关键词不能为空

当前您在: 主页 > 数学 >

高中数学《排列组合》教案

作者:高考题库网
来源:https://www.bjmy2z.cn/gaokao
2020-09-18 13:29
tags:高中数学排列组合

安徽省文科高中数学知识点-高中数学自学要按什么顺序学

2020年9月18日发(作者:聂超)


排列与组合
一、教学目标
1、知识传授目标:正确理解和掌握加法原理和乘法原理
2、能力培养目标:能准确地应用它们分析和解决一些简单的问题
3、思想教育目标:发展学生的思维能力,培养学生分析问题和解决问题的
能力
二、教材分析
1.重点:加法原理,乘法原理。 解决方法:利用简单的举例得到一般的结
论.
2.难点:加法原理,乘法原理的区分。解决方法:运用对比的方法比较它们
的异同.
三、活动设计
1.活动:思考,讨论,对比,练习.
2.教具:多媒体课件.
四、教学过程正
1.新课导入
随着社会发展,先进技术,使得各种问题解决方法多 样化,高标准严要求,
使得商品生产工序复杂化,解决一件事常常有多种方法完成,或几个过程才能完< br>成。 排列组合这一章都是讨论简单的计数问题,而排列、组合的基础就是基本
原理,用好基本原 理是排列组合的关键.
2.新课
我们先看下面两个问题.
(l)从甲地到乙地, 可以乘火车,也可以乘汽车,还可以乘轮船.一天中,
火车有4班,汽车有 2班,轮船有 3班,问一天中乘坐这些交通工具从甲地到
乙地共有多少种不同的走法?
因为一天中乘火车有 4种走法,乘汽车有2种走法,乘轮船有3种走法,每
一种走法都可以从甲地到达乙地,因此,一天中乘 坐这些交通工具从甲地到乙地
共有 4十2十3=9种不同的走法.
一般地,有如下原理:
加法原理:做一件事,完成它可以有n类办法,在第一类办法中有m
1

不同的方法,在第二类办法中有m
2
种不同的方法,……,在第n类办法中有m
n种不同的方法.那么完成这件事共有N=m
1
十m
2
十…十m
n
种不同的方法.
(2) 我们再看下面的问题:
由A村去B村的道路有3条,由B 村去C村的道路有2条.从A村经B村去
C村,共有多少种不同的走法?
这里,从A村到B村 有3种不同的走法,按这3种走法中的每一种走法到达
B村后,再从B村到C村又有2种不同的走法.因 此,从A村经B村去C村共有
3X2=6种不同的走法.
一般地,有如下原理:
乘法原理:做一件事,完成它需要分成n个步骤,做第一步有m
1
种不同的
方法,做 第二步有m
2
种不同的方法,……,做第n步有m
n
种不同的方法.那么完成这件事共有N=m
1
m
2
…m
n
种不同的方法.
例1 书架上层放有6本不同的数学书,下层放有5本不同的语文书.


1)从中任取一本,有多少种不同的取法?
2)从中任取数学书与语文书各一本,有多少的取法?
解:(1)从书架上任取一本书,有两类办法:第一类办法是从上层取数学书,
可以从6本书中 任取一本,有6种方法;第二类办法是从下层取语文书,可以从
5本书中任取一本,有5种方法.根据加 法原理,得到不同的取法的种数是6十
5=11.
答:从书架L任取一本书,有11种不同的取法.
(2)从书架上任取数学书与语文书各一本 ,可以分成两个步骤完成:第一
步取一本数学书,有6种方法;第二步取一本语文书,有5种方法.根据 乘法原
理,得到不同的取法的种数是 N=6X5=30.
答:从书架上取数学书与语文书各一本,有30种不同的方法.
练习: 一同学有4枚明朝不同古币和6枚清朝不同古币
1)从中任取一枚,有多少种不同取法? 2)从中任取明清古币各一枚,
有多少种不同取法?
例2:(1)由数字l,2,3,4,5可以组成多少个数字允许重复三位数?
(2)由数字l,2,3,4,5可以组成多少个数字不允许重复三位数?
(3)由数字0,l,2,3,4,5可以组成多少个数字不允许重复三位数?
解: 要组成一个三位数可以分成三个步骤完成:第一步确定百位上的数
字,从5个数字中任选一个数字,共有 5种选法;第二步确定十位上的数字,由
于数字允许重复,
这仍有5种选法,第三步确定个位 上的数字,同理,它也有5种选法.根据
乘法原理,得到可以组成的三位数的个数是N=5X5X5=1 25.
答:可以组成125个三位数.
练习:
1、从甲地到 乙地有2条陆路可走,从乙地到丙地有3条陆路可走,又从甲
地不经过乙地到丙地有2条水路可走.
(1)从甲地经乙地到丙地有多少种不同的走法?
(2)从甲地到丙地共有多少种不同的走法?
2.一名儿童做加法游戏.在一个红口袋中装着 2O张分别标有数1、2、…、
19、20的红卡片,从中任抽一张,把上面的数作为被加数;在另一个 黄口袋中
装着10张分别标有数1、2、…、9、1O的黄卡片,从中任抽一张,把上面的数
作 为加数.这名儿童一共可以列出多少个加法式子?
3.题2的变形
4.由0-9这10个数字可以组成多少个没有重复数字的三位数?
小结:要解决某个此类问题,首先要判断是分类,还是分步?分类时用加法,分
步时用乘法
其次要注意怎样分类和分步,以后会进一步学习
练习
1.(口答)一件工作可以用两种方法完成.有 5人会用第一种方法完成,
另有4人会用第二 种方法完成.选出一个人来完成这件工作,共有多少种选法?
2.在读书活动中,一个学生要从 2本科技书、 2本政治书、 3本文艺书
里任选一本,共有多少种不同的选法?
3.乘积 (a1+a2+a3)(b1+b2+b3+b4)(c1+c2+c3+c4+c5)展开后共有多少项? < br>4.从甲地到乙地有2条路可通,从乙地到丙地有3条路可通;从甲地到丁


地有4 条路可通,从丁地到丙地有2条路可通.从甲地到丙地共有多少种不同的
走法?
5.一个口袋内装有5个小球,另一个口袋内装有4个小球,所有这些小球
的颜色互不相同.
(1)从两个口袋内任取一个小球,有多少种不同的取法?
(2)从两个口袋内各取一个小球,有多少种不同的取法?
作业:
排列
【复习基本原理】
1.加法原理 做一件事,完成它可以有n类办法,第一类办法中有m
1
种不
同的方法,第二办法中有m
2
种不同的方法……,第n办法中 有m
n
种不同的方法,
那么完成这件事共有
N=m
1
+m
2
+m
3
+…m
n

种不同的方法.
2.乘法原理 做一件事,完成它需要分成n个步骤,做第一 步有m
1
种不
同的方法,做第二步有m
2
种不同的方法,……,做第n步有 m
n
种不同的方法,.
那么完成这件事共有
N=m
1
m
2
m
3
…m
n

种不同的方法.
3.两个原理的区别:
【练习1】
1.北京、上海、广州三个民航站之间的直达航线,需要准备多少种不同的机
票?
2.由数字1、2、3可以组成多少个无重复数字的二位数?请一一列出.
【基本概念】
1. 什么叫排列?从n个不同元素中,任取m(
m?n
)个元素(这里的被取元素各不相同)按照
一定的顺序
排成一列,叫做从n个不同元素中取出m个元素的
. ....
一个排列

....
2. 什么叫不同的排列?元素和顺序至少有一个不同.
3. 什么叫相同的排列?元素和顺序都相同的排列.
4. 什么叫一个排列?
【例题与练习】
1. 由数字1、2、3、4可以组成多少个无重复数字的三位数?
2.已知a、b、c、d 四个元素,①写出每次取出3个元素的所有排列;②写
出每次取出4个元素的所有排列.
【排列数】
1. 定义:从n个不同元素中,任取m(
m?n
)个元素的所 有排列的个数叫做
m
从n个元素中取出m元素的排列数,用符号
p
n
表示.
用符号表示上述各题中的排列数.
m
2. 排列数公式:
p
n
=n(n-1)(n-2)…(n-m+1)
3
12
?

p
n
?

p
n
?

p
n


4
p
n
?

24
计算:
p
5
= ;
p
5
= ;
2
p
15
= ;
【课后检测】
1. 写出:
① 从五个元素a、b、c、d、e中任意取出两个、三个元素的所有排列;
② 由1、2、3、4组成的无重复数字的所有3位数.
③ 由0、1、2、3组成的无重复数字的所有3位数.
2. 计算:

p
3
100
8
p
12

p

p?2p

7

p
12
3
6
4
8
2
8
排 列
课题:排列的简单应用(1)
目的:进一步掌握排列、排列数的概念以及排列数的两个计算公 式,会用排
列数公式计算和解决简单的实际问题.
过程:
一、复习:(引导学生对上节课所学知识进行复习整理)
1.排列的定义,理解排列定义需要注意的几点问题;
2.排列数的定义,排列数的计算公式 m
m
A
n
?n(n?1)(n?2)?(n?m?1)

A
n
?
n!
(其中
m

n m,n
(n?m)!
Z

3.全排列、阶乘的意义;规定 0!=1
4.“分类”、“分步”思想在排列问题中的应用.
二、新授:
例1:⑴ 7位同学站成一排,共有多少种不同的排法?
解:问题可以看作:7个元素的全排列——
A
7
7
=5040
⑵ 7位同学站成两排(前3后4),共有多少种不同的排法?
解:根据分步计数原理:7×6×5×4×3×2×1=7!=5040
⑶ 7位同学站成一排,其中甲站在中间的位置,共有多少种不同的排法?
解:问题可以看作:余下的6个元素的全排列——
A
6
6
=720
⑷ 7位同学站成一排,甲、乙只能站在两端的排法共有多少种?
解:根据分步计数原理:第一步 甲、乙站在两端有
A
2
2
种;第二步 余下的
5名同学进行全排列有
A
5
5
种 则共有
A
2
2
A
5
5
=240种排列方法
⑸ 7位同学站成一排,甲、乙不能站在排头和排尾的排法共有多少种?
解法一(直接法):第一步 从(除去甲、乙)其余的5位同学中选2位


同学站在排头和 排尾有
A
5
2
种方法;第二步 从余下的5位同学中选5位进行排列
(全排列)有
A
5
5
种方法 所以一共有
A
5
2
A
5
5
=2400种排列方法.
解法二:(排除法)若甲站在排头有
A
6
6
种方法;若乙站在排尾 有
A
6
6
种方
法;若甲站在排头且乙站在排尾则有
A
5
5
种方法.所以甲不能站在排头,乙不能
排在排尾的排法共有
A
7
7

2A
6
6

A
5
5
=2400种.
小结一:对于“在”与“不在”的问题,常常使用“直接法”或“排除法”,对某些特殊元素可以优先考虑.
例2 : 7位同学站成一排.
⑴甲、乙两同学必须相邻的排法共有多少种?
解:先将甲、乙两位同学“捆绑”在一起看成一个元素与 其余的5个元素(同
学)一起进行全排列有
A
6
6
种方法;再将甲、 乙两个同学“松绑”进行排列有
A
2
2
种方法.所以这样的排法一共有
A
6
6
A
2
2
=1440
⑵甲、乙和丙三个同学都相邻的排法共有多少种?
解:方法同上,一共有
A
5
5
A
3
3
=720种.
⑶甲、乙两同学必须相邻,而且丙不能站在排头和排尾的排法有多少种?
解法一:将甲、 乙两同学“捆绑”在一起看成一个元素,此时一共有6
个元素,因为丙不能站在排头和排尾,所以可以从 其余的5个元素中选取2个元
素放在排头和排尾,有
A
5
2
种方法; 将剩下的4个元素进行全排列有
A
4
4
种方法;
最后将甲、乙两个同 学“松绑”进行排列有
A
2
2
种方法.所以这样的排法一共有
2A
5
2
A
4
4
A
2
=960种方法.
解法二:将甲、乙两同学“捆绑”在一起看成一个元素,此时一共有6个元
素,若丙站在排头或 排尾有2
A
5
5
种方法,所以丙不能站在排头和排尾的排法有
652
(A
6
?2A
5
)?A
2
?960
种方法 .
解法三:将甲、乙两同学“捆绑”在一起看成一个元素,此时一共有6个元
1
素, 因为丙不能站在排头和排尾,所以可以从其余的四个位置选择共有
A
4
种方
法 ,再将其余的5个元素进行全排列共有
A
5
5
种方法,最后将甲、乙两同学“ 松
1
A
5
5
A
2
2
=960种方法. 绑 ”,所以这样的排法一共有
A
4
小结二:对于相邻问题,常用“捆绑法”(先捆后松) .


例3: 7位同学站成一排.
⑴甲、乙两同学不能相邻的排法共有多少种?
762
?A
6
?A
2
?3600
解法一:(排除 法)
A
7
解法二:(插空法)先将其余五个同学排好有
A
5
5
种方法,此时他们留下六个
位置(就称为“空”吧),再将甲、乙同学分别插入这六个位置( 空)有
A
6
2
种方
52
A
6
?3600< br>种方法. 法,所以一共有
A
5
⑵甲、乙和丙三个同学都不能相邻的排法共有多少种?
解:先将其余四个同学排好有
A
4
4
种方法,此时他们留下五个“空”,再将 甲、
乙和丙三个同学分别插入这五个“空”有
A
5
3
种方法,所以一 共有
A
4
4
A
5
3
=1440
种.
小结三:对于不相邻问题,常用“插空法”(特殊元素后考虑).
三、小结:
1.对有约束条件的排列问题,应注意如下类型:
⑴某些元素不能在或必须排列在某一位置;
⑵某些元素要求连排(即必须相邻);
⑶某些元素要求分离(即不能相邻);
2.基本的解题方法:
⑴ 有特殊元素或特 殊位置的排列问题,通常是先排特殊元素或特殊位置,
称为优先处理特殊元素(位置)法(优限法);
⑵ 某些元素要求必须相邻时,可以先将这些元素看作一个元素,与其他元
素排列后,再考虑相 邻元素的内部排列,这种方法称为“捆绑法”;
⑶ 某些元素不相邻排列时,可以先排其他元素,再将这些不相邻元素插入
空挡,这种方法称为“插空法”;
⑷ 在处理排列问题时,一般可采用直接和间接两种思维形式,从而寻求有
效的解题途径,这是 学好排列问题的根基.
四、作业:《课课练》之“排列 课时1—3”
课题:排列的简单应用(2)
目的:使学生切实学会用排列数公式计算和解决简单的实际问题 ,进一步培
养分析问题、解决问题的能力,同时让学生学会一题多解.
过程:
一、复习:
1.排列、排列数的定义,排列数的两个计算公式;
2.常见的排队的三种题型:
⑴某些元素不能在或必须排列在某一位置——优限法;
⑵某些元素要求连排(即必须相邻)——捆绑法;
⑶某些元素要求分离(即不能相邻)——插空法.
3.分类、分布思想的应用.
二、新授:


示例一: 从10个不同的文艺节目中选6个编成一个节目单,如 果某女演
员的独唱节目一定不能排在第二个节目的位置上,则共有多少种不同的排法?
15
A
9
?136080
解法一:(从特殊位置考虑)
A
9
解法二:(从特殊元素考虑)若选:
5?A
9
5
若不选:
A
9
6

则共有
5?A
9
5

A
9
6
=136080
65
?A
9
?
136080 解法三:(间接法)
A
10
示例二:
⑴ 八个人排成前后两排,每排四人,其中甲、乙要排在前排,丙要排在后
排,则共有多少种不同的排法?
1
略解:甲、乙排在前排
A
4
2
;丙排在后排
A< br>4
;其余进行全排列
A
5
5

1
A
5
5
=5760种方法. 所以一共有
A
4
2
A
4
⑵ 不同的五种商品在货架上排成一排,其中
a
,
b
两种商品必须排在一起,

c, d
两种商品不排在一起, 则不同的排法共有多少种?
略解:(“捆绑法”和“插空法”的综合应用)
a
,
b
捆在一起与
e
进行排列有
A
2
2

此时留下三个空,将
c, d
两种商品排进去一共有
A
3
2
;最后将
a
, < br>b
“松绑”

A
2
2
.所以一共有
A
2
2
A
3
2
A
2
2
=24种方法.
⑶ 6张同排连号的电影票,分给3名教师与3名学生,若要求师生相间而
坐,则不同的坐法有多少种? < br>略解:(分类)若第一个为老师则有
A
3
3
A
3
3< br>;若第一个为学生则有
A
3
3
A
3
3

所以一共有2
A
3
3
A
3
3
=72种方法.
示例三:
⑴ 由数字1,2,3,4,5可以组成多少个没有重复数字的正整数?
135
?A
5
2
?A
5
?A
5
4
?A
5
?325
略解:
A
5
⑵ 由数字1,2,3,4,5可以组成多少个没有重复数字,并且比13 000
大的正整数?
13
A
3
种方解法一:分成两类,一类是首位为1时,十位必须大于等于3有
A
3
13
1414
A
3
?A
4
A
4
种方法.所以一共有
A
3
A
4
?114
个数法; 另一类是首位不为1,有
A
4
比13 000大.
解法二:(排除法)比13 000小的正整数有
A
3
3
个,所以比13 000大的正整


5
?A
3
3
=114个. 数有
A
5
示例四: 用1,3,6,7,8,9组成无重复数字的四位数,由小到大排列.
⑴ 第114个数是多少? ⑵ 3 796是第几个数?
3
?60
个,解:⑴ 因为千位数是1的四位数一共有
A
5
所以第114个数的千位
2
?12
个;同理,以数应该 是“3”,十位数字是“1”即“31”开头的四位数有
A
4
“36”、“37”、“ 38”开头的数也分别有12个,所以第114个数的前两位数必然
是“39”,而“3 968”排在第6个位置上,所以“3 968” 是第114个数.
⑵ 由上可知“37”开头的数的前面有60+12+12=84个,而3 796在“37”
开头的四位数中排在第11个(倒数第二个),故3 796是第95个数.
示例五: 用0,1,2,3,4,5组成无重复数字的四位数,其中
⑴ 能被25整除的数有多少个?
⑵ 十位数字比个位数字大的有多少个?
解: ⑴ 能 被25整除的四位数的末两位只能为25,50两种,末尾为50
1111
A
3
个,所以一共有
A
4
2

A
3
A
3=21个. 的四位数有
A
4
2
个,末尾为25的有
A
3
注: 能被25整除的四位数的末两位只能为25,50,75,00四种情况.
13
A
5
?300
个.因⑵ 用0,1,2,3,4,5组成无重复 数字的四位数,一共有
A
5
为在这300个数中,十位数字与个位数字的大小关系是“ 等可能的”,所以十位
....
1
13
A
5
A
5< br>?150
个.
2
三、小结:能够根据题意选择适当的排列方法,同时注意考虑 问题的全面性,
此外能够借助一题多解检验答案的正确性.
四、作业:“3+
X
”之 排列 练习
组 合 ⑴
课题:组合、组合数的概念
目的:理解组合的意义,掌握组合数的计算公式.
过程:
一、复习、引入:
1.复习排列的有关内容:
定 特 相同公

义 点 排列 式




以上由学生口答.
2.提出问题:
示例1: 从甲、乙、丙3名同学中 选出2名去参加某天的一项活动,其中1
名同学参加上午的活动,1名同学参加下午的活动,有多少种不 同的选法?
示例2: 从甲、乙、丙3名同学中选出2名去参加一项活动,有多少种不
同的选法?
数字比个位数字大 的有


引导观察:示例1中不但要求选出2名同学,而且还要按照一定的顺序“排
列”,而示例2只要求选出2名同学,是与顺序无关的.
引出课题:组合问题.
..
二、新授:
1.组合的概念:一般地,从
n
个不同元素中取出
m

m

n
)个元素并成一
组,叫做从
n
个不同元素中取出
m
个元素的一个组合.
注:1.不同元素 2.“只取不排”——无序性 3.相同组合:元素相同
判断下列问题哪个是排列问题哪个是组合问题:
⑴ 从
A、B、C、D
四个景点选出2个进行游览;(组合)
⑵ 从甲、乙、丙、丁四个学生中选出2个人担任班长和团支部书记.(排列)
2.组合数的概念:从n
个不同元素中取出
m

m

n
)个元素的所 有组合的
个数,叫做从
n
个不同元素中取出
m
个元素的组合数.用符 号
C
n
m
表示.
例如:示例2中从3个同学选出2名同学的组 合可以为:甲乙,甲丙,乙
丙.即有
C
3
2
?3
种组合.
又如:从
A、B、C、D
四个景点选出2个进行游览的组合:
AB

AC

AD

BC

BD

CD
一共6种组合,即:
C
4
2
?6

在讲解 时一定要让学生去分析:要解决的问题是排列问题还是组合问题,
关键是看是否与顺序有关.那么又如何 计算
C
n
m
呢?
3.组合数公式的推导
3
⑴提 问:从4个不同元素
a

b

c,d
中取出3个元素的组合 数
C
4
是多少呢?
启发: 由于排列是先组合再排列,而从4个不同元素中 取出3个元素的排
.........
333
列数
A
4
可以求得,故我们可以考察一下
C
4

A
4
的关系,如下:
组 合 排列
abc

abd
acd
bcd
?
?
?
?
abc,b ac,
abd,bad,
acd,cad,
bcd,cbd,
cab,
dab,
dac,
dbc,
acb,bca,cba
adb,bda,db a

adc,cda,dca
bdc,cdb,dcb
由此可知:每一个组 合都对应着6个不同的排列,因此,求从4个不同元
3
素中取出3个元素的排列数
A< br>4
,可以分如下两步:① 考虑从4个不同元素中取
3
出3个元素的组合,共有
C
4
个;② 对 每一个组合的3个不同元素进行全排列,
3
A
4
各有
A
种方 法.由分步计数原理得:
A

C?
A
,所以:
C?
3

A
3
3
3
3
4
3
4
3
3
3
4
⑵ 推广: 一般地,求从
n
个不同元素中取出
m
个元素的排列数
A
n
m
,可以


分 如下两步:① 先求从
n
个不同元素中取出
m
个元素的组合数
Cn
m
;② 求每一
mm
个组合中
m
个元素全排列数A
m
,根据分布计数原理得:
A
n
m

Cn
m
?A
m

⑶ 组合数的公式:
m
An
n(n?1)(n?2)?(n?m?1)
C?
m
?
m!A
m
m
n


C
m
n
?
n!

(n,m?N
?
,且m?n)

m!(n?m)!
⑷ 巩固练习:
7
1.计算:⑴
C
7
4

C
10

2.求证:
C
m
n
?
m?1
m?1
?C
n

n?m
?12x?3
3.设
x?N
?
,

C
2
x
x?3
?C
x?1
的值.
2x?3?x?1
解:由题意可得:
?
即:2≤
x
≤4
?
?
x?1?2x?3

x?N
?
,

x
=2或3或4

x
=2时原式值为7;当
x
=3时原式值为7;当
x
=2 时原式值为11.
∴所求值为4或7或11.
4.例题讲评
例1. 6本不同的书分给甲、乙、丙3同学,每人各得2本,有多少种不同
的分
法?
22
?C
2
?90
略解:
C
6
2
?C
4
例2.4名男生和6名女生组成至少有1个男生参加的三人实践活动 小组,
问组成方法共有多少种?
解法一:(直接法)小组构成有三种情形:3男,2男1女 ,1男2女,分
1111
33
?C
6
2
,所以一共有
C
4
?C
6
2
=100种方法. 别有
C
4
C
4
2
?C
6

C
4
+< br>C
4
2
?C
6
+
C
4
33
?C
6
?100
解法二:(间接法)
C
10
5.学生练习:(课本99练习)
三、小结:
定 特

义 点



相同公
组合 式




此外,解决实际问题时首先要看是否与顺序有关, 从而确定是排列问题
还是组合问题,必要时要利用分类和分步计数原理.
四、作业:课堂作业:教学与测试75课
课外作业:课课练 课时7和8
组 合 ⑵
课题:组合的简单应用及组合数的两个性质
目的:深刻理解排列与组合的区别和联系 ,熟练掌握组合数的计算公式;掌
握组合数的两个性质,并且能够运用它解决一些简单的应用问题.
过程:
一、复习回顾:
1.复习排列和组合的有关内容:
强调:排列——次序性;组合——无序性.
2.练习一:
n
m?1
m m?1
m
练习1:求证:
C
n
?C
n?1
. (本式也可变形为:
mC
n
?nC
n?1

m
3 7
33
45
?C
6
2

C
6
?C
11
练习2:计算:①
C
10

C
10
; ②
C
7
;③
C
11


答案:① 120,120 ② 20,20 ③ 792
(此练习的目的为下面学习组合数的两个性质打好基础.)
3.练习二:
⑴ 平面内有10个点,以其中每2个点为端点的线段共有多少条?
⑵ 平面内有10个点,以其中每2个点为端点的有向线段共有多少条?
22
?45
(组合问题) ⑵
A
10
?90
(排列问题) 答案:⑴
C
10
二、新授:
mn?m
?C
n
1.组合数的 性质1:
C
n

理解: 一般地,从
n
个不同元素中取出
m
个元素后,剩下
n

m
个元素.因
为从
n
个不同元素中取出
m
个元素 的每一个组合,与剩下的
n

m
个元素
的每一个组合一一对应,所 以从
n
个不同元素中取出
m
个元素的组合数,等于从
....

n
个元素中取出
n

m
个元素的组合数,即:
C
n
m
?C
n
n?m
.在这里,我们主要
体现: “取法”与“剩法”是“一一对应”的思想.
证明:∵
C
n
n?m
?
n!n!

?(n?m)![n?(n?m)]!m!(n?m)!
mn?m
n!
?C
n

C
n

m!(n?m)!

C
n
m
?
注:1
0
?1
我们规定
C
n
2 等式特点:等式两边下标同,上标之和等于下标.


3 此性质作用:当
m?
n
n?m
时,计算
C
n
m
可变为计算
C
n
,能够使运算简化.
2< br>2002?2001
2001
1
例如:
C
2002

C
2002

C
2002
=2002.
4
C
n
x
?C
n
y
?x?y

x?y?n

2.示例一:(课本101例4)一个口袋内装有大小相同的7个白球和1个黑
球.
⑴ 从口袋内取出3个球,共有多少种取法?
⑵ 从口袋内取出3个球,使其中含有1个黑球,有多少种取法?
⑶ 从口袋内取出3个球,使其中不含黑球,有多少种取法?
3
?35
解:⑴
C
8
3
?56

C
7
2
?21

C
7
3
引导学生发现:
C
8
3
?C
7
2
?C
7< br>.为什么呢?
我们可以这样解释:从口袋内的8个球中所取出的3个球,可以分为两类:一类含有1个黑球,一类不含有黑球.因此根据分类计数原理,上述等式成立.
一般地,从
a
1
,a
2
,?,a
n?1

n
+1个不同元素中取出
m
个元素的组合数是
C
n
m
?1,这些组合可以分为两类:一类含有元素
a
1
,一类不含有
a
1
.含有
a
1
的组
合是从
a
2
,a
3
,?,a
n?1

n
个元素中取出
m
1个元素 与
a
1
组成的,共有
C
n
m?1
个;
不含 有
a
1
的组合是从
a
2
,a
3
,?,a< br>n?1

n
个元素中取出
m
个元素组成的,共有
C< br>n
m
个.根据分类计数原理,可以得到组合数的另一个性质.在这里,我们主要体现从特殊到一般的归纳思想,“含与不含其元素”的分类思想.
3.组合数的 性质2:
C
n
m
?1

C
n
m
+
C
n
m?1

证明:
C
n
m
?C
n
m?1
?
n!n!

?
m!(n?m)!(m?1)![n?(m?1)]!
m!(n?m?1)!

?
n!(n?m?1)?n!m


?
(n?m?1?m)n!

m!(n?m?1)!

?
(n?1)!

m!(n?m?1)!
m

?C
n?1


C
n
m
?1

C
n
m
+
C
n
m?1
注:1 公式特征:下标相同而上标差1的两个组合数之和,等于下标比
原下标多1 而上标与高的相同的一个组合数.
2 此性质的作用:恒等变形,简化运算.在今后学习“二 项式定理”


时,我们会看到它的主要应用.
4.示例二:
36?C
7
4
?C
8
5
?C
9
⑴ 计算:
C
7

nn?1
nn?2
⑵ 求证:
Cm?2

C
m
+
2C
m
+
C
m

x?12x?3
?C
13
⑶ 解方程:
C
13

?2x?3
⑷ 解方程:
C
x< br>x
?
?C
2x?2
?
1
3
A
x?3

10
135
01234
?C
5
2
?C< br>5
?C
5
4
?C
5
?C
4
?C4
?C
4
?C
4
⑸ 计算:
C
4

C
5
0
?C
5
< br>012n?1n
?C
n
?C
n
???C
n
? C
n
?2
n
推广:
C
n
5.组合数性质的简单应用:
证明下列等式成立:
kkkkkk?1
⑴ (讲解)
C
n?1
?C
n?2
?C
n?3
???C
k?1
?C
k
?C
n

k?1
⑵ (练习 )
C
k
k
?C
k
k
?1
?C
k< br>k
?2
???C
k
k
?n
?C
n?k?1< br>
n
01n
(C
n
?C
n
???C
n
)

2
6.处理《教学与测试》76课例题
三、小结:1.组合数的两个性质;
2.从特殊到一般的归纳思想.
四、作业: 课堂作业:《教学与测试》76课
课外作业:课本习题;课课练课时9
组 合 ⑶
课题:组合、组合数的综合应用⑴
目的:进一步巩固组合、组合数的 概念及其性质,能够解决一些较为复杂的
组合应用问题,提高合理选用知识的能力.
过程:
一、知识复习:
1.复习排列和组合的有关内容:
依然强调:排列——次序性;组合——无序性.
2.排列数、组合数的公式及有关性质
123n

C
n
?2C
n
?3C
n???nC
n
?
mn?m
?C
n
性质1:
C
n
性质2:
C
n
m
?1

C
n
m
+
C
n
m?1

?1
常用的等式:
C
k
0
?C
k0
?1
?C
k
k
?C
k
k
?1
?1

3.练习:处理《教学与测试》76课例题
二、例题评讲:
例1.100件产品中有合格品90件,次品10件,现从中抽取4件检查.
⑴ 都不是次品的取法有多少种?


⑵ 至少有1件次品的取法有多少种?
⑶ 不都是次品的取法有多少种?
4
?2555190
; 解:⑴
C90
441322314
?C
90
?C
10
C
90
?C
10
C
90
?C
10
C
90?C
10
?1366035
; ⑵
C
100
4413 22314
?C
10
?C
90
C
10
?C
90
C
10
?C
90
C
10
?C
90?3921015
. ⑶
C
100
例2.从编号为1,2,3,…,1 0,11的共11个球中,取出5个球,使得
这5个球的编号之和为奇数,则一共有多少种不同的取法?
1432
5
C
5
;3奇2偶有
C
6
C
5
;5奇1偶有
C
6
解:分为三类:1奇4偶有
C
6

14325
C
5
+
C
6
C
5
+
C
6
?236
. 所以一共有
C
6
例3.现有8名青年,其中有5名能胜任英语翻译工作;有4名青年能 胜任
德语翻
译工作(其中有1名青年两项工作都能胜任),现在要从中挑选5名青年承
担一项任务,其中3名从事英语翻译工作,2名从事德语翻译工作,则有多少种
不同的选法?
解:我们可以分为三类:
① 让两项工作都能担任的青年从事英语翻译工作,有
C
4
2
C
3
2

31
C
3
; ② 让两项工作都能担任的青年从事德语翻译工作,有
C
4
32
C
3
. ③ 让两项工作都能担任的青年不从事任何工作, 有
C
4
3132
C
3
+
C
4
C< br>3
=42种方法. 所以一共有
C
4
2
C
3
2
+
C
4
例4.甲、乙、丙三人值周,从周一至周六,每人值两天,但甲不 值周一,
乙不值周六,问可以排出多少种不同的值周表 ?
21211
?2C
5
C
4
?C
4
C
3
?42
解法一 :(排除法)
C
6
2
C
4
12
C
4
;另一类 解法二:分为两类:一类为甲不值周一,也不值周六,有
C
4
12C
4
为甲不值周一,但值周六,有
C
4
2
C
3
2
.所以一共有
C
4
+
C
4
2
C
3
2
=42种方法.
例5.6本不同的书全部送给5人,每人至少1本,有多少种不同的送书方
法?
解:第一步从6本不同的书中任取2本“捆绑”在一起看成一个元素有
C
6
2
种方法;第二步将5个“不同元素(书)”分给5个人有
A
5
5
种方法.根据 分步计
数原理,一共有
C
6
2
A
5
5
=1 800种方法.


变题1:6本不同的书全部送给5人,有多少种不同的送书方法?
变题2: 5本不同的书全部送给6人,每人至多1本,有多少种不同的送书方法?

变题3: 5本相同的书全部送给6人,每人至多1本,有多少种不同的送书方法?

55
?720
; 3.
C
6
?6
. 答案:1.
5
6
?15625
; 2.
A
6
三、小结:1.组合的定义,组合数的公式及其两个性质;
2.组合的应用:分清是否要排序.
四、作业:《3+X》 组合基础训练
《课课练》课时10 组合四
组 合 ⑷
课题:组合、组合数的综合应用⑵ < br>目的:对排列组合知识有一个系统的了解,掌握排列组合一些常见的题型及
解题方法,能够运用两 个原理及排列组合概念解决排列组合问题.
过程:
一、知识复习:
1.两个基本原理;
2.排列和组合的有关概念及相关性质.
二、例题评讲:
例1.6本不同的书,按下列要求各有多少种不同的选法:
⑴ 分给甲、乙、丙三人,每人两本;
⑵ 分为三份,每份两本;
⑶ 分为三份,一份一本,一份两本,一份三本;
⑷ 分给甲、乙、丙三人,一人一本,一人两本,一人三本;
⑸ 分给甲、乙、丙三人,每人至少一本.
22
C
2
?90
种. 解:⑴ 根据分步计数原理得到:
C
6
2
C
4
⑵ 分给甲、乙、丙三 人,每人两本有
C
6
2
C
4
2
C
2
2
种方法,这个过程可以分两
步完成:第一步分为三份,每份两本,设有
x
种方法;第二步再将这三份分给甲、
223
C
2
?xC
3
乙 、丙三名同学有
A
3
3
种方法.根据分步计数原理可得:
C
6
2
C
4
,所以
222
C
6
C
4
C
2
x??15
.因此分为三份,每份两本一共有15种方法.
3
A
3
注:本题是分组中的“均匀分组”问题.
....
123
C
5
C
3
?60
种方法. ⑶ 这是“不均匀分组”问题,一共有
C
6
1233
C
5
C
3
A
3
?360
种方法. ⑷ 在⑶的基础上在进行全排列,所以一 共有
C
6
22
C
2
?90
⑸ 可以分为三类情况: ①“2、2、2型”即⑴中的分配情况,有
C
6
2
C
4
12 33
C
5
C
3
A
3
?360
种方法;③“ 1、种方法;②“1、2、3型”即⑷中的分配情况,有
C
6


3
?90
种方法.所以一共有90+360+90=540种方法. 1、4型”,有
C
6
4
A
3
例2.身高互不相同的7名运动员站成一排,甲、乙、丙三人自左 向右从高
到矮排列且互不相邻的排法有多少种?
解:(插空法)现将其余4个同学进行全排列 一共有
A
4
4
种方法,再将甲、乙、
丙三名同学插入5个空位置中( 但无需要进行排列)有
C
5
3
种方法.根据分步计
数原理,一共有< br>A
4
4
C
5
3
=240种方法.
例3.⑴ 四个不同的小球放入四个不同的盒中,一共有多少种不同的放法?
⑵ 四个不同的小球放入四个不同的盒中且恰有一个空盒的放法有多少种?
解:⑴ 根据分步计数原理:一共有
4
4
?256
种方法.
⑵(捆绑法)第 一步从四个不同的小球中任取两个“捆绑”在一起看成一个
3
元素有
C
42
种方法,第二步从四个不同的盒取其中的三个将球放入有
A
4
种方3
法.所以一共有
C
4
2
A
4
=144种方法 .
例4.马路上有编号为1,2,3,…,10的十盏路灯,为节约用电又不影响
照明,可以 把其中3盏灯关掉,但不可以同时关掉相邻的两盏或三盏,在两端的
灯都不能关掉的情况下,有多少种不 同的关灯方法?
解:(插空法)本题等价于在7只亮着的路灯之间的6个空档中插入3只熄
3
?20
种方法. 掉的灯,故所求方法总数为
C
6
例5.九张卡片 分别写着数字0,1,2,…,8,从中取出三张排成一排组成
一个三位数,如果6可以当作9使用,问 可以组成多少个三位数?
111
C
7
C
7
)
种方法; 解:可以分为两类情况:① 若取出6,则有
2(A
8
2
?C
21211112
A
7
种方法.
C
7
C
7
)
+
C
7
A
7
②若不取6,则有
C
7< br>根据分类计数原理,一共有
2(A
8
2
?C
2
=60 2种方法.
三、小结:

高中数学求众数公式-高中数学 投稿


高中数学三向量共面-赣州厚外高中数学老师


芜湖市高中数学竞赛试卷答案-人教版初高中数学衔接


人教版高中数学函数部分状元笔记-上海高中数学定律名称


高中数学人教版B高二目录-高中数学课苗金利怎么样


高中数学福建省质检-更高更妙的高中数学思想与方法最新


高中数学线面角典型例题-高中数学教师的个人述职


高中数学必修一第二张-高中数学组教研工作总结



本文更新与2020-09-18 13:29,由作者提供,不代表本网站立场,转载请注明出处:https://www.bjmy2z.cn/gaokao/403084.html

高中数学《排列组合》教案的相关文章