关键词不能为空

当前您在: 主页 > 数学 >

人教版高一数学必修5--第二章数列总结

作者:高考题库网
来源:https://www.bjmy2z.cn/gaokao
2020-09-20 02:32
tags:高中数学必修5数列

高中数学选修不等式教学视频-南宁公招高中数学面试一般用哪册书

2020年9月20日发(作者:于立)


人教版高一数学必修5第二章数列总结

1、数列的基本概念
(1)定义:按照一定的次序排列的一列数叫做数列.
(2)通项公式:如果数列{a
n
}的第n项a
n
与n之间的函数关系可以用一个公式表示,这个公式
就叫 做这个数列的通项公式.
(3)递推公式:如果已知数列{a
n
}的第一项(或前几 项),且任何一项a
n
与它前一项a
n

1
(或前几
项)间的关系可用一个公式来表示,那么这个公式就叫做这个数列的递推公式.
通项公式与递推公式,是给出一个数列的两种主要方法.

2、主要公式
(1)通项公式a
n
与前n项和公式S
n
间的关系:
?
n=1
?
S
1

a
n
?
?
n≥2
?
S
n
-S
n

1


.
(2)等差数列
a
n
=a
1
+(n-1)d=a
m
+(n-m)d.
11
S
n

2
n(a
1
+a
n
),S
n
=na< br>1

2
n(n-1)d.
a+b
A=
2
(等差中项).
(3)等比数列
--a
n
=a
1
q
n1
,a
n
=a
m
·q
nm
.
na
1
q=1
?
?
S
n

?
a
1
-a
n
qa1
1-q
n

?
1-q
?
1-q
q≠1

.
G=±ab(等比中项).

3.主要性质
(1)若m+n=p+q(m、n、p、q∈N
*
),
在等差数列{an
}中有:a
m
+a
n
=a
p
+a
q

在等比数列{a
n
}中有:a
m
·a
n
=a
p
·a
q
.
(2)等差(比)数列依次k项之和仍然成等差(比).

专题一 数列的通项公式的求法
1.观察法 根据下面数列的前几项,写出数列的一个通项公式. < br>579
(1)1,1,
7

15

31
,… ;
2.定义法
等差数列{a
n
}是递增数列,前n项和为S
n
,且 a
1
,a
3
,a
9
成等比数列,S
5
=a
2
5
.求数列{a
n
}的
通项公式.
3.前n项和法
(1 )已知数列{a
n
}的前n项和S
n
=n
2
+3n+1,求 通项 a
n


(2)已知数列{a
n
}的前n项和 S
n
=2
n
+2,求通项 a
n
.
4.累加法
已知{a
n
}中,a
1
=1,且a
n

1
-a
n
=3
n
(n∈N
*
),求通项 a
n
.
5.累乘法
1
已知数列{a
n
},a
1

3
,前n项和S
n
与a
n
的关系是S
n
=n(2n-1)a
n
,求通项a
n
.
6.辅助数列法
已知数列{a
n
}满足a
1
=1,a< br>n

1
=3a
n
+2(n∈N
*
).求数列 {a
n
}的通项公式.
7.倒数法
a
n
已知数列{a
n
}中,a
1
=1,a
n

1
=(n∈N
*
).求通项a
n
.
a
n
+1
专题二 数列的前n项和的求法
1.分组转化求和法
如果一个数列的每一项是由几个独立的项组合而 成,并且各独立项也可组成等差或等比数列,
则该数列的前n项和可考虑拆项后利用公式求解.
1111
求和:S
n
=1
2
+2
4
+3
8
+…+(n+
2
n
).
2.裂项求和法
对于裂项后明 显有能够相消的项的一类数列,在求和时常用“裂项法”,分式的求和多利用此
法.可用待定系数法对通 项公式进行拆项,相消时应注意消去项的规律,即消去哪些项,保
留哪些项,常见的拆项公式有:
1111
(1)=
k
·(
n
-);
nn+kn+k
(2)若{a
n
}为等差数列,公差为d,
1111
则=
d
(
a
-);
a
n
·a
n

1
n
a
n

1
(3)
1
=n+1-n等.
n+1+n
3.错位相减法
若数列{an
}为等差数列,数列{b
n
}是等比数列,由这两个数列的对应项乘积组成的新 数列为
{a
n
b
n
},当求该数列的前n项的和时,常常采用将{a
n
b
n
}的各项乘以等比数列{b
n
}的公比q,然
后错位一项与{a
n
b
n
}的同次项对应相减,即可转化为特殊数列的求和 ,所以这种数列求和的
方法称为错位相减法.
已知数列{a
n
}中,a1
=3,点(a
n
,a
n

1
)在直线y=x +2上.
(1)求数列{a
n
}的通项公式;
(2)若b
n=a
n
·3
n
,求数列{b
n
}的前n项和T
n
.
4.分段求和法
如果一个数列是由各自具有不同特点的两段构成,则可考虑利用分段求和.
已知数列{a< br>n
}的前n项和为S
n
,且a
n
+S
n
=1 (n∈N
*
).
(1)求数列{a
n
}的通项公式;
( 2)若数列{b
n
}满足b
n
=3+log
4
a
n
,设T
n
=|b
1
|+|b
2
|+…+|b
n
|,求T
n
.



附注:常用结论
1)1+2+3+...+n =
2) 1+3+5+...+(2n-1) =

3)
三、等差、等比数列的对比
(1)判断数列的常用方法
看数列是不是等差数列有以下三种方法:

②2
③(
()

为常数).
看数列是不是等比数列有以下四种方法:



④正数列{
(
(,

)
为非零常数).
}成等比的充要条件是数列{}()成等比数列.
(2)等差数列与等比数列对比小结:

定义
等差数列 等比数列
1.

1.

公式
2.
2.

与的等比中项
1.
性质
称为与的等差中项

1.
称为


2.若
), 则
3.

,,
(、、

、2.若
),则
3.,,
(、

、、
成等差数成等比数列
4.
4.
(3)在等差数列{
1)
2)


}中,有关Sn 的最值问题:
时,有最大值;,时,

有最小值;
);②若已知,则最值的求法:①若已知,可用二次函数最值的求法(
最值时



的值(

)可如下确定或。

高中数学统计题分贝-北京高中数学会考知识点


高中数学必修五数列复习ppt-新乡市高中数学课本


高中数学必修3第三章教材分析-城镇高中数学教学中的德育渗透


高中数学要初中基础吗-高中数学集合的应用题目


高中数学必修2必修5测试题及答案解析-高中数学常


高中数学学困生的转化-2017高中数学优岗主要事迹


北师大数学教材高中数学-高中数学如何上到140


高中数学必修5通项公式-高中数学概率教学反思



本文更新与2020-09-20 02:32,由作者提供,不代表本网站立场,转载请注明出处:https://www.bjmy2z.cn/gaokao/404835.html

人教版高一数学必修5--第二章数列总结的相关文章

  • 余华爱情经典语录,余华爱情句子

    余华的经典语录——余华《第七天》40、我不怕死,一点都不怕,只怕再也不能看见你——余华《第七天》4可是我再也没遇到一个像福贵这样令我难忘的人了,对自己的经历如此清楚,

    语文
  • 心情低落的图片压抑,心情低落的图片发朋友圈

    心情压抑的图片(心太累没人理解的说说带图片)1、有时候很想找个人倾诉一下,却又不知从何说起,最终是什么也不说,只想快点睡过去,告诉自己,明天就好了。有时候,突然会觉得

    语文
  • 经典古训100句图片大全,古训名言警句

    古代经典励志名言100句译:好的药物味苦但对治病有利;忠言劝诫的话听起来不顺耳却对人的行为有利。3良言一句三冬暖,恶语伤人六月寒。喷泉的高度不会超过它的源头;一个人的事

    语文
  • 关于青春奋斗的名人名言鲁迅,关于青年奋斗的名言鲁迅

    鲁迅名言名句大全励志1、世上本没有路,走的人多了自然便成了路。下面是我整理的鲁迅先生的名言名句大全,希望对你有所帮助!当生存时,还是将遭践踏,将遭删刈,直至于死亡而

    语文
  • 三国群英单机版手游礼包码,三国群英手机单机版攻略

    三国群英传7五神兽洞有什么用那是多一个武将技能。青龙飞升召唤出东方的守护兽,神兽之一的青龙。玄武怒流召唤出北方的守护兽,神兽之一的玄武。白虎傲啸召唤出西方的守护兽,

    语文
  • 不收费的情感挽回专家电话,情感挽回免费咨询

    免费的情感挽回机构(揭秘情感挽回机构骗局)1、牛牛(化名)向上海市公安局金山分局报案,称自己为了挽回与女友的感情,被一家名为“实花教育咨询”的情感咨询机构诈骗4万余元。

    语文