C组
1.C.不妨设
a?c
,可得
a?k?1,c?k?1,a?b?c
,为直角三角形.
2.B
3.在
22222
AB上取E使
??
BE=BC, 则
?BCDBE
,且AE=ED=DC,
?C??BED?2?A??A??B?18 0
o
??C,??C?90
o
.

4.先
证明?ACE??CBF
,得CE=BF,再证
?CGE??BDF
,得BD=CG.


3.3 圆
练习1
1.取AB中点M,连CM,MD,则
CM?AB,DM?AB
,且C

O

M

D共线,
OM?17
2
?15
2
?8,CM?25,DM?9,< br>AC?534cm,BD?334cm
.
2.O到AB

CD的距离 分别为3cm,4cm,梯形的高为1cm或7cm,梯形的面积为7或49
cm
.
3. 半径为3cm,OE=2cm.,OF=
3,CD?26cm
.
4.外公切线长为12,内公切线长为
43
.
2


练习2
1.(1)以A为圆心,3cm为半径的圆;(2)与l
平行,且与
l
距离为2cm的两条平行线;(3)
与AB平行,且与A B,CD距离相等的一条直线.
2.两条平行直线,图略.
习题3.3
A组
1.B 2.A 3.B =8cm.
B组
1.作
CM ?AD
于M,AB=13cm,
CM?
6010
,AD?133cm
.
1313
=120cm.
3.先证
?BAO??EAC
,再证
?OAD??DAE
.
4.先证明
?AEC??ACE?75
o
,
再证AE=BF=AC=CD.
5.有2个,图略.

2003高中数学书-初高中数学三角函数的公式


高中数学证明方法定理-高中数学课堂导入的重要性


长沙高中数学ab版一般学哪个-高中数学中位数众数平均数


高中数学资源库 购买-高中数学不等式思维导图


高中数学理科题集的书-高中数学必修一集合试卷答案


高中数学解析几何总结(非常全)-精华在线高中数学老师哪个好


高中数学多题一解校本教材-高中数学逻辑语音


高中数学15分钟的教学比武-高中数学新课标必修三



本文更新与2020-09-18 12:13,由作者提供,不代表本网站立场,转载请注明出处:https://www.bjmy2z.cn/gaokao/402976.html

初高中衔接型中考数学试题12套的相关文章

  • 爱心与尊严的高中作文题库

    1.关于爱心和尊严的作文八百字 我们不必怀疑富翁的捐助,毕竟普施爱心,善莫大焉,它是一 种美;我们也不必指责苛求受捐者的冷漠的拒绝,因为人总是有尊 严的,这也是一种美。

    小学作文
  • 爱心与尊严高中作文题库

    1.关于爱心和尊严的作文八百字 我们不必怀疑富翁的捐助,毕竟普施爱心,善莫大焉,它是一 种美;我们也不必指责苛求受捐者的冷漠的拒绝,因为人总是有尊 严的,这也是一种美。

    小学作文
  • 爱心与尊重的作文题库

    1.作文关爱与尊重议论文 如果说没有爱就没有教育的话,那么离开了尊重同样也谈不上教育。 因为每一位孩子都渴望得到他人的尊重,尤其是教师的尊重。可是在现实生活中,不时会有

    小学作文
  • 爱心责任100字作文题库

    1.有关爱心,坚持,责任的作文题库各三个 一则150字左右 (要事例) “胜不骄,败不馁”这句话我常听外婆说起。 这句名言的意思是说胜利了抄不骄傲,失败了不气馁。我真正体会到它

    小学作文
  • 爱心责任心的作文题库

    1.有关爱心,坚持,责任的作文题库各三个 一则150字左右 (要事例) “胜不骄,败不馁”这句话我常听外婆说起。 这句名言的意思是说胜利了抄不骄傲,失败了不气馁。我真正体会到它

    小学作文
  • 爱心责任作文题库

    1.有关爱心,坚持,责任的作文题库各三个 一则150字左右 (要事例) “胜不骄,败不馁”这句话我常听外婆说起。 这句名言的意思是说胜利了抄不骄傲,失败了不气馁。我真正体会到它

    小学作文