关键词不能为空

当前您在: 主页 > 数学 >

2018版人教A版高中数学选修2~3全册教案及教学反思

作者:高考题库网
来源:https://www.bjmy2z.cn/gaokao
2020-09-18 18:16
tags:高中数学教学反思

高中数学苏教必修5电子教材-高中数学竞赛辅导书知乎

2020年9月18日发(作者:管兰阶)



人教A版高中数学
选修2-3
全册教案
目 录
1.1分类加法计数原理和分步乘法计数原理
1.2.1排列
1.2.2组合
1.3.1二项式定理
1.3.2“杨辉三角”与二项式系数的性质
1.3.2研究性课题 杨辉三角
2.1.1离散型随机变量
2.1.2离散型随机变量的分布列
2.2.1条件概率
2.2.2事件的相互独立性
2.2.3独立重复实验与二项分布
2.3.1离散型随机变量的均值
2.3.2离散型随机变量的方差
2.4正态分布
3.1回归分析的基本思想及其初步应用【第1课时】
3.1回归分析的基本思想及其初步应用【第2课时】



3.1回归分析的基本思想及其初步应用【第3课时】
3.2独立性检验的基本思想及其应用【第1课时】
3.2独立性检验的基本思想及其应用【第2课时】


人教A版高中数学选修2~3教案
1.1分类加法计数原理和分步乘法计数原理
教学目标:
知识与技能:①理解分类加法计数原理与分步乘法计数原理;
②会利用两个原理分析和解决一些简单的应用问题;
过程与方法:培养学生的归纳概括能力;
情感、态度与价值观:引导学生形成 “自主学习”与“合作学习”等良好的学习方式
教学重点:分类计数原理(加法原理)与分步计数原理(乘法原理)
教学难点:分类计数原理(加法原理)与分步计数原理(乘法原理)的准确理解
授课类型:新授课
课时安排:2课时

第一课时
引入课题
先看下面的问题:
①从我们班上推选出两名同学担任班长,有多少种不同的选法?
②把我们的同学排成一排,共有多少种不同的排法?
要解决这些问题,就要运用有关排列、组合知识. 排列组合是一种重要的数学计数方法.
总的来说,就是研究按某一规则做某事时,一共有多少种不同的做法.
在运用排列、组合方法时,经常要用到分类加法计数原理与分步乘法计数原理. 这节课,
我们从具体例子出发来学习这两个原理.

1 分类加法计数原理
(1)提出问题
问题1.1:用一个大写的英文字母或一个阿拉伯数字给教室里的座位编号, 总共能够编
出多少种不同的号码?
问题1.2:从甲地到乙地,可以乘火车,也可以乘汽车. 如果一天中火车有3班,汽车
有2班.那么一天中,乘坐这些交通工具从甲地到乙地共有多少种不同的走 法?
探究:你能说说以上两个问题的特征吗?
(2)发现新知
分类加法计数原理 完成一件事有两类不同方案,在第1类方案中有
法,在第2类方案中有
n
种不同的方法 . 那么完成这件事共有
m
种不同的方

N?m?n

种不同的方法.
(3)知识应用
例1.在填写高考 志愿表时,一名高中毕业生了解到,A,B两所大学各有一些自己感兴趣
的强项专业,具体情况如下:
A大学 B大学
生物学 数学
化学 会计学
医学 信息技术学
物理学 法学
工程学
如果这名同学只能选一个专业,那么他共有多少种选择呢?
分析:由于这名同学在 A , B 两所大学中只能选择一所,而且只能选择一个专业,又
由于两所大学没有共同的强项专业,因此符合 分类加法计数原理的条件.解:这名同学可以
1


人教A版高中数学选修2~3教案
选择 A , B 两所大学中的一所.在 A 大学中有 5 种专业选择方法,在 B 大学中有 4 种
专业选择方法.又由于没有一个强项专 业是两所大学共有的,因此根据分类加法计数原理,
这名同学可能的专业选择共有
5+4=9(种).
变式:若还有C大学,其中强项专业为:新闻学、金融学、人力资源学. 那么,这名同
学可能的专业选择共有多少种?
探究:如果完成一件事有三类不同方案,在第1 类方案中有
m
1
种不同的方法,在第2
类方案中有
m
2种不同的方法,在第3类方案中有
m
3
种不同的方法,那么完成这件事共有多少种不同的方法?
如果完成一件事情有
n
类不同方案,在每一类中都有若干种不 同方法,那么应当如何计
数呢?
一般归纳:
完成一件事情,有n类办法,在第1类 办法中有
m
1
种不同的方法,在第2类办法中有
m
2
种不同 的方法……在第n类办法中有
m
n
种不同的方法.那么完成这件事共有
N?m
1
?m
2
?????m
n

种不同的方法.
理解分类加法计数原理:
分类加法计数原理针对的是“分类”问题 ,完成一件事要分为若干类,各类的方法相互
独立,各类中的各种方法也相对独立,用任何一类中的任何 一种方法都可以单独完成这件事.
例2.一蚂蚁沿着长方体的棱,从的一个顶点爬到相对的另一个顶点的最近路线共有多少
条?
解:从总体上看,如,蚂蚁从顶点A爬到顶点C1有三类方法,从局部上看每类又需两步完成,
所以,
第一类, m1 = 1×2 = 2 条
第二类, m2 = 1×2 = 2 条
第三类, m3 = 1×2 = 2 条
所以, 根据加法原理, 从顶点A到顶点C1最近路线共有 N = 2 + 2 + 2 = 6 条

练习
1.填空:
( 1 )一件工作可以用 2 种方法完成,有 5 人只会用第 1 种方法完成,另有 4 人
只会用第 2 种方法完成,从中选出 l 人来完成这件工作,不同选法的种数是_
( 2 )从 A 村去 B 村的道路有 3 条,从 B 村去 C 村的道路有 2 条,从 A 村经 B
的路线有_条.














2


人教A版高中数学选修2~3教案









第二课时
2 分步乘法计数原理
(1)提出问题
问题2.1:用前6个大写英文字母和1—9九个阿拉伯数字,以
A
1
,
A
2
,…,
B
1
,
B
2
,…
的方式给教室里的座位编号,总共能编出多少个不同的号码?
用列举法可以列出所有可能的号码:

我们还可以这样来思考:由于前 6 个英文字母中的任意一个都能与 9 个数字中的任何
一个组成一个号码,而且它们各不相同,因此共有 6×9 = 54 个不同的号码.
探究:你能说说这个问题的特征吗?
(2)发现新知
分步乘法计数原理 完成一件事有两类不同方案,在第1类方案中有
方法,在第2类方案 中有
n
种不同的方法. 那么完成这件事共有
m
种不同的

N?m?n

种不同的方法.
(3)知识应用
例1.设某班有男生30名,女生24名. 现要从中选出男、女生各一名代表班级参加比
赛,共有多少种不同的选法?
分析:选出一组参赛代表,可以分两个步骤.第 l 步选男生.第2步选女生.
解:第 1 步,从 30 名男生中选出1人,有30种不同选择;
第 2 步,从24 名女生中选出1人,有 24 种不同选择.
根据分步乘法计数原理,共有
30×24 =720
种不同的选法.
探究:如果完成一件事需要三个步骤,做第1步有
m
1种不同的方法,做第2步有
m
2

不同的方法,做第3步有
m< br>3
种不同的方法,那么完成这件事共有多少种不同的方法?
如果完成一件事情需要n
个步骤,做每一步中都有若干种不同方法,那么应当如何计
数呢?
3


人教A版高中数学选修2~3教案
一般归纳:
完成一件事 情,需要分成n个步骤,做第1步有
m
1
种不同的方法,做第2步有
m
2
种不
同的方法……做第n步有
m
n
种不同的方法.那么完成这件 事共有
N?m
1
?m
2
?????m
n

种不同的方法.
理解分步乘法计数原理:
分步计数原理针对的是“分步”问题,完 成一件事要分为若干步,各个步骤相互依存,
完成任何其中的一步都不能完成该件事,只有当各个步骤都 完成后,才算完成这件事.
3.理解分类加法计数原理与分步乘法计数原理异同点
①相同点:都是完成一件事的不同方法种数的问题
②不同点:分类加法计数原理针对的是“分 类”问题,完成一件事要分为若干类,各类的方
法相互独立,各类中的各种方法也相对独立,用任何一类 中的任何一种方法都可以单独完成
这件事,是独立完成;而分步乘法计数原理针对的是“分步”问题,完 成一件事要分为若干
步,各个步骤相互依存,完成任何其中的一步都不能完成该件事,只有当各个步骤都 完成后,
才算完成这件事,是合作完成.
例2 .如图,要给地图A、B、C、D四个区域分 别涂上3种不同颜色中的某一种,允许同一
种颜色使用多次,但相邻区域必须涂不同的颜色,不同的涂色 方案有多少种?







解: 按地图A、B、C、D四个区域依次分四步完成,
第一步, m1 = 3 种,
第二步, m2 = 2 种,
第三步, m3 = 1 种,
第四步, m4 = 1 种,
所以根据乘法原理, 得到不同的涂色方案种数共有N = 3 × 2 ×1×1 = 6
变式
1,如图,要给地图A、B、C、D四个区域分别涂上3种不同颜色中的某一种,允许同
一种颜色使用多次,但相邻区域必须涂不同的颜色,不同的涂色方案有多少种?
2若颜色是2种,4种,5种又会什么样的结果呢?

练习
2.现有高一年级的学生 3 名,高二年级的学生 5 名,高三年级的学生 4 名. ( 1 )
从中任选1 人参加接待外宾的活动,有多少种不同的选法?村去 C 村,不同 ( 2 )从 3 个
年级的学生中各选 1 人参加接待外宾的活动,有多少种不同的选法?








4


人教A版高中数学选修2~3教案















第三课时
3 综合应用
例1. 书架的第1层放有4本不同的计算机书,第2层放有3本不同的文艺书,第3层
放2本不同的体育书.
①从书架上任取1本书,有多少种不同的取法?
②从书架的第1、2、3层各取1本书,有多少种不同的取法?
③从书架上任取两本不同学科的书,有多少种不同的取法?
【分析】
①要完成的事 是“取一本书”,由于不论取书架的哪一层的书都可以完成了这件事,因
此是分类问题,应用分类计数原 理.
②要完成的事是“从书架的第1、2、3层中各取一本书”,由于取一层中的一本书都只
完成了这件事的一部分,只有第1、2、3层都取后,才能完成这件事,因此是分步问题,应
用分步计数 原理.
③要完成的事是“取2本不同学科的书”,先要考虑的是取哪两个学科的书,如取计算
机和文艺书各1本,再要考虑取1本计算机书或取1本文艺书都只完成了这
件事的一部分,应用分步计 数原理,上述每一种选法都完成后,这件事才能完成,因此这些
选法的种数之间还应运用分类计数原理.
解: (1) 从书架上任取1本书,有3类方法:第1类方法是从第1层取1本计算机书,
有4 种方法;第2 类方法是从第2 层取1本文艺书,有3 种方法;第3类方法是从第 3 层
取 1 本体育书,有 2 种方法.根据分类加法计数原理,不同取法的种数是

N?m
1
?m
2
?m
3
=4+3+2=9;
( 2 )从书架的第 1 , 2, 3 层各取 1 本书,可以分成3个步骤完成:第 1 步从第 1 层
取 1 本计算机书,有 4 种方法;第 2 步从第 2 层取1本文艺书,有 3 种方法;第 3 步
从第3层取1 本体育书,有 2 种方法.根据分步乘法计数原理,不同取法的种数是
N?m
1
?m
2
?m
3
=4×3×2=24 .
(3)
N?4?3?4?2?3?2?26

例2. 要从甲、乙、丙3幅 不同的画中选出2幅,分别挂在左、右两边墙上的指定位置,
问共有多少种不同的挂法?
解:从 3 幅画中选出 2 幅分别挂在左、右两边墙上,可以分两个步骤完成:第 1 步,
从 3 幅画中选 1 幅挂在左边墙上,有 3 种选法;第 2 步,从剩下的 2 幅画中选 1 幅挂
在右边墙上,有 2 种选法.根据分步乘法计数原理,不同挂法的种数是
N=3×2=6 .
6 种挂法可以表示如下:
5


人教A版高中数学选修2~3教案

分类加法计数原理和分步乘法计 数原理,回答的都是有关做一件事的不同方法的种数问
题.区别在于:分类加法计数原理针对的是“分类 ”问题,其中各种方法相互独立,用其中
任何一种方法都可以做完这件事,分步乘法计数原理针对的是“ 分步”问题,各个步骤中的
方法互相依存,只有各个步骤都完成才算做完这件事.

例3.随着人们生活水平的提高,某城市家庭汽车拥有量迅速增长,汽车牌照号码需交
通管理部门出台了 一种汽车牌照组成办法,每一个汽车牌照都必须有3个不重复的英文字母
和 3 个不重复的阿拉伯数字,并且3 个字母必须合成一组出现,3个数字也必须合成一组
出现.那么这种办法共能给多少辆汽车上牌照?
分析:按照新规定,牌照可以分为 2类,即字母组合在左和字母组合在右.确定一个
牌照的字母和数字可以分6个步骤.
解:将汽车牌照分为 2 类,一类的字母组合在左,另一类的字母组合在右.字母组合
在左时 ,分6个步骤确定一个牌照的字母和数字:
第1步,从26个字母中选1个,放在首位,有26种选法;
第2步,从剩下的25个字母中选 1个,放在第2位,有25种选法;
第3步,从剩下的24个字母中选 1个,放在第3位,有24种选法;
第4步,从10个数字中选1个,放在第 4 位,有10种选法;
第5步,从剩下的 9个数字中选1个,放在第5位,有9种选法;
第6步,从剩下的 8个字母中选1个,放在第6位,有8种选法.
根据分步乘法计数原理,字母组合在左的牌照共有
26 ×25×24×10×9×8=11 232 000(个) .
同理,字母组合在右的牌照也有11232 000 个.
所以,共能给
11232 000 + 11232 000 = 22464 000(个) .
辆汽车上牌照.
用两个计数原理解决计数问题时,最重要的是在开始计算之前要进行仔细分析 ― 需要
分类还 是需要分步.分类要做到“不重不漏”.分类后再分别对每一类进行计数,最后用分
类加法计数原理求和 ,得到总数.分步要做到“步骤完整” ― 完成了所有步骤,恰好完成
任务,当然步与步之间要相互独 立.分步后再计算每一步的方法数,最后根据分步乘法计数
原理,把完成每一步的方法数相乘,得到总数 .
练习
(a
1
?a
2
?a
3
)(b< br>1
?b
2
?b
3
)(c
1
?c
2< br>?c
3
?c
4
?c
5
)
展开后共有多少项? 1.乘积
2.某电话局管辖范围内的电话号码由八位数字组成,其中前四位的数字是不变的,后
四位数字都是。到 9 之间的一个数字,那么这个电话局不同的电话号码最多有多少个?
3.从 5 名同学中选出正、副组长各 1 名,有多少种不同的选法?
4.某商场有 6 个门,如果某人从其中的任意一个门进人商场,并且要求从其他的门出
6


人教A版高中数学选修2~3教案
去,共有多少种不同的进出商场的方式?

























第四课时
例1.给程序模块命名,需要用3个字符,其中首字符要求用字母 A~G 或 U~Z , 后
两个要求用数字1~9.问最多可以给多少个程序命名?
分析:要给一个程序模块命名,可以分三个步骤:第 1 步,选首字符;第2步,选中
间字符;第3步,选最后一个字符.而首字符又可以分为两类.
解:先计算首字符的选法.由分类加法计数原理,首字符共有
7 + 6 = 13
种选法.
再计算可能的不同程序名称.由分步乘法计数原理,最多可以有
13×9×9 = = 1053
个不同的名称,即最多可以给1053个程序命名.

例2. 核糖核酸(RNA)分子是在生物细胞中发现的化学成分一个 RNA 分子是一个 有着
数百个甚至数千个位置的长链,长链中每一个位置上都由一种称为碱基的化学成分所占据.
总共有 4 种不同的碱基,分别用A,C,G,U表示.在一个 RNA 分子中,各种碱基能够以任 意
次序出现,所以在任意一个位置上的碱基与其他位置上的碱基无关.假设有一类 RNA 分子
由 100 个碱基组成,那么能有多少种不同的 RNA 分子?

分析:用图1. 1一2 来表示由100个碱基组成的长链,这时我们共有100个位置,每
个位置都可以从A , C , G , U 中任选一个来占据.
7


人教A版高中数学选修2~3教案

解:100个碱基组成的长链共有 100个位置,如图1 . 1一2所示.从左到右依次在每
一个位置中,从 A , C , G , U 中任选一个填人,每个位置有 4 种填充方法.根据分步乘
法计数原理,长度为 100 的所有可能的不同 RNA 分子数目有
4?4?
100
?4?4
100
(个)
例3.电子元件很 容易实现电路的通与断、电位的高与低等两种状态,而这也是最容易
控制的两种状态.因此计算机内部就 采用了每一位只有 O 或 1 两种数字的记数法,即二进
制.为了使计算机能够识别字符,需要对字 符进行编码,每个字符可以用一个或多个字节来
表示,其中字节是计算机中数据存储的最小计量单位,每 个字节由 8 个二进制位构成.问:
(1)一个字节( 8 位)最多可以表示多少个不同的字符?
(2)计算机汉字国标码(GB 码)包含了6 763 个汉字,一个汉字为一个字符,要对这
些汉字进行编码,每个汉字至少要用多少个字节表示?
分析:由于每个字节有 8 个二进制位,每一位上的值都有 0,1两种选择,而且不同的
顺序代表不同的字符,因此可以用分步乘法计数原理求解本题.
解:(1)用图1.1一3 来表示一个字节.

图 1 . 1 一 3
一个字节共有 8 位,每位上有 2 种选择.根据分步乘法计数原理,一个字节最多可以
8
表示 2×2×2×2×2×2×2×2= 2 =256 个不同的字符;
( 2)由( 1 )知,用一个字节所能表示的不同字符不够 6 763 个,我们就考虑用2
个字节能够表示多少个字符.前一个字节有 256 种不同的表示方法,后一个字节也有 256
种表示方法.根据分步乘法计数原理,2个字节可以表示 256×256 = 65536
个不同的字符,这已经大于汉字国标码包含的汉字个数 6 763.所以要表示这些汉字,每个
汉字至少要用 2 个字节表示.
例4.计算机编程人员 在编写好程序以后需要对程序进行测试.程序员需要知道到底有
多少条执行路径(即程序从开始到结束的 路线),以便知道需要提供多少个测试数据.一般
地,一个程序模块由许多子模块组成.如图1.1一4 ,它是一个具有许多执行路径的程序模
块.问:这个程序模块有多少条执行路径?
另外,为了 减少测试时间,程序员需要设法减少测试次数你能帮助程序员设计一个测试
方法,以减少测试次数吗?
8


人教A版高中数学选修2~3教案

图1.1一4
分析:整个模块的任意一条执行路径都分两步完成:第 1 步是从开始执行到 A 点;第
2 步是从 A 点执行到结束.而第 1 步可由子模块 1 或子模块 2 或子模块 3 来完成;第 2
步可由子模块 4 或子模块 5 来完成.因此,分析一条指令在整个模块的执行路径需要用到
两个计数原理.
解:由分类加法计数原理,子模块 1 或子模块 2 或子模块 3 中的子路径共有
18 + 45 + 28 = 91 (条)
子模块 4 或子模块 5 中的子路径共有
38 + 43 = 81 (条) .
又由分步乘法计数原理,整个模块的执行路径共有
91×81 = 7 371(条).
在实际测试中,程序员总是把每一个子模块看成一个 黑箱,即通过只考察是否执行了正
确的子模块的方式来测试整个模块.这样,他可以先分别单独测试 5 个模块,以考察每个
子模块的工作是否正常.总共需要的测试次数为
18 + 45 + 28 + 38 + 43 =172.
再测试各个模块之间的信息交流是否正常,只需要测试程序第1 步中的各个子模块和
第 2 步中的各个子模块之间的信息交流是否正常,需要的测试次数为
3×2=6 .
如果每个 子模块都工作正常,并且各个子模块之间的信息交流也正常,那么整个程序模
块就工作正常.这样,测试 整个模块的次数就变为
172 + 6=178(次).
显然,178 与7371 的差距是非常大的.
你看出了程序员是如何实现减少测试次数的吗?

巩固练习:
1.如图,从甲地到乙地有2条路可通,从乙地到丙地有3条路可通;从甲地到丁地有4条路
可 通, 从丁地到丙地有2条路可通。从甲地到丙地共有多少种不同的走法?
2.书架上放有3本不同的数学书,5本不同的语文书,6本不同的英语书.
9


人教A版高中数学选修2~3教案
(1)若从这些书中任取一本,有多少种不同的取法?
(2)若从这些书中,取数学书、语文书、英语书各一本,有多少种不同的取法?
(3)若从这些书中取不同的科目的书两本,有多少种不同的取法?
3.如图一,要给①,② ,③,④四块区域分别涂上五种颜色中的某一种,允许同一种颜色使用
多次,但相邻区域必须涂不同颜色 ,则不同涂色方法种数为()
A. 180 B. 160 C. 96 D. 60



图一




图二






图三
若变为图二,图三呢?
5.五名学生报名参加四项体育比赛,每人限报一项, 报名方法的种数为多少?又他们
争夺这四项比赛的冠军,获得冠军的可能性有多少种?
6.( 2007年重庆卷)若三个平面两两相交,且三条交线互相平行,则这三个平面把空
间分成( C )
A.5部分 B.6部分 C.7部分 D.8部分

课外作业:第10页 习题 1. 1 6 , 7 , 8

教学反思:
课堂小结
1.分类加法计数原理和分步乘法计数原理是排列组合问题的最基本的原理,是推导 排列
数、组合数公式的理论依据,也是求解排列、组合问题的基本思想.
2.理解分类加法计数原理与分步乘法计数原理,并加区别
分类加法计数原理针对的是“分类 ”问题,其中各种方法相对独立,用其中任何一种方
法都可以完成这件事;而分步乘法计数原理针对的是 “分步”问题,各个步骤中的方法相互
依存,只有各个步骤都完成后才算做完这件事.
3.运用分类加法计数原理与分步乘法计数原理的注意点:
分类加法计数原理:首先确定分类 标准,其次满足:完成这件事的任何一种方法必属于某一
类,并且分别属于不同的两类的方法都是不同的 方法,即不重不漏
分步乘法计数原理:首先确定分步标准,其次满足:必须并且只需连续完成这 n个步骤,
这件事才算完成.

分配问题
把一些元素分给另一些元素来接 受.这是排列组合应用问题中难度较大的一类问题.因
为这涉及到两类元素:被分配元素和接受单位.而 我们所学的排列组合是对一类元素做排列
或进行组合的,于是遇到这类问题便手足无措了.
事 实上,任何排列问题都可以看作面对两类元素.例如,把10个全排列,可以理解为
在10个人旁边,有 序号为1,2,……,10的10把椅子,每把椅子坐一个人,那么有多少
种坐法?这样就出现了两类元 素,一类是人,一类是椅子。于是对眼花缭乱的常见分配问题,
可归结为以下小的“方法结构”: ①.每个“接受单位”至多接受一个被分配元素的问题方法是
是“接受单位”的个数。至于谁是“接 受单位”,不要管它在生活中原来的意义,只要
n?m
.
个数为
m
的 一个元素就是“接受单位”,于是,方法还可以简化为
10
A
m
n
,这里
n?m
.其中
m
.这里的“多”只要
?
A


人教A版高中数学选修2~3教案
“少”.
②.被分配 元素和接受单位的每个成员都有“归宿”,并且不限制一对一的分配问题,方法
是分组问题的计算公式乘 以


A
k
k
.
11


人教A版高中数学选修2~3教案
§1.2.1排列
教学目标:
知识与技能:了解排列数的意义,掌握排列数公式及推导方法,从中体会“化归”的数学思
想, 并能运用排列数公式进行计算。
过程与方法:能运用所学的排列知识,正确地解决的实际问题
情感、态度与价值观:能运用所学的排列知识,正确地解决的实际问题.
教学重点:
排列、排列数的概念
教学难点:
排列数公式的推导
授课类型:
新授课
课时安排:
2课时
内容分析:
分类计数原理是对完成一件事的所有方法的一个划分,依分类计数原理解题,首先明确
要做的这件事是什 么,其次分类时要根据问题的特点确定分类的标准,最后在确定的标准下
进行分类.分类要注意不重复、 不遗漏,保证每类办法都能完成这件事.分步计数原理是指完
成一件事的任何方法要按照一定的标准分成 几个步骤,必须且只需连续完成这几个步骤后才
算完成这件事,每步中的任何一种方法都不能完成这件事 .分类计数原理和分步计数原理的
地位是有区别的,分类计数原理更具有一般性,解决复杂问题时往往需 要先分类,每类中再
分成几步.在排列、组合教学的起始阶段,不能嫌罗嗦,教师一定要先做出表率并要 求学生
严格按原理去分析问题. 只有这样才能使学生认识深刻、理解到位、思路清晰,才会做到分类有据、分步有方,为排列、组合的学习奠定坚实的基础
分类计数原理和分步计数原理既是推导排 列数公式、组合数公式的基础,也是解决排列、
组合问题的主要依据,并且还常需要直接运用它们去解决 问题,这两个原理贯穿排列、组合
学习过程的始终.搞好排列、组合问题的教学从这两个原理入手带有根 本性.
排列与组合都是研究从一些不同元素中任取元素,或排成一排或并成一组,并求有多少
种不同方法的问题.排列与组合的区别在于问题是否与顺序有关.与顺序有关的是排列问题,
与顺序无关 是组合问题,顺序对排列、组合问题的求解特别重要.排列与组合的区别,从定
义上来说是简单的,但在 具体求解过程中学生往往感到困惑,分不清到底与顺序有无关系.

教学过程:
一、复习引入:
1分类加法计数原理:做一件事情,完成它可以有n类办法,在第 一类办法中有
m
1

不同的方法,在第二类办法中有
m
2< br>种不同的方法,……,在第n类办法中有
m
n
种不同的
方法那么完成这 件事共有
N?m
1
?m
2
?
?m
n
种不同的方法
2.分步乘法计数原理:做一件事情,完成它需要分成n个步骤,做第一步有
m
1种不同
的方法,做第二步有
m
2
种不同的方法,……,做第n步有
m
n
种不同的方法,那么完成这
件事有
N?m
1
?m2
??
m
n
种不同的方法
分类加法计数原理和分步乘法计数原理,回答的都是有关做一件事的不同方法种数的问
12


人教A版高中数学选修2~3教案
题,区别在于:分类加法计数原理针对的是 “分类”问题,其中各种方法相互独立,每一种方法
只属于某一类,用其中任何一种方法都可以做完这件 事;分步乘法计数原理针对的是“分步”
问题,各个步骤中的方法相互依存,某一步骤中的每一种方法都 只能做完这件事的一个步骤,
只有各个步骤都完成才算做完这件事
应用两种原理解题:1. 分清要完成的事情是什么;2.是分类完成还是分步完成,“类”间
互相独立,“步”间互相联系;3. 有无特殊条件的限制

二、讲解新课:
1、问题:
问题1.从甲、乙、 丙3名同学中选取2名同学参加某一天的一项活动,其中一名同学参加
上午的活动,一名同学参加下午的 活动,有多少种不同的方法?
分析:这个问题就是从甲、乙、丙3名同学中每次选取2名同学,按照参 加上午的活动
在前,参加下午活动在后的顺序排列,一共有多少种不同的排法的问题,共有6种不同的排
法:甲乙 甲丙 乙甲 乙丙 丙甲 丙乙,其中被取的对象叫做元素
解决这一问题可分两个步骤:第 1 步,确定参加上午活动的同学,从 3 人中任选 1 人,
有 3 种方法;第 2 步,确定参加下午活动的同学,当参加上午活动的同学确定后,参加下
午活动的同学只能从余下的 2 人中去选,于是有 2 种方法.根据分步乘法计数原理,在 3
名同学中选出 2 名,按照参加上午活动在前,参加下午活动在后的顺序排列的不同方法共
有 3×2=6 种,如图 1.2一1 所示.

图 1.2一1
把上面问题中被取的对象叫做元素,于是问题可叙述为:从3个不同的元素 a , b ,。
中任取 2 个,然后按照一定的顺序排成一列,一共有多少种不同的排列方法?所有不同的
排列是 ab,ac,ba,bc,ca, cb,
共有 3×2=6 种.

问题2.从1,2,3,4这 4 个数字中,每次取出3个排成一个三位数,共可得到多少个不同
的三位数?
分析:解决这个问 题分三个步骤:第一步先确定左边的数,在4个字母中任取1个,有
4种方法;第二步确定中间的数,从 余下的3个数中取,有3种方法;第三步确定右边的数,
从余下的2个数中取,有2种方法
由 分步计数原理共有:4×3×2=24种不同的方法,用树型图排出,并写出所有的排列
由此可写出所有 的排法
显然,从 4 个数字中,每次取出 3 个,按“百”“十”“个”位的顺序排成一列,就得
到一个三位数.因此有多少种不同的排列方法就有多少个不同的三位数.可以分三个步骤来
解决 这个问题:
13


人教A版高中数学选修2~3教案
第 1 步,确定百位上的数字,在 1 , 2 , 3 , 4 这 4 个数字中任取 1 个,有 4 种
方法;
第 2 步,确定十位上的数字,当百位上的数字确定后,十位上的数字只能从余下的 3 个
数字中去取,有 3 种方法;
第 3 步,确定个位上的数字,当百位、十位上的数字确定后,个位的数字只能从余下
的 2 个数字中去取,有 2 种方法.
根据分步乘法计数原理,从 1 , 2 , 3 , 4 这 4 个不同的数字中,每次取出 3 个数
字,按“百”“十”“个”位的顺序排成一列,共有
4×3×2=24
种不同的排法, 因而共可得到24个不同的三位数,如图1. 2一2 所示.

由此可写出所有的三位数:
123,124, 132, 134, 142, 143,
213,214, 231, 234, 241, 243,
312,314, 321, 324, 341, 342,
412,413, 421, 423, 431, 432 。
同样,问题 2 可以归结为:
从4个不同的元素a, b, c,d中任取 3 个,然后按照一定的顺序排成一列,共有多少
种不同的排列方法?
所有不同排列是
abc, abd, acb, acd, adb, adc,
bac, bad, bca, bcd, bda, bdc,
cab, cad, cba, cbd, cda, cdb,
dab, dac, dba, dbc, dca, dcb.
共有4×3×2=24种.
树形图如下


a b c d

b c d a c d a b d a b c

2.排列的概念:

n
个不同元素中,任取
m

m?n
)个元素(这 里的被取元素各不相同)按照一定
..
的顺序排成一列,叫做从
n
个不同元素 中取出
m
个元素的一个排列
.......
说明:(1)排列的定义包括两个方面:①取出元素,②按一定的顺序排列;
(2)两个排列相同的条件:①元素完全相同,②元素的排列顺序也相同

3.排列数的定义:

n
个不同元素中,任取
m

m?n
)个元素的所有排列的个数叫做从
n
个元素中取
14


人教A版高中数学选修2~3教案

m
元素的排列数,用符号
A
n
表示
注意区别排 列和排列数的不同:“一个排列”是指:从
n
个不同元素中,任取
m
个元素< br>按照一定的顺序排成一列,不是数;“排列数”是指从
n
个不同元素中,任取
m

m?n

.....
个元素的所有排列的个数,是一个数所以符号
A
n
只表示排列数,而不表示具体的排列

4.排列数公式及其推导:

A
n
的意义:假定有排好顺序的2个 空位,从
n
个元素
a
1
,a
2,
2
mm
a
n
中任取2个元素去
填空,一个空位填一个元素,每一种填法就得到 一个排列,反过来,任一个排列总可以由这
样的一种填法得到,因此,所有不同的填法的种数就是排列数
A
n
.由分步计数原理完成上
述填空共有
n(n?1)
种填 法,∴
A
n
=
n(n?1)

由此,求
A
n
可以按依次填3个空位来考虑,∴
A
n
=
n(n?1)(n?2)

mm

A
n
以按依次填
m
个空位来考 虑
A
n
?n(n?1)(n?2)
33
2
2
(n? m?1)

排列数公式:
m
A
n
?n(n?1)(n?2)(n?m?1)


m,n?N,m?n

说明:(1)公式特征:第一个因数是
n
,后面每一个因数比它前面一个少1,最后一个
因数是
n?m?1
,共有m
个因数;
(2)全排列:当
n?m
时即
n
个不同元素全部取出的一个排列 < br>n
全排列数:
A
n
?n(n?1)(n?2)
?
2? 1?n!
(叫做n的阶乘)
另外,我们规定 0! =1 .
451813
例1.用计算器计算: (1)
A
10
; (2)
A
18
; (3)
A
18
?A
13
.
解:用计算器可得:

51813
由( 2 ) ( 3 )我们看到,
A
18
?A
18
?A
13
.那么,这个结果有没有一般性呢?即
n
A
n
n!
.
A?
n?m
?
A
n?m
(n?m)!
m
n
排列数的另一个计算公式:
15


人教A版高中数学选修2~3教案
m
A
n
?n(n?1)(n?2)(n?m?1)

n< br>n(n?1)(n?2)(n?m?1)(n?m)3?2?1
n!
A
n
?
=
n?m
.
?
(n?m)(n?m?1)3?2?1
(n?m)!
A
n?m

A
n
=

m
n!

(n?m)!
322
例2.解方程:3
A
x
?2A
x?1
?6A
x

解 :由排列数公式得:
3x(x?1)(x?2)?2(x?1)x?6x(x?1)


x?3
,∴
3(x?1)(x?2)?2(x?1)?6(x?1),即
3x?17x?10?0

解得
x?5

x?

xx?2
例3.解不等式:
A
9
?6A
9
2
2
?
,∵
x?3
,且
x?N
,∴原方程的解 为
x?5

3
解:原不等式即
9!9!
?6?

(9?x)!(11?x)!
也就是
16
2
?
,化简得:< br>x?21x?104?0

(9?x)!(11?x)?(10?x)?(9?x)!
?
解得
x?8

x?13
,又∵
2?x?9
,且
x?N

所以,原不等式的解集为
?
2,3,4,5,6,7
?


nmn?m
例4.求证:(1)
A
n
?A
n
?A< br>n?m
;(2)
(2n)!
?1?3?5
n
2?n!
(2n?1)

证明:(1)
A
n
?A
n?m
?
mn?m
n!
(n?m)!?n!
?A
n
n
,∴原 式成立
(n?m)!
(2)
(2n)!2n?(2n?1)?(2n?2)
?
n
2?n!2
n
?n!
?
2
n
n?(n ?1)
4?3?2?1

2?1?(2n?1)(2n?3)
2
n
?n!
3?1
< br>?
n!?1?3(2n?3)(2n?1)
?
1?3?5
n!
(2n?1)?
右边
∴原式成立
16


人教A版高中数学选修2~3教案
说明:(1)解含排列数的方程和不等式时 要注意排列数
A
n
中,
m,n?N

m?n
些限制条件,要注意含排列数的方程和不等式中未知数的取值范围;
m
(2)公式
A
n
?n(n?1)(n?2)
m
?
(n?m?1)
常用 来求值,特别是
m,n
均为已知时,公

A
n
=

m
n!
,常用来证明或化简
(n?m)!
例5.化简:⑴
123
???
2!3!4!
?
n?1
;⑵
1?1!?2?2 !?3?3!?
n!
?
?n?n!

⑴解:原式
?1!?< br>11111
?????
2!2!3!3!4!
11
1
??1?

(n?1)!n!
n!
⑵提示:由
?
n?1?
!?
?
n?1
?
n!?n?n!?n!
,得
n?n!?
?
n?1
?
!?n!

原式
?
?
n?1
?
!?1

说明:
n?111
??

n!(n?1)!n!

例6.(课本例2).某年全国足球甲级(A组)联赛共有14个队参加,每队要与其余各队在
主、客 场分别比赛一次,共进行多少场比赛?
解:任意两队间进行1次主场比赛与 1 次客场比赛,对应于 从14个元素中任取2个元
素的一个排列.因此,比赛的总场次是
A
14
=1 4×13=182.

例7.(课本例3).(1)从5本不同的书中选 3 本送给 3 名同学,每人各 1 本,共有多少
种不同的送法?
(2)从5种不同的书中买3本送给3名同学,每人各1本,共有多少种不同的送法?
解:(1)从5本不同的书中选出3本分别送给3名同学,对应于从5个不同元素中任取
3 个元素的一个排列,因此不同送法的种数是
2
A
5
3
=5×4×3=60.
(2)由于有5种不同的书,送给每个同学的1本书都有 5 种不同的选购方法,因此送
给 3 名同学每人各 1 本书的不同方法种数是
5×5×5=125.
例 8 中两个问题的区别在于: ( 1 )是从 5 本不同的书中选出 3 本分送 3 名同学,
各人得到的书不同,属于求排列数问题;而( 2 )中,由于不同的人得到的书可能相同,< br>因此不符合使用排列数公式的条件,只能用分步乘法计数原理进行计算.

例8.(课 本例4).用0到9这10个数字,可以组成多少个没有重复数字的三位数?分析:
在本问题的。到 9 这 10 个数字中,因为。不能排在百位上,而其他数可以排在任意位置
17


人教A版高中数学选修2~3教案
上,因此。是一个特殊的元素.一般的,我们可以从特殊元素的排列位置人手来考虑问题
解法 1 :由于在没有重复数字的三位数中,百位上的数字不能
是O,因此可以分两步完成排列.第1步,排 百位上的数字,可以从
1到9 这九个数字中任选 1 个,有
A
9
种选法; 第2步,排十位和个
位上的数字,可以从余下的9个数字中任选2个,有
A
9
种选法(图
1.2一 5) .根据分步乘法计数原理,所求的三位数有
1
A
9
?A
9
2
=9×9×8=648(个) .
2
1

解法 2 :如图1.2 一6 所示,符合条件的三位数可分成 3 类.每一位数字都不是位
数有 A 母个,个位数字是 O 的三位数有揭个,十位数字是 0 的三位数有揭个.根据分类
加法计数原理,符合条件的三位数有
3
A
9?A
9
2
?A
9
2
=648个.

解法 3 :从0到9这10个数字中任取3个数字的排列数为
A
10
,其中 O 在百位上的
排列数是
A
9
,它们的差就是用这10个数字组成的没有重复 数字的三位数的个数,即所求的
三位数的个数是
32
A
10
-A
9
=10×9×8-9×8=648.
2
3
对于例9 这类计数问题,可用适当的方法将问题分解,而且思考的角度不同,就可以
有不同的解题方法.解法 1 根据百位数字不能是。的要求,分步完成选 3 个数组成没有重
复数字的三位数这件事,依据的是分步乘法计数原理;解法 2 以 O 是否出现以及出现的位
置为标准,分类完成这件事情,依据的是分类加法计数原理;解法 3 是一种逆 向思考方法:
先求出从10个不同数字中选3个不重复数字的排列数,然后从中减去百位是。的排列数( 即
不是三位数的个数),就得到没有重复数字的三位数的个数.从上述问题的解答过程可以看
到 ,引进排列的概念,以及推导求排列数的公式,可以更加简便、快捷地求解“从n个不同
元素中取出 m (m≤n)个元素的所有排列的个数”这类特殊的计数问题.
1.1节中的例 9 是否也是这类计数问题?你能用排列的知识解决它吗?

四、课堂练习:
n!
1.若
x?
,则
x?
( )
3!
3n?3n3

(B)
A
n

(C)
A
3

(D)
A
n?3

(A)
A
n
37
2.与
A
10
?A
7
不等的是 ( )
18


人教A版高中数学选修2~3教案
98910

(B)
81A
8

(C)
10A
9

(D)
A
10

(A)
A
10
53
3.若
A
m
?2A
m
,则
m
的值为 ( )
(A)
5

(B)
3

(C)
6

(D)
7

56
(m?1)!
2A
9
?3A
9
?
. 4.计算: ;
?
n?1
6
A
m?1
?(m?n)!
9!?A
10
5.若
2?
(m?1)!
?4 2
,则
m
的解集是 .
m?1
A
m?1
?5
,那么
m?

7
m
6.(1)已知
A
10
?10?9?
(2)已知
9!?362880
,那么
A
9
= ;
2
(3)已知
A
n
?56
,那么
n?

22
(4)已知
A
n
?7A
n?4
,那么n?

7.一个火车站有8股岔道,停放4列不同的火车,有多少种不同的停放 方法(假定每股岔
道只能停放1列火车)?
8.一部纪录影片在4个单位轮映,每一单位放映1场,有多少种轮映次序?
答案:1. B 2. B 3. A 4. 1,1 5.
?
2,3,4,5,6
?

6. (1) 6 (2) 181440 (3) 8 (4) 5 7. 1680 8. 24
巩固练习:书本20页1,2,3,4,5,6
课外作业:第27页 习题1.2 A组1 , 2 , 3,4,5
教学反思:
排列的特征:一个是“取出元素”;二是“按照一定顺序排列” ,“一定顺序”就是与
位置有 关,这也是判断一个问题是不是排列问题的重要标志。根据排列的定义,两个排列相
同,且仅当两个排列 的元素完全相同,而且元素的排列顺序也相同. 了解排列数的意义,掌
握排列数公式及推导方法,从中 体会“化归”的数学思想,并能运用排列数公式进行计算。
对于较复杂的问题,一般都有两个方向的列 式途径,一个是“正面凑”,一个是“反过
来剔”.前者指,按照要求,一点点选出符合要求的方案;后 者指,先按全局性的要求,选
出方案,再把不符合其他要求的方案剔出去.了解排列数的意义,掌握排列 数公式及推导方
法,从中体会“化归”的数学思想,并能运用排列数公式进行计算。

补充例题
例1.(1)有5本不同的书,从中选3本送给3名同学,每人各1本,共有多少种 不同的送
法?
(2)有5种不同的书,要买3本送给3名同学,每人各1本,共有多少种不同的送法?
解: (1)从5本不同的书中选出3本分别送给3名同学,对应于从5个元素中任取3个元素
3
的一 个排列,因此不同送法的种数是:
A
5
?5?4?3?60
,所以,共有60 种不同的送法
19


人教A版高中数学选修2~3教案
(2)由于 有5种不同的书,送给每个同学的1本书都有5种不同的选购方法,因此送给
3名同学,每人各1本书的 不同方法种数是:
5?5?5?125
,所以,共有125种不同的送

说 明:本题两小题的区别在于:第(1)小题是从5本不同的书中选出3本分送给3位同学,
各人得到的书 不同,属于求排列数问题;而第(2)小题中,给每人的书均可以从5种不同
的书中任选1种,各人得到 那种书相互之间没有联系,要用分步计数原理进行计算

例2.某信号兵用红、黄、蓝3面旗 从上到下挂在竖直的旗杆上表示信号,每次可以任意挂
1面、2面或3面,并且不同的顺序表示不同的信 号,一共可以表示多少种不同的信号?
解:分3类:第一类用1面旗表示的信号有
A
3
种;
第二类用2面旗表示的信号有
A
3
种;
第三类用3面旗表示的信号有
A
3
种,
123
由分类计数 原理,所求的信号种数是:
A
3
?A
3
?A
3
?3 ?3?2?3?2?1?15

3
2
1
答:一共可以表示15种不同的信号

例3.将< br>4
位司机、
4
位售票员分配到四辆不同班次的公共汽车上,每一辆汽车分别有一 位
司机和一位售票员,共有多少种不同的分配方案?
分析:解决这个问题可以分为两步,第一 步:把
4
位司机分配到四辆不同班次的公共汽车
上,即从
4
个不同元 素中取出
4
个元素排成一列,有
A
4
种方法;
第二步:把
4
位售票员分配到四辆不同班次的公共汽车上,也有
A
4
种方法,
利用分步计数原理即得分配方案的种数
44
解:由分步计数原理,分配方案共有N?A
4
?A
4
?576
(种)
4
4
答:共有576种不同的分配方案

例4.用0到9这10个数字,可以组成多少个没有重复数字的三位数?
解法1:用分步计数原理:
12
所求的三位数的个数是:
A
9?A
9
?9?9?8?648

解法2:符合条件的三位数可以分成三类 :每一位数字都不是0的三位数有
A
9
3
个,个位数字是0的三位数有
A
9
2
个,十位数字是0的三位
数有
A
9
个,
由分类计数原理,符合条件的三位数的个数是:
3
A
9
?A
9
2
?A
9
2
?648

3
2
解法3:从0到9这10个数字中任取3个数字的排列数为
A
10
,其中以0为排头的 排列
20


人教A版高中数学选修2~3教案
2322
数为
A
9
,因此符合条件的三位数的个数是
A
10
?A
9
?648
-
A
9

说明:解决排列应用题,常用的思考 方法有直接法和间接法直接法:通过对问题进行恰
当的分类和分步,直接计算符合条件的排列数如解法1 ,2;间接法:对于有限制条件的排
列应用题,可先不考虑限制条件,把所有情况的种数求出来,然后再 减去不符合限制条件的
情况种数如解法3.对于有限制条件的排列应用题,要恰当地确定分类与分步的标 准,防止
重复与遗漏

例5.(1)7位同学站成一排,共有多少种不同的排法?
解:问题可以看作:7个元素的全排列
A
7
=5040.
(2)7位同学站成两排(前3后4),共有多少种不同的排法?
解:根据分步计数原理:7×6×5×4×3×2×1=7!=5040.
(3)7位同学站成一排,其中甲站在中间的位置,共有多少种不同的排法?
解:问题可以看作:余下的6个元素的全排列——
A
6
=720.
(4)7位同学站成一排,甲、乙只能站在两端的排法共有多少种?
解:根据分步计数原理:第一步 甲、乙站在两端有
A
2
种;
5
5
第二步 余下的5名同学进行全排列有
A
5
种,所以, 共有
A
2
?A
5
=240种排列方法
6
7
2
2
(5)7位同学站成一排,甲、乙不能站在排头和排尾的排法共有多少种?
解 法1(直接法):第一步从(除去甲、乙)其余的5位同学中选2位同学站在排头和排
尾有
A< br>5
种方法;第二步从余下的5位同学中选5位进行排列(全排列)有
A
5
种方法,所以
25
一共有
A
5
A
5
=2400种 排列方法
66
25
解法2:(排除法)若甲站在排头有
A
6
种方法;若乙站在排尾有
A
6
种方法;若甲站在
排头且乙站在排尾则有A
5
种方法,所以,甲不能站在排头,乙不能排在排尾的排法共有
A
7< br>-
2A
6

A
5
=2400种.
说明:对 于“在”与“不在”的问题,常常使用“直接法”或“排除法”,对某些特殊元素可
以优先考虑

例6.从10个不同的文艺节目中选6个编成一个节目单,如果某女演员的独唱节目一定不能
排在第二个节目的位置上,则共有多少种不同的排法?
15
解法一:(从特殊位置考 虑)
A
9
A
9
?136080

56
6 5
57
解法二:(从特殊元素考虑)若选:
5?A
9
;若不选:A
9

56
则共有
5?A
9
?A
9
?136080
种;
21


人教A版高中数学选修2~3教案
65
解法三:(间接法)
A
10
?A
9
?136080


例7. 7位同学站成一排,
(1)甲、乙两同学必须相邻的排法共有多少种?
解:先将甲、乙两位 同学“捆绑”在一起看成一个元素与其余的5个元素(同学)一起
进行全排列有
A
6< br>种方法;再将甲、乙两个同学“松绑”进行排列有
A
2
种方法.所以这样的62
排法一共有
A
6
?A
2
?1440

6
2
(2)甲、乙和丙三个同学都相邻的排法共有多少种?
53
解:方法同上,一共有
A
5
A
3
=720种
(3)甲、乙两同学必须相邻,而且丙不能站在排头和排尾的排法有多少种?
解法一:将甲、 乙两同学“捆绑”在一起看成一个元素,此时一共有6个元素,因为丙
不能站在排头和排尾,所以可以从 其余的5个元素中选取2个元素放在排头和排尾,有
A
5

方法;将剩下的4 个元素进行全排列有
A
4
种方法;最后将甲、乙两个同学“松绑”进行排
2< br>列有
A
2
种方法.所以这样的排法一共有
A
5
A4
A
2
=960种方法
2
4
242
解法二: 将甲、乙两同学“捆绑”在一起看成一个元素,此时一共有6个元素,若丙站
在排头或排尾有2
A
5
种方法,
652
所以,丙不能站在排头和排尾的排法有
(A< br>6
?2A
5
)?A
2
?960
种方法
5< br>解法三:将甲、乙两同学“捆绑”在一起看成一个元素,此时一共有6个元素,因为丙
不能站在排 头和排尾,所以可以从其余的四个位置选择共有
A
4
种方法,再将其余的5个元
5
素进行全排列共有
A
5
种方法,最后将甲、乙两同学“松绑”,所以,这 样的排法一共有
1
12
A
4
A
5
5
A2
=960种方法.
(4)甲、乙、丙三个同学必须站在一起,另外四个人也必须站在一起
解:将甲、乙、丙三个 同学“捆绑”在一起看成一个元素,另外四个人“捆绑”在一起
342
看成一个元素,时一共有 2个元素,∴一共有排法种数:
A
3
A
4
A
2
?2 88
(种)
说明:对于相邻问题,常用“捆绑法”(先捆后松).

例8.7位同学站成一排,
(1)甲、乙两同学不能相邻的排法共有多少种?
76 2
解法一:(排除法)
A
7
?A
6
?A
2
?3600

5
解法二:(插空法)先将其余五个同学排好有
A
5
种方法,此时他们留下六个位置(就称
22


人教A版高中数学选修2~3教案
2
为“空”吧),再将甲、乙同学 分别插入这六个位置(空)有
A
6
种方法,所以一共有
52
A
5
A
6
?3600
种方法.
(2)甲、乙和丙三个同学都不能相邻的排法共有多少种?
解:先将其余四个同学排好有A
4
种方法,此时他们留下五个“空”,再将甲、乙和丙三
33
个同学分 别插入这五个“空”有
A
5
种方法,所以一共有
A
4
A5
=1440种.
4
4
说明:对于不相邻问题,常用“插空法”(特殊元素后考虑).
例9.5男5女排成一排,按下列要求各有多少种排法:(1)男女相间;(2)女生按指定顺
序排 列
解:(1)先将男生排好,有
A
5
种排法;再将5名女生插在男生之间的 6个“空挡”(包
括两端)中,有
2A
5
种排法
55
故本 题的排法有
N?2A
5
?A
5
?28800
(种); 5
5
10
A
10
5
(2)方法1:
N?
5
?A
10
?30240

A
5
方法2:设想 有10个位置,先将男生排在其中的任意5个位置上,有
A
10
种排法;余下
的5个位置排女生,因为女生的位置已经指定,所以她们只有一种排法
5
故本题的结论为
N?A
10
?1?30240
(种)
5
2007年高考题
1.(2007年天津卷)如图,用6种不同的颜色给图中的4 个格子涂色,每个格子涂一
种颜色,要求最多使用3种颜色且相邻的两个格子颜色不同,则不同的涂色方 法共有
390 种(用数字作答).


2.(2007年江苏卷)某 校开设9门课程供学生选修,其中
A,B,C
三门由于上课时间相同,
至多选一门,学 校规定每位同学选修4门,共有 75 种不同选修方案。(用数值作答)
3.(2007年北京 卷)记者要为5名志愿都和他们帮助的2位老人拍照,要求排成一排,2
位老人相邻但不排在两端,不同 的排法共有( B )
A.1440种 B.960种 C.720种 D.480种
4.(2007年广东卷)图3是某汽车维修公司的维修点分布图,公司在年初分配给A、B、
C、D四个维修点的某种配件各50件,在使用前发现需将A、B、C、D四个维修点的这
批配件分别调 整为40、45、54、61件,但调整只能在相邻维修点之间进行,那么完
成上述调整,最少的调动件 次(n个配件从一个维修点调整到相邻维修点的调动件次为n)

(A)15 (B)16 (C)17 (D)18
23


人教A版高中数学选修2~3教案
答案:B;
5.(2007年全 国卷I)从班委会5名成员中选出3名,分别担任班级学习委员、文娱委员与
体育委员,其中甲、乙二人 不能担任文娱委员,则不同的选法共有
36
种.(用数字作答)
6.(200 7年全国卷Ⅱ)从5位同学中选派4位同学在星期五、星期六、星期日参加公益活
动,每人一天,要求星 期五有2人参加,星期六、星期日各有1人参加,则不同的选派方法
共有( B )
A.40种 B.60种 C.100种 D.120种
7. (2007年陕西卷)安排3名支教老师去6所学校任教,每校至多2人,则不同的分配方
案共有
210
种.(用数字作答)
8.(2007年四川卷)用数字0,1,2,3, 4,5可以组成没有重复数字,并且比20000大的
五位偶数共有( )
(A)288个 (B)240个 (C)144个 (D)126个
解析:选 B.对个位是0和个位不是0两类情形分类计数;对每一类情形按“个位-最高位
3
-中间三位 ”分步计数:①个位是0并且比20000大的五位偶数有
1?4?A
4
?96
个;②个
3
位不是0并且比20000大的五位偶数有
2?3?A
4
?144
个;故共有
96?144?240
个.本题
考查两个基本原理,是 典型的源于教材的题目.
9.(2007年重庆卷)某校要求每位学生从7门课程中选修4门,其中甲 乙两门课程不能都
选,则不同的选课方案有____25_____种.(以数字作答)
10 .(2007年宁夏卷)某校安排5个班到4个工厂进行社会实践,每个班去一个工厂,每个
工厂至少安 排一个班,不同的安排方法共有 240 种.(用数字作答)
2,,6)
,11.(2 007年辽宁卷)将数字1,2,3,4,5,6拼成一列,记第
i
个数为
a
i
(i?1,

a
1
?1

a
3
?3

a
5
?5

a
1
?a
3< br>?a
5
,则不同的排列方法有 种(用数字作答).
解析:分 两步:(1)先排
a
1
,a
3
,a
5

a
1
=2,有2种;
a
1
=3有2种;
a
1
=4有1种,共
3
有5种;(2)再排
a
2
,a
4
,a
6
,共有
A
3
?6
种,故不同的排列方法种数为5×6 =30,填30.



24


人教A版高中数学选修2~3教案
§1.2.2组合
教学目标:
知识与技能:理解组合的意义,能写出一些简单问题的所有组合。明确组合与排列的联系与
区别 ,能判断一个问题是排列问题还是组合问题。
m
过程与方法:了解组合数的意义,理解排列数
?
n
与组合数 之间的联系,掌握组合数公
C
n
m
式,能运用组合数公式进行计算。
情感、态度与价值观:能运用组合要领分析简单的实际问题,提高分析问题的能力。
教学重点:
组合的概念和组合数公式
教学难点:
组合的概念和组合数公式
授课类型:
新授课
课时安排:
2课时
内容分析:
排列与组合都是研究从一些不同元素中任取元素,或排成一排或并成一组,并求有多少
种不同方法的问题 .排列与组合的区别在于问题是否与顺序有关.与顺序有关的是排列问题,
与顺序无关是组合问题,顺序 对排列、组合问题的求解特别重要.排列与组合的区别,从定
义上来说是简单的,但在具体求解过程中学 生往往感到困惑,分不清到底与顺序有无关系.
指导学生根据生活经验和问题的内涵领悟其中 体现出来的顺序.教的秘诀在于度,学的
真谛在于悟,只有学生真正理解了,才能举一反三、融会贯通.
能列举出某种方法时,让学生通过交换元素位置的办法加以鉴别.
学生易于 辨别组合、全排列问题,而排列问题就是先组合后全排列.在求解排列、组合
问题时,可引导学生找出两 定义的关系后,按以下两步思考:首先要考虑如何选出符合题意
要求的元素来,选出元素后再去考虑是否 要对元素进行排队,即第一步仅从组合的角度考虑,
第二步则考虑元素是否需全排列,如果不需要,是组 合问题;否则是排列问题.
排列、组合问题大都来源于同学们生活和学习中所熟悉的情景,解 题思路通常是依据
具体做事的过程,用数学的原理和语言加以表述.也可以说解排列、组合题就是从生活 经验、
知识经验、具体情景的出发,正确领会问题的实质,抽象出“按部就班”的处理问题的过程.据笔者观察,有些同学之所以学习中感到抽象,不知如何思考,并不是因为数学知识跟不上,
而是因 为平时做事、考虑问题就缺乏条理性,或解题思路是自己主观想象的做法(很可能是
有悖于常理或常规的 做法).要解决这个问题,需要师生一道在分析问题时要根据实际情况,
怎么做事就怎么分析,若能借助 适当的工具,模拟做事的过程,则更能说明问题.久而久之,
学生的逻辑思维能力将会大大提高.

教学过程:
一、复习引入:
1、分类加法计数原理:做一件事情,完成 它可以有n类办法,在第一类办法中有
m
1
种不同
的方法,在第二类办法中有
m
2
种不同的方法,……,在第n类办法中有
m
n
种不同的 方法
那么完成这件事共有
N?m
1
?m
2
?
?m
n
种不同的方法
2.分步乘法计数原理:做一件事情,完成它需要分成n个步骤,做第一步有
m
1种不同的方
25


人教A版高中数学选修2~3教案
法,做第二 步有
m
2
种不同的方法,……,做第n步有
m
n
种不同的方 法,那么完成这件事

N?m
1
?m
2
??
mn
种不同的方法
3.排列的概念:从
n
个不同元素中,任取
m

m?n
)个元素(这里的被取元素各不相同)
按照一定的顺序排成一列 ,叫做从
n
个不同元素中取出
m
个元素的一个排列
....... ..
4.排列数的定义:从
n
个不同元素中,任取
m

m? n
)个元素的所有排列的个数叫做从
m
n
个元素中取出
m
元 素的排列数,用符号
A
n
表示
m
5.排列数公式:
An
?n(n?1)(n?2)(n?m?1)

m,n?N
?
, m?n

6阶乘:
n!
表示正整数1到
n
的连乘积,叫做
n
的阶乘规定
0!?1

7.排列数的另一个计算公式:
A
n
=
m
n!

(n?m)!
8.提出问题:
示例1:从甲、乙、丙3名同学中选出2名去参加某 天的一项活动,其中1名同学参加
上午的活动,1名同学参加下午的活动,有多少种不同的选法?
示例2:从甲、乙、丙3名同学中选出2名去参加一项活动,有多少种不同的选法?
引导观察 :示例1中不但要求选出2名同学,而且还要按照一定的顺序“排列”,而示例
2只要求选出2名同学, 是与顺序无关的引出课题:组合.
..

二、讲解新课:
1组合的概念: 一般地,从
n
个不同元素中取出
m
?
m?n
?
个元 素并成一组,叫做从
n
个不
同元素中取出
m
个元素的一个组合
说明:⑴不同元素;⑵“只取不排”——无序性;⑶相同组合:元素相同
例1.判断下列问题是组合还是排列
(1)在北京、上海、广州三个民航站之间的直达航线上 ,有多少种不同的飞机票?有
多少种不同的飞机票价?
(2)高中部11个班进行篮球单循环比赛,需要进行多少场比赛?
(3)从全班23人中选 出3人分别担任班长、副班长、学习委员三个职务,有多少种不
同的选法?选出三人参加某项劳动,有多 少种不同的选法?
(4)10个人互相通信一次,共写了多少封信?
(5)10个人互通电话一次,共多少个电话?
问题:(1)1、2、3和3、1、2是相同的组合吗?
(2)什么样的两个组合就叫相同的组合

2.组合数的概念:从
n
个不同元素中取出
m
?
m?n
?
个元素的所有组合的个数,叫做从
n

不同元素中取出
m
个元素的组合数.用符号
C
n
表示.
...

3.组合数公式的推导:
26
m


人教A版高中数学选修2~3教案
(1)从4个不同元素
a,b,c,d
中取出3个元素的组合数
C
4
是多少呢?
启发:由 于排列是先组合再排列,而从4个不同元素中取出3个元素的排列数
A
4
可以
.........
求得,故我们可以考察一下
C
4

A
4
的关系,如下:
组 合 排列
abc?abc,bac,cab,

abd?abd,bad,dab ,
acd?acd,cad,dac,
bcd?bcd,cbd,dbc,
acb,b ca,cba
adb,bda,dba

adc,cda,dca
bdc,c db,dcb
33
3
3
由此可知,每一个组合都对应着6个不同的排列,因此 ,求从4个不同元素中取出3个
元素的排列数
A
4
,可以分如下两步:① 考虑从4个不同元素中取出3个元素的组合,共有
3
3
C
4
个;② 对每一个组合的3个不同元素进行全排列,各有
A
3
种方法.由分步计数原理得:3
3
A
4
A

C?
A
,所以,
C?
3

A
3
3
4
3
4
3< br>3
3
4
(2)推广:一般地,求从
n
个不同元素中取出
m
个元素的排列数
A
n
,可以分如下两步:
① 先求从
n
个不同元素中取出
m
个元素的组合数
C
n

mmmm
② 求每一个组合中
m
个元素全排列数
A
m
,根据分步计数原理得:
A
n

C
n
?A
m
m
m
(3)组合数的公式:
A
n
m
n(n?1)(n?2)(n?m?1)

C?m
?
A
m
m!
m
n

C
n< br>?
m
n!
(n,m?N
?
,且m?n)

m!(n?m)!
0
规定:
C
n
?1
.

三、讲解范例:
例2.用计算器计算
C
10

解:由计算器可得


例3.计算:(1)
C
7
; (2)
C
10

47
7
27


人教A版高中数学选修2~3教案
7?6?5?4
=35;
4!
10?9?8?7?6?5?4
7< br>(2)解法1:
C
10
?
=120.
7!
10!10?9?8
7
?
解法2:
C
10
?
=120.
7!3!3!
(1)解:
C
7
?
4

例4.求证:
C
n
?
证明:∵
C
n
?
m
m
m?1
m?1
?C
n

n?m
n!

m!(n?m)!
m?1n!
?

n?m(m?1)!(n?m?1 )!
m?1
?C
n?m
m?1
n
?

m? 1n!
?

(m?1)!(n?m)(n?m?1)!
n!

m!(n?m)!


C
n
?

m
m?1
m?1
?C
n

n?m
x?12x?3
例5.设
x?N
?
,

C
2x?3
?C
x?1
的值
2x?3?x?1
解:由题意可得:
?
,解得
2?x?4

?
?
x?1?2x?3

x?N
?
, ∴
x?2

x?3

x?4


x?2
时原式值为7;当
x?3
时原式值为7;当
x?4
时原式值为11.
∴所求值为4或7或11.

例6. 一位教练的足球队共有 17 名初级学员, 他们中以前没有一人参加过比赛.按照足
球比赛规则,比赛时一个足球队的上场队员是11人.问:
(l)这位教练从这 17 名学员中可以形成多少种学员上场方案?
(2)如果在选出 11名上场队员时,还要确定其中的守门员,那么教练员有多少种方式
做这件事情?
分析:对于(1),根据题意,17名学员没有角色差异,地位完全一样,因此这是一个
从 17 个不同元素中选出11个元素的组合问题;对于( 2 ) ,守门员的位置是特殊的,其
余上场学员的地位没有差异,因此这是一个分步完成的组合问题.
解: (1)由于上场学员没有角色差异,所以可以形成的学员上场方案有 C }手= 12 376
(种) .
28


人教A版高中数学选修2~3教案
(2)教练员可以分两步完成这件事情:
第1步,从17名学员中选出 n 人组成上场小组,共有
C
17
种选法;
第2步,从选出的 n 人中选出 1 名守门员,共有
C
11
种选法.
所以教练员做这件事情的方法数有
111
C
17
?C
11
=136136(种).
1
11

例7.(1)平面内有10 个点,以其中每2 个点为端点的线段共有多少条?
(2)平面内有 10 个点,以其中每 2 个点为端点的有向线段共有多少条?
解:(1)以平面内 10 个点中每 2 个点为端点的线段的条数,就是从10个不同的元素
中取出2个元素的组合数,即线段共有

C
2
10
?
10?9
?45
(条).
1?2
(2)由于有向线段的两个端点中一个是起点、另一个是终点,以平面内10个点中每 2 个
点为端点的有向线段的条数,就是从10个不同元素中取出2个元素的排列数,即有向线段
共有
2
A
10
?10?9?90
(条).

例8.在 100 件产品中,有 98 件合格品,2 件次品.从这 100 件产品中任意抽出 3 件 .
(1)有多少种不同的抽法?
(2)抽出的 3 件中恰好有 1 件是次品的抽法有多少种?
(3)抽出的 3 件中至少有 1 件是次品的抽法有多少种?
解:(1)所求的不同抽法的种数,就是从100件产品中取出3件的组合数,所以共有
C
3
100
?
100?99?98
= 161700 (种).
1?2?3
1
(2)从2 件次品中抽出 1 件次品的抽法有
C
2
种,从 98 件合格品中抽出 2 件合格
品的抽法有
C
98
种,因此抽出的 3 件中恰好有 1 件次品的抽法有
12
C
2
?C
98
=9506(种).
2
(3)解法 1 从 100 件产品抽出的 3 件中至少有 1 件是次品,包括有1件次品和有 2
件次品两种情况.在第(2)小题中已求得其中1件是次品的抽法 有
C
2
?C
98
种,因此根据分
类加法计数原理,抽出的3 件中至少有一件是次品的抽法有
1221
C
2
?C
98
+
C
2
?C
98
=9 604 (种) .
12
解法2 抽出的3 件产品中至少有 1 件是次品的抽法的种数,也就是从100件中抽出3
件的抽法种数减去3 件中都是合格品的抽法的种数,即
33
C
100
?C
98
=161 700-152 096 = 9 604 (种).
29


人教A版高中数学选修2~3教案
说明:“至少”“至多”的问题,通常用分类法或间接法求解。
变式:按下列条件,从12人中选出5人,有多少种不同选法?
(1)甲、乙、丙三人必须当选; (2)甲、乙、丙三人不能当选;
(3)甲必须当选,乙、丙不能当选; (4)甲、乙、丙三人只有一人当选;
(5)甲、乙、丙三人至多2人当选; (6)甲、乙、丙三人至少1人当选;

例9.(1)6本不同的书分给甲、乙、丙3同学,每人各得2本,有多少种不同的分法?
2 22
解:
C
6
?C
4
?C
2
?90

(2)从5个男生和4个女生中选出4名学生参加一次会议,要求至少有2名男生和1
名 女生参加,有多少种选法?
解:问题可以分成2类:
22
第一类 2名男生和2名女生参加,有
C
5
C
4
?60
中选法;
31
第二类 3名男生和1名女生参加,有
C
5
C
4
?40
中选法
依据分类计数原理,共有100种选法
211
错解:
C
5
C
4
C
6
?240
种选法引导学生用直接法检验,可知重复的很多

例10.4名男生和6名女生组成至少有1个男生参加的三人社会实践活动小组,问组成方法 共
有多少种?
21
C
4
?C
6
解法一:(直接法 )小组构成有三种情形:3男,2男1女,1男2女,分别有
C
4
,,
1C
4
?C
6
2

3
2112
所以, 一共有
C
4
+
C
4
?C
6
+
C< br>4
?C
6
=100种方法.
33
解法二:(间接法)
C
10
?C
6
?100

3

四、组合数的两个性质
mn?m
组合数的性质1:
C
n
?C
n

一般地,从
n
个不同元素中取出
m
个元素后,剩下
n?m
个元素.因为从
n
个不同元
素中取出
m
个元素的每一个组合,与剩下 的
n
?
m
个元素的每一个组合一一对应,所以从
n
.. ..
个不同元素中取出
m
个元素的组合数,等于从这
n
个元素中取出
n
?
m
个元素的组合数,即:
mn?m
C
n< br>?C
n
.在这里,主要体现:“取法”与“剩法”是“一一对应”的思想
n?m
证明:∵
C
n
?
n!n!

?
(n?m)![n?(n?m)]!m!(n?m)!
m

C< br>n
?
mn?m
n!
,∴
C
n
?C
n

m!(n?m)!
30


人教A版高中数学选修2~3教案
0
说明:①规定:
C
n
?1

②等式特点:等式两边下标同,上标之和等于下标;
n
m
n?m
③ 此性质作用:当
m?
时,计算
C
n
可变为计算
C
n
,能够使运算简化.
2
例如
C
2002

C2002
20012002?2001

C
2002
=2002 ;
1
xy

C
n
?C
n
?x?y

x?y?n


2.组合数的性质2:
C
n?1

C
n
+
C
n
mmm?1

m
一般地,从
a
1
,a
2
,?,a
n?1

n
+1个不同元素中取出
m
个元素的组合数是
C
n?1
,这些
组合可以分为两类:一 类含有元素
a
1
,一类不含有
a
1
.含有
a
1
的组合是从
a
2
,a
3
,?,a
n?1

n
个元素中取出
m
?1个元素与
a
1
组成的 ,共有
C
n
m?1
个;不含有
a
1
的组合是从m
a
2
,a
3
,?,a
n?1

n< br>个元素中取出
m
个元素组成的,共有
C
n
个.根据分类计数原 理,可以
得到组合数的另一个性质.在这里,主要体现从特殊到一般的归纳思想,“含与不含其元素”< br>的分类思想.
n!n!
mm?1
证明:
C
n

?
n!(n?m?1)?n!m

?C
n
??
m!(n?m)!(m?1)![n?(m?1)]!m!(n?m?1)!
m
(n?1)!< br>?C
n

?
(n?m?1?m)n!
?
?1

m!(n?m?1)! m!(n?m?1)!

C
n?1

C
n
+
C
n
mmm?1

说明:①公式特征:下标相同而上标差1的两个 组合数之和,等于下标比原下标多1而上标
与大的相同的一个组合数;
②此性质的作用:恒等变形,简化运算

例11.一个口袋内装有大小不同的7个白球和1个黑球,
(1)从口袋内取出3个球,共有多少种取法?
(2)从口袋内取出3个球,使其中含有1个黑球,有多少种取法?
(3)从口袋内取出3个球,使其中不含黑球,有多少种取法?
332323
解:( 1)
C
8
?56
,或
C
8
?C
7
?C
7
,;(2)
C
7
?21
;(3)
C
7
?35


3456
例12.(1)计算:
C
7
?C
7
?C
8
?C
9

nnn?1n ?2
(2)求证:
C
m?2

C
m
+
2C
m
+
C
m

4565664
解:(1)原式?C
8
?C
8
?C
9
?C
9
?C9
?C
10
?C
10
?210

31


人教A版高中数学选修2~3教案
nn?1n?1n?2nn?1n
证明:(2)右边
?(C
m
?C
m
)?(C
m
?C
m
)?C
m?1
?C
m?1
?C
m?2
?
左边

x?12x?3
例13.解方程:(1)
C
13< br>?C
13
;(2)解方程:
C
x?2
?C
x?2?
1
3
A
x?3

10
解:(1)由原方程 得
x?1?2x?3

x?1?2x?3?13
,∴
x?4

x?5

x?2x?3
?
1?x?1?13
?
?
又由
?
1?2x?3?13

2?x?8

x?N
,∴原方程 的解为
x?4

x?5

?
x?N
?
?< br>上述求解过程中的不等式组可以不解,直接把
x?4

x?5
代入检验 ,这样运算量小得
多.
(2)原方程可化为
C
x?3
?
x ?2
(x?3)!(x?3)!
1
3
1
35
?
A< br>x?3
,即
C
x
?A
,∴,
?3x?3
5 !(x?2)!10?x!
1010

11
?

120( x?2)!10?x(x?1)?(x?2)!
2

x?x?12?0
,解得
x?4

x??3

经检验:
x?4
是原方程的解

例14.证明:
C
m< br>?C
n
?C
m
?C
m?p

证明:原式左 端可看成一个班有
m
个同学,从中选出
n
个同学组成兴趣小组,在选出

n
个同学中,
p
个同学参加数学兴趣小组,余下的
n?p
个同学参加物理兴趣小组的选法
数。原式右端可看成直接在
m
个同学中选出
p
个同学参加数学兴趣小组,在余下的
m?p

同学中选出
n?p< br>个同学参加物理兴趣小组的选法数。显然,两种选法是一致的,故左边=
右边,等式成立。

0m1m?1m0m
例15.证明:
C
n
C
m< br>?C
n
C
m
?

?C
n
C
m
?C
m?n
(其中
n?m
)。
nppn?p
证 明:设某班有
n
个男同学、
m
个女同学,从中选出
m
个同学 组成兴趣小组,可分为
m?1
类:男同学0个,1个,…,
m
个,则女同学分 别为
m
个,
m?1
个,…,0个,共
0m1m?1m0m
有 选法数为
C
n
C
m
?C
n
C
m
?

?C
n
C
m
。又由组合定义知选法数为
C
m?n
,故等式成立。

123nn?1
例16.证明:
Cn
?2C
n
?3C
n
?

?nC
n< br>?n2

123n1112131n
证明:左边=
C
n?2C
n
?3C
n
?

?nC
n
=< br>C
1
C
n
?C
2
C
n
?C
3
C
n
?

?C
n
C
n
其中
C
i
C
n
可表示先在
n
个元素里选
i
个,再从
i
个元素里选一个的组合数。设某班有
n
个同
学,选出若干人(至少1人)组成兴趣小组,并指定一人为组长。把这种选法按取到的人数
1i
32


人教A版高中数学选修2~3教案

,n
),则选法 总数即为原式左边。现换一种选法,先选组长,有
n
种选
,2,
i
分 类(
i?1
法,再决定剩下的
n?1
人是否参加,每人都有两种可能,所以组 员的选法有
2
选法总数为
n2

122232nn?2
例1 7.证明:
C
n
?2C
n
?3C
n
?
…< br>?nC
n
?n(n?1)2

2i11i
证明:由于
iC
n
?C
i
C
i
C
n
可表示先在n
个元素里选
i
个,再从
i
个元素里选两个(可
n?1
种,所以
n?1
种。显然,两种选法是一致的,故左边=右边,等式成立。
重复)的组合数,所以原式左端可看成在例3指定一人为组长基础上,再指定一人为副组长
(可兼职)的 组合数。对原式右端我们可分为组长和副组长是否是同一个人两种情况。若组
长和副组长是同一个人,则 有
n2
n?1
种选法;若组长和副组长不是同一个人,则有
n(n?1)2< br>n?2
种选法。∴共有
n2
n?1
+
n(n?1)2
n?2
?n(n?1)2
n?2
种选法。显然,两种选法是
一致的,故左边= 右边,等式成立。

例18.第17届世界杯足球赛于2002年夏季在韩国、日本举办、五 大洲共有32支球队有幸
参加,他们先分成8个小组循环赛,决出16强(每队均与本组其他队赛一场, 各组一、二
名晋级16强),这支球队按确定的程序进行淘汰赛,最后决出冠亚军,此外还要决出第三、
四名,问这次世界杯总共将进行多少场比赛?
答案是:
8C
4
?8 ?4?2?2?64
,这题如果作为习题课应如何分析
解:可分为如下几类比赛:
⑴小组循环赛:每组有6场,8个小组共有48场;
⑵八分之一淘汰赛:8个小组的第一、二 名组成16强,根据抽签规则,每两个队比赛
一场,可以决出8强,共有8场;
⑶四分之一淘汰赛:根据抽签规则,8强中每两个队比赛一场,可以决出4强,共有4
场;
⑷半决赛:根据抽签规则,4强中每两个队比赛一场,可以决出2强,共有2场;
⑸决赛:2强比赛1场确定冠亚军,4强中的另两队比赛1场决出第三、四名 共有2
场.
综上,共有
8C
4
?8?4?2?2?64


2
2
五、课堂练习:
1.判断下列问题哪个是排列问题,哪个是组合问题:
(1)从4个风景点中选出2个安排游览,有多少种不同的方法?
(2)从4个风景点中选出2个,并确定这2个风景点的游览顺序,有多少种不同的方法?
2.
7
名同学进行乒乓球擂台赛,决出新的擂主,则共需进行的比赛场数为( )
A

42

B

21

C

7

D

6

3.如果把两条异面直线看作“一对”,则在五棱锥的棱所在的直线中,异面直线有( )

A

15

B

25

C

30

D

20

33


人教A版高中数学选修2~3教案
4.设全集
U?
?
a,b,c,d
?
,集合
A

B

U
的 子集,若
A

3
个元素,
B

2
个元素, 且
AB?
?
a
?
,求集合
A

B
,则本题的解的个数为 ( )

A

42

B

21

C

7

D

3

5.从
6
位候选人中选出
2
人分别担任班长和团支部书记,有 种不同的选法
6.从
6
位同学中选出
2
人去参加座谈会,有 种不同的选法
7.圆上有10个点:
(1)过每2个点画一条弦,一共可画 条弦;
(2)过每3个点画一个圆内接三角形,一共可画 个圆内接三角形
8.(1)凸五边形有 条对角线;(2)凸
n
五边形有 条对角线
334
9.计算:(1)
C
15
;(2)
C
6?C
8

名称内容
分类原理 分步原理
10.
A,B,C,D,E
5
个足球队进行单循环比赛,(1)共需比赛多少场?(2)若各队的得 分
互不相同,则冠、亚军的可能情况共有多少种?
11.空间有10个点,其中任何4点不 共面,(1)过每3个点作一个平面,一共可作多少个
平面?(2)以每4个点为顶点作一个四面体,一 共可作多少个四面体?
12.壹圆、贰圆、伍圆、拾圆的人民币各一张,一共可以组成多少种币值?
13.写出从
a,b,c,d,e

5
个元素中每次取出
4
个的所有不同的组合
答案:1. (1)组合, (2)排列2. B 3. A 4. D 5. 30 6. 15
7. (1)45 (2) 120 8. (1)5(2)
n(n?3)2

9. ⑴455; ⑵
2
10. ⑴10; ⑵20
7
34
11. ⑴
C
10
?120
; ⑵
C
10
?210

12344
12.
C
4
?C
4
?C
4
?C
4
?2?1?15

13.
a,b,c,d

a,b,c,e

a,b,d,e

a,c,d,e

b,c,d,e


六、小结 :组合的意义与组合数公式;解决实际问题时 首先要看是否与顺序有关,从而确
定是排列问题还是组合问题,必要时要利用分类和分步计数原理
学生探究过程:(完成如下表格)
34


人教A版高中数学选修2~3教案

定 义




相同点
不同点


名 称
定义


排 列

组 合

种数
符号




计算
公式
关系
性质





七、课后作业:
八、板书设计(略)
九、教学反思: 排列组合问题联系实际生动有趣,题型多样新颖且贴近生活,解法灵活独到但不易掌握,
许多学生面 对较难问题时一筹莫展、无计可施,尤其当从正面入手情况复杂、不易解决时,
可考虑换位思考将其等价 转化,使问题变得简单、明朗。
mn?mmmm?1
教科书在研究组合数的两个性质①
C
n
?C
n
,②
C
n?1
?C
n
?C
n
时,给出了组合
数定义的解释证明,即构造一个组合问题的模型,把等式两边 看成同一个组合问题的两种计
算方法,由组合个数相等证出要证明的组合等式。这种构造法证明构思精巧 ,把枯燥的公式
还原为有趣的实例,能极大地激发学习兴趣。本文试给几例以说明。


教学反思:
1注意区别“恰好”与“至少”
从6双不同颜色的手套中任取4只,其中恰好有一双同色的手套的不同取法共有多少种
35


人教A版高中数学选修2~3教案
2特殊元素(或位置)优先安排
将5列车停在5条不同的轨道上,其中a列车不停在第一轨道上,b列车不停在第二轨
道上,那么不同的 停放方法有种
3“相邻”用“捆绑”,“不邻”就“插空”
七人排成一排,甲、乙两人必须相邻,且甲、乙都不与丙相邻,则不同的排法有多少种
4、混合问题,先“组”后“排”
对某种产品的6件不同的正品和4件不同的次品,一一进行 测试,至区分出所有次品为
止,若所有次品恰好在第5次测试时全部发现,则这样的测试方法有种可能?
5、分清排列、组合、等分的算法区别
(1)今有10件不同奖品,从中选6件分给甲一件,乙二件和丙三件,有多少种分法?
(2) 今有10件不同奖品, 从中选6件分给三人,其中1人一件1人二件1人三件, 有多
少种分法?
(3) 今有10件不同奖品, 从中选6件分成三份,每份2件, 有多少种分法?
6、分类组合,隔板处理
从6个学校中选出30名学生参加数学竞赛,每校至少有1人,这样有几种选法?






36

高中数学排列与组合概率教学-高中数学选修2-3全部教案学科网


高中数学竞赛要不要-福建省高中数学教师资格证


高中数学建模论文课题范例-高中数学必修二定理公式总结


德州高中数学学哪几本书-数量级什么意思高中数学


高中数学课本简介-人教版高中数学2 1知识点


高中数学分布列期望-高中数学考试答题卡a卡


高中数学4黄冈中学-一学期学完高中数学


高中数学选修2-1抛物线动画-高中数学人教A讲解视频



本文更新与2020-09-18 18:16,由作者提供,不代表本网站立场,转载请注明出处:https://www.bjmy2z.cn/gaokao/403433.html

2018版人教A版高中数学选修2~3全册教案及教学反思的相关文章

  • 爱心与尊严的高中作文题库

    1.关于爱心和尊严的作文八百字 我们不必怀疑富翁的捐助,毕竟普施爱心,善莫大焉,它是一 种美;我们也不必指责苛求受捐者的冷漠的拒绝,因为人总是有尊 严的,这也是一种美。

    小学作文
  • 爱心与尊严高中作文题库

    1.关于爱心和尊严的作文八百字 我们不必怀疑富翁的捐助,毕竟普施爱心,善莫大焉,它是一 种美;我们也不必指责苛求受捐者的冷漠的拒绝,因为人总是有尊 严的,这也是一种美。

    小学作文
  • 爱心与尊重的作文题库

    1.作文关爱与尊重议论文 如果说没有爱就没有教育的话,那么离开了尊重同样也谈不上教育。 因为每一位孩子都渴望得到他人的尊重,尤其是教师的尊重。可是在现实生活中,不时会有

    小学作文
  • 爱心责任100字作文题库

    1.有关爱心,坚持,责任的作文题库各三个 一则150字左右 (要事例) “胜不骄,败不馁”这句话我常听外婆说起。 这句名言的意思是说胜利了抄不骄傲,失败了不气馁。我真正体会到它

    小学作文
  • 爱心责任心的作文题库

    1.有关爱心,坚持,责任的作文题库各三个 一则150字左右 (要事例) “胜不骄,败不馁”这句话我常听外婆说起。 这句名言的意思是说胜利了抄不骄傲,失败了不气馁。我真正体会到它

    小学作文
  • 爱心责任作文题库

    1.有关爱心,坚持,责任的作文题库各三个 一则150字左右 (要事例) “胜不骄,败不馁”这句话我常听外婆说起。 这句名言的意思是说胜利了抄不骄傲,失败了不气馁。我真正体会到它

    小学作文
2018版人教A版高中数学选修2~3全册教案及教学反思随机文章