关键词不能为空

当前您在: 主页 > 数学 >

山东省全国高中数学联合竞赛试题(山东卷)

作者:高考题库网
来源:https://www.bjmy2z.cn/gaokao
2020-09-19 00:32
tags:2013全国高中数学联赛

高中数学必修五人教版教案-那个软件的高中数学好

2020年9月19日发(作者:和柱)


山东省2012届高中数学夏令营数学竞赛(及答案)
一.填空题(本题共5道小题,每小题8分,满分40分)
1.函数
f(x)?1? 2x?3?2x
的最大值是
________________
(王泽阳 供题)
解:
f(x)?1?2x?3?2x?22
,其等号仅当
1?2x?
立,

所以,f(x)
最大
=
2
3?2x

x?
1
时成
2
2
.
2.如果自然数
a
的各位数字之和等于5,那么称
a
为“吉祥数”, 将所有吉祥数从小到大
排成一列
a
1
,
a
2
,…,
a
n
.若
a
n
=2012.则n=
_______ ________
. (王继忠 供题)
解:设
x
1
x
2
x
m
为吉祥数,则x
1
+x
2
+…+x
m
=5,由x
1
≥1和x
2
,…,x
m
≥0得 < br>x
m
为第
C
m?3
个吉祥数.
1x
2
4
4
(x
1
-1)+x
2
+…+x
m
= 4,所以,
x
1
x
2
x
m
为第
C
m?2
个吉祥数.
4
由此得:一位吉祥数共1个,二位吉祥数共
C
5
因以1为首位的四位吉祥数共
C
6
4
4
?5个,三位吉祥数共
C
6
?15
个,
?15
个,以2为首位的前两个四位吉祥数为:
n
.
n?1
2003和2012.故n=1+5+15+15+2=38.

3. 已知f(x)是2011次多项式,当n=0,1,…,2011时,
f(n)?
则f(201 2)=
______
; (王 林 供题)
解:当n=0,1,…,2011时, (n+1)f(n)=n,即多项式(x+1)f(x)-x有2012个根,
设(x+1)f(x)-x=
a
x(x-1)(x-2)…(x-2011). 取x=-1,则1=2012!
a
.故
a?
1
,
2012 !
,
f(x)?
x(x?1)(x?2)(x?2011)x
?
20 12!(x?1)x?1
2012!20122013
???1
.
2012 !2
f(2012)?
4.将圆周上5个点按如下规则染色:先任选一点染成红色,然后依逆时 针方向,第1步转过
1个间隔将到达的那个点染红,第2步转过2个间隔将到达的那个点染红,第k步转 过k个间隔
将到达的那个点染红.一直进行下去,可得到
_________
个红点. (龚红戈 供题)
解:将5个点依次编号0—4,且不妨设开始染红的是0号点,则第1步染红的是1 号点,第2
步染红的是3号点,第3步染红的又是1号点.故共可得3个红点.
5.如图,设
O
,
I
分别为
?ABC
的外心、内心,且
?B?6 0

AB

BC

?A
的外角
平分线交⊙
O

D
,已知
AD?18
,则
OI?
__ ___________
. (李耀文 供题)
解: 连接
BI
并延长交 ⊙
O

E
,则
E
为弧
AC
的中点.连
D
A
E
O


OE

AE
CE

OC
,由
?B?60
,易知
?AOE

?COE
均为
正三角形.由内心的性质得知:
AE?IE?CE
,所以
A
O

I

C
四点共圆,且圆心为
E
.再延长< br>AI
交⊙
O

F
,
由题设知
D

O

F
共线,于是
?OEI?2?OAI
,
?AOD?2?AFD?2?OAI
,

OA?OD?OE?IE
, 从而
?OAD

?EOI
, 故
OI?AD?18
.
二.解答题(本题共5道小题,每小题20分,满分100分)
n
6.证明:对任给 的奇素数
p
,总存在无穷多个正整数
n
使得
p
|(
n
2-1).
(陈永高 供题)
证明:取
n
=(
p-1)
k
,则由费尔马小定理知
2
(p?1)k
?1(modp )
,所以,
p
|(
n
2
n
-1)
?( p?1)k?2
(p?1)k
?1(modp)?(p?1)k?1(modp)?k??1( modp)
.

k
=
pr
-1(r∈N),即
n
=(
p
-1)(
pr
-1),就有
(p?1)k?2
*
(p?1)k
?1(modp)

p
|(
n
2
n
-1).
7.如图,已知P是矩形ABCD内任意一点,延长BP交AD于E,延 长DP交AB于F,延长
CP交矩形的外接圆于G。求证:GE⊥GF. (叶中豪 供题)
证法1: 设CG交AD于Q,由∠GBA=∠GDA及
∠AGB=∠CGD知△ABG∽△QDG。延长DF、CB
G
交于R,由AD∥BR, AD=BC
Q
E
A

AFBC
?
FBBR
D

F

B
P
BCQE
?
R
又由△CPB∽△QPE及△RPB∽△DPE得
BRED
由①,②得
C
AFQE
?
,表明F,E是△ABG,△QDG的相似对应点,故得
FBE D
0
△FBG∽△EDG.所以,∠FGB=∠EGD,∠FGE=∠BGD=90,
即GE⊥GF.
证法2:联结GB,GD,令∠GCB=
?
,∠GCD=
?
,
G
A
F
B
Q
P
E
D
GBsin
?
BPsin?PBC
??
由正弦定理得:
G Dsin
?
DPsin?PDC
BFsin?BFPsin?PBCBF
?? ?
,
DEsin?DEPsin?PDCDE
β

α

C
由∠GBF=∠GDE得△FBG∽△EDG.
0
所以,∠FGB=∠EGD,∠FGE=∠BGD=90, 即GE⊥GF.
8. 对于恰有120个元素的集合A.问是否存在子集A
1
,A
2
,…,A
10
满足:
(1)|A
i
|=36,i=1,2,…,10;
(2)A
1
∪A
2
∪…∪A
10
=A;


(3)|A
i
∩A
j
|=8,i≠j.请说明理由. (刘裕文 供题)
解:答案:存在.
考虑长度为10的0,1数列.其中仅3项为1的恰有
C
10
个元素. 对每个j=1,2,…,10,第j项为1的0,1数列恰有
C
9
2
3< br>?120
个,每个作为集合A的一
?36
个,它们是集合A的36个元
j
素.对每对i,j∈{1,2,…,10}(iC
8
1
?8
个,它们
是A
i
∩A
j< br>的元素.
综上知,存在满足条件的10个子集. 9.求最小的正整数m,n(n≥2),使得n个边长为m的正方形,恰好可以割并成n个边长分别
为1,2,…,n的正方形. (邹 明 供题)
解 :依题意n个边长为m的正方形,恰好可以割并成n个边长分别为1,2,…,n的正方形
?
1
2
+2
2
+…+n
2
=nm
2
,即6m< br>2
=(n+1)(2n+1),
2
则(n+1)(2n+1)=2n+3n+1≡0(mod6),
2
由n≡0,1,3,4(mod6)知n≡±1(mod6).
2
若6|n+1,设n=6k-1(k∈N),得m=k(12k-1),
因(k,12k-1)=1,所以k与12k-1都是完全平方数,但12k-1≡3 (mod4)矛盾!
2
若6|n-1,设n=6k+1(k∈N),得m=(3k+1)(4 k+1),因(3k+1,4k+1)=1,所以,
2222
3k+1=v,4k+1=u, 消去k得4v-3u=1,v=u=1时,k=0,n=1,但n≥2,故u>1,v>1.
22
由4v-3u≡1(mod8)知u,v为奇数,
直接计算得u
min
=15,v
min
=13,k=56,所以,
m
最小
=15×13=195,n
最小
=337.
10. 设实系数三次多项式
求证:
6a
3
p(x)?x
3
?ax< br>2
?bx?c
有三个非零实数根.
3
2
?10(a
2
?2b)?12ab?27c
. (李胜宏 供题)
证明:设
?
,
?
,
?

p
(x)=0的三个根,由根与系数关系
?
?
?
?
?< br>?
??a
?
?
??
?
??
?
??< br>?b
得:
?
???
??c
?
a
2
?2b?
?
2
?
?
2
?
?
2
.原 式
?6a(a?2b)?10(a?2b)?27c

22
3
2?6(
?
?
?
?
?
)(
?
2
?
?
2
?
?
2
)?10(
?
2
?
?
2
?
?
)?27
???

?

?
2
3
2
2
①.
?
?
2
?
?
2
?0
,则①成立.
?
?
2
?
?
2
?0
,不妨设
|
?
|?|
?
|?|
?
|
,由①的齐次性,不妨设
2


?
2
?
?
2
?
?
2?9
,则
?
2
?3
,
2
??
?
?
2
?
?
2
?9?
?
2
?6
.

?2(
?
?
?
?
?
)?
???
?10
.因
[2(
?
?
?
?
?
)?
???
]
2
?[2(
?
?
?
)?(2 ?
??
)
?
]
2
?[4?(2?
??
)< br>2
][(
?
?
?
)
2
?
?
2
]

?[8?4
??
?(
??
)
2
](9?2
??
)?2(
??
)
3
?(
??
)
2
?20(
??
)?72

?(
? ?
?2)
2
(2
??
?7)?100?100
,所以,2(
?
?
?
?
?
)?
???
?10< br>.故原式
成立.

高中数学计算练习题-高中数学集合的个数课本内容


高中数学会考模拟试题2017-高中数学解题思路分类


高中数学研究与教师数学素养的提升-高中数学课堂评价策略研究


高中数学博客-高中数学中的轨迹方程问题


怎么学高中数学竞赛-高中数学求导过程


高中数学做题无从下手-高中数学双向细目表什么意思


初中能提前学习高中数学吗-郑州高中数学用的是新教材吗


高中数学教资书需要-肖博高中数学复数视频



本文更新与2020-09-19 00:32,由作者提供,不代表本网站立场,转载请注明出处:https://www.bjmy2z.cn/gaokao/403721.html

山东省全国高中数学联合竞赛试题(山东卷)的相关文章

  • 余华爱情经典语录,余华爱情句子

    余华的经典语录——余华《第七天》40、我不怕死,一点都不怕,只怕再也不能看见你——余华《第七天》4可是我再也没遇到一个像福贵这样令我难忘的人了,对自己的经历如此清楚,

    语文
  • 心情低落的图片压抑,心情低落的图片发朋友圈

    心情压抑的图片(心太累没人理解的说说带图片)1、有时候很想找个人倾诉一下,却又不知从何说起,最终是什么也不说,只想快点睡过去,告诉自己,明天就好了。有时候,突然会觉得

    语文
  • 经典古训100句图片大全,古训名言警句

    古代经典励志名言100句译:好的药物味苦但对治病有利;忠言劝诫的话听起来不顺耳却对人的行为有利。3良言一句三冬暖,恶语伤人六月寒。喷泉的高度不会超过它的源头;一个人的事

    语文
  • 关于青春奋斗的名人名言鲁迅,关于青年奋斗的名言鲁迅

    鲁迅名言名句大全励志1、世上本没有路,走的人多了自然便成了路。下面是我整理的鲁迅先生的名言名句大全,希望对你有所帮助!当生存时,还是将遭践踏,将遭删刈,直至于死亡而

    语文
  • 三国群英单机版手游礼包码,三国群英手机单机版攻略

    三国群英传7五神兽洞有什么用那是多一个武将技能。青龙飞升召唤出东方的守护兽,神兽之一的青龙。玄武怒流召唤出北方的守护兽,神兽之一的玄武。白虎傲啸召唤出西方的守护兽,

    语文
  • 不收费的情感挽回专家电话,情感挽回免费咨询

    免费的情感挽回机构(揭秘情感挽回机构骗局)1、牛牛(化名)向上海市公安局金山分局报案,称自己为了挽回与女友的感情,被一家名为“实花教育咨询”的情感咨询机构诈骗4万余元。

    语文