关键词不能为空

当前您在: 主页 > 数学 >

高中数学必修5数列知识点总结复习进程

作者:高考题库网
来源:https://www.bjmy2z.cn/gaokao
2020-09-20 02:07
tags:高中数学必修5数列

涩港高中数学老师-高中数学老师一对一

2020年9月20日发(作者:元行恭)


数列

1. 等差数列

?
通项公式:
a
n
?a
1
?(n?1)d,n??

a?b
,那么A是a与b的等差中项
2
n(a
1
?an
)
n(n?1)
前n项和:
S
n
??na
1
?d

22
等差中项:如果
A?

a
n< br>是等差数列,且
k?l?m?n
,则
a
k
?a
l?a
m
?a
n

? 等差数列的通项求法应该围绕条件结合
a
1
,d
,或是利用特殊项。
? 等差数列的最值问题求使
a
n
?
0(
a
n?
0)
成立的最大n值即可得
S
n
的最值。

例1.
?
a
n
?
是等差数列,
a
5
?8 ,S
3
?6
,则
a
9
?
_________
解析:
a
5
?a
1
?4d?8,S
3
?3a
1
?

例2.
?
a
n
?
是等差数列,
a
1
?0,S
3
?S
11
,则当n为 多少时,
S
n
最大?
3?2
d?3a
1
?3d? 6
,解得
a
1
?0,d?2

a
9
?16

2
2
a
1
,从而
13
aa
n(n?1)249

S
n
?na
1
??(?a
1
)??
1
(n?7)
2< br>?a
1
,又
a
1
?0
所以
?
1?0

213131313

n?7

解析:由
S
3
?S
11

d??

2. 等比数列
n?1
通项公式:
a
n
?a
1< br>q(q?0)

2
等比中项:
G?ab

?
na
1
(q?1)
?
前n项和:
S
n
?
?
a
1
(1?q
n
)
a
1
?a
n< br>q

?(q?1)
?
1?q1?q
?

?< br>a
n
?
是等比数列,且
m?n?p?q
,则
a
m
?a
n
?a
p
?a
q

例.
?
a
n
?
是由正数组成的等比数列,
a
2
a4
?1,S
3
?7
,则
S
5
?
___ _______


24
2
解析:由
a
n
?0

a
2
a
4
?a
1
q?1

S
3
?a
1
?a
1
q?a
1
q? 7
,解得
1131
。所以
S
5
?

a
1
?4,q?,?
(舍去)
224

3. 求数列的通项
? 利用
a
n
?S
n
?S
n?1< br>,注意n=1时的情况。
? 形如
a
n
?a
n?1
?f(n)(n?2)
时,用累加法求解。
? 形如
a
n
?f(n)(n?2)
时,用累乘法求解。
a
n?1
? 形如
a
n
?a
n?1
?m(n?2)
时,构造等差数列求解
? 形如
a
n
?xa
n?1
?y(n?2)
时,构 造等比数列求解。
例.根据下列条件,求
?
a
n
?
的通项公式。
(1)数列
?
a
n
?
满足:
a
n?1
?a
n
?3n?2
,且
a
1
?2
。(转化后利用累加法 )
(2)
a
1
?1

a
n
?
n ?1
(利用累乘法)
a
n?1
(n?2)

n
( 3)
a
1
?1

a
n?1
?3a
n
?2
。(构造等比数列)
解析:(1)因为
a
n?1
?a
n
?3n?2?3(n?1)?1
,所以
a
n
?a
n?1
?3n?1
所以

a
n
?(a
n?a
n?1
)?(a
n?1
?a
n?2
)?K?(a< br>2
?a
1
)?a
1
?

n?1
时,
a
1
?2
符合
a
n
通项公式。
n(3n?1)

2
n?1n?21
a
n?1
(n ?2)
,所以
a
n?1
?a
n?2
,
K
a
2
?a
1

nn?12
12n?1
a
1
1

an
?a
1
???K???

a
1
符合通项公式 。
23nnn
(2)因为
a
n
?
( 3)因为
a
n?1
?3a
n
?2
,所以
a
n?1
?1?3(a
n
?1)
,由
a
1
?1
可知
a
n
?1?0

所以
a
n?1
?1
?3

?
a
n
?1
?
为等比 数列,公比
q?3

a
n
?1
n?1n?1

a
1
?1?2,a
n
?1?2?3?a
n
?2?3 ?1



4.
求前n项和
S
n

? 公式法
? 分组求和
? 拆项相消
常见的拆项公式
(1)
111
??

n(n?1)nn?1
1111
?(?)

n(n?k)knn?k
1111
?(?)

(2n?1)(2n? 1)22n?12n?1
1
n?n?1
?n?1?n

(2)
(3)
(4)
222
例.正项数列
?
a
n
?
S
n
?(n?n?1)S
n
?(n?n)?0
求;
(1)通项
a
n

(2)令
b
n
?< br>n?1

T
n
为数列
?
b
n
?的前n项和,证明对于任意的
(n?2)
2
a
n
2

n??
?
,都有
T
n
?
5

64
2222
解析:(1)由
S
n
?(n?n?1)S< br>n
?(n?n)?0
,得
[S
n
?(n?n)](S
n
?1)?0

2
由于
?
a
n?
正项数列,
S
n
?0

S
n
?(n ?n)

a
n
?S
n
?S
n?1
?2n< br>
(2)
a
n
?2n

b
n
?

n?1111
?[?]

4n
2
(n?2)
216n
2
(n?2)
2
T
n
?
1111111 111
[1?
2
?
2
?
2
?
L
?
2
?]?[1???]
<
16324n(n?2)
2
16 2
2
(n?1)
2
(n?2)
2
115

(1?
2
)?
16264




? 错位相减:适用于一个等差和一个等比数列对应项相乘构成的数列
例.数 列
?
a
n
?
满足
a
1
?3a
2< br>?3
2
a
3
?L?3
n?1
a
n
?
求:(1)
?
a
n
?
的通项
(2)设
b
n
?
n

3
n
,求数 列
b
n
的前n项和
S
n

a
n
解析:由条件知
a
1
?3a
2
?3
2
a
3
?L?3
n?1
a
n
?

a
1
?3a
2
?3
2
a
3
?L?3
n?2< br>a
n?1
?
n
,所以
3
n?11
,两式相 减得,
3
n?1
a
n
?
(n?2)

33
11
1
所以
a
n
?
n
(n?2)
,n=1,得
a
1
?
符合。
a
n
?
n

33
3
n
(2)
b
n
?n?3
,所以
23n234n?1

S
n
?3?2?3?3?3?L?n ?3

3S
n
?3?2?3?3?3L?n?3

相减得,
2S
n
?n?3
n?1
?(3?3?3?L3)
, 即
2S
n
?n?3
23n
n?1
3(1?3
n)
?

1?3
(2n?1)3
n?1
3
?
所以
S
n
?
44
? 倒序相加

云南个旧高中数学辅导-高中数学课本通用吗


沪教版高中数学极限-初高中数学知识对比


高中数学学案设计-高中数学归纳与类比


高中数学网课哪个老师讲得好-最简单的高中数学试卷


高中数学必修五检测试题及答案-高中数学分层走班教学实施方案


高中数学3同步解析与测评-徐州私立学校高中数学教师招聘


高中数学公切线题型-北师大高中数学选修4


高中数学公式及其性质-高中数学每日训练



本文更新与2020-09-20 02:07,由作者提供,不代表本网站立场,转载请注明出处:https://www.bjmy2z.cn/gaokao/404794.html

高中数学必修5数列知识点总结复习进程的相关文章

  • 余华爱情经典语录,余华爱情句子

    余华的经典语录——余华《第七天》40、我不怕死,一点都不怕,只怕再也不能看见你——余华《第七天》4可是我再也没遇到一个像福贵这样令我难忘的人了,对自己的经历如此清楚,

    语文
  • 心情低落的图片压抑,心情低落的图片发朋友圈

    心情压抑的图片(心太累没人理解的说说带图片)1、有时候很想找个人倾诉一下,却又不知从何说起,最终是什么也不说,只想快点睡过去,告诉自己,明天就好了。有时候,突然会觉得

    语文
  • 经典古训100句图片大全,古训名言警句

    古代经典励志名言100句译:好的药物味苦但对治病有利;忠言劝诫的话听起来不顺耳却对人的行为有利。3良言一句三冬暖,恶语伤人六月寒。喷泉的高度不会超过它的源头;一个人的事

    语文
  • 关于青春奋斗的名人名言鲁迅,关于青年奋斗的名言鲁迅

    鲁迅名言名句大全励志1、世上本没有路,走的人多了自然便成了路。下面是我整理的鲁迅先生的名言名句大全,希望对你有所帮助!当生存时,还是将遭践踏,将遭删刈,直至于死亡而

    语文
  • 三国群英单机版手游礼包码,三国群英手机单机版攻略

    三国群英传7五神兽洞有什么用那是多一个武将技能。青龙飞升召唤出东方的守护兽,神兽之一的青龙。玄武怒流召唤出北方的守护兽,神兽之一的玄武。白虎傲啸召唤出西方的守护兽,

    语文
  • 不收费的情感挽回专家电话,情感挽回免费咨询

    免费的情感挽回机构(揭秘情感挽回机构骗局)1、牛牛(化名)向上海市公安局金山分局报案,称自己为了挽回与女友的感情,被一家名为“实花教育咨询”的情感咨询机构诈骗4万余元。

    语文