关键词不能为空

当前您在: 主页 > 数学 >

数学必修五数列知识点解题技巧

作者:高考题库网
来源:https://www.bjmy2z.cn/gaokao
2020-09-20 02:35
tags:高中数学必修5数列

高中数学选修4-4极坐标系题-高中数学考试题型及答案

2020年9月20日发(作者:安萨里)


有德教育
数列部分知识点梳理
一数列的概念
?
S(n ?1)
1)数列的前
n
项和与通项的公式①
S
n
?a
1
?a
2
???a
n

a
n
??
1
?
S
n
?S
n?1
(n?2)

2)数列的分类:①递增数列:对于任何
n?N
?
,均有
a
n?1
?a
n
.②递减数列:对于任何
n?N
?
,均有a
n?1
?a
n
.③摆动数列:例如:
?1,1,?1,1, ?1,?.
④常数数列:例如:6,6,6,6,??.⑤有界数列:存在
正数
M使
a
n
?M,n?N
?
.⑥无界数列:对于任何正数
M
,总有项
a
n
使得
a
n
?M
.

一、等差数列
n(a
1
?a
n
)
1)通项公式
a
n?a
1
?(n?1)d

a
1
为首项,
d为公差。前
n
项和公式
S
n
?

2
1
S
n
?na
1
?n(n?1)d
.
2
2)等差中项:
2A?a?b


3)等差数列的判定方 法:⑴定义法:
a
n?1
?a
n
?d

n?N?

d
是常数)
?
?
a
n
?
是等差数列;⑵
中项法:
2a
n?1
?a
n
?a
n ?2
(
n?N
?
)
?
?
a
n
?< br>是等差数列.
4)等差数列的性质:
⑴数列
?
a
n
?
是等差数列,则数列
?
a
n
?p
?

?
pa
n
?

p
是常数)都是等差数列;
⑵在等差数列
?
a
n
?
中,等距离取出若干项也构成一个等差数列 ,即
a
n
,a
n?k
,a
n?2k
,a
n ?3k
,?
为等差
数列,公差为
kd
.

an
?a
m
?(n?m)d

a
n
?an?b< br>(
a
,
b
是常数);
S
n
?an
2
?bn
(
a
,
b
是常数,
a?0
) ⑷若
m?n?p?q(m,n,p,q?N
?
)
,则
a
m
?a
n
?a
p
?a
q

?
S
?
⑸若等差数列
?
a
n
?
的前
n
项和
S
n
,则
?
n
?
是等差数列;
?< br>n
?
S
a
⑹当项数为
2n(n?N
?
),则
S

?S

?nd,

?
n?1

S

a
n
S

n?1
2n? 1(n?N)
当项数为.
?
?
,则
S

?S< br>偶
?a
n
,
S

n
(7)设
(8)设

(9)
是等差数列,则

(是常数)是公差为

的等差数列;
,则有
是等差数列的前项和,则;
,公差为,前项和为

)为等差数
,则 (10)其他衍生等差数列:若已知等差数列
①.
②.

为等差数列,公差为
(即
第 1 页 共 1 页


有德教育
列,公差;
③.(即)为等差数列,公差为.

二、等比数列
1)通项公式:
a
n
?a
1
q
n?1
,< br>a
1
为首项,
q
为公比 。前
n
项和公式:①当q?1
时,
S
n
?na
1
②当
q?1
a
1
(1?q
n
)
a
1
?a
n
q
时,
S
n
?
.
?
1?q1?q
2)等比 中项:
G
2
?a?b

3)等比数列的判定方法:⑴定义法:
2


a
n?1
?q

n?N
?

q?0
是常数)
?
?
a
n
?
是等比数 列;⑵中
a
n
项法:
a
n?1
?a
n
?a
n?2
(
n?N
?
)且
a
n
?0
?
?
a
n
?
是等比数列.
4)等比数列的性质:
⑴数列
?
a
n
?
是等比数列,则数列
?
pan
?

?
pa
n
?

q?0
是常数)都是等比数列;
n?m
a?a?q(n,m?N
?
)

nm
(2)
(3)若
m?n?p?q(m,n,p,q?N
?
)
,则
a
m
?a
n
?a
p
?a
q

(4)若等比数列
?
a
n
?
的 前
n
项和
S
n
,则
S
k

S2k
?S
k

S
3k
?S
2k
S
4k
?S
3k
是等比数列.
(5)设
(6)设
,是等比数列,则也是等比数列。
则也是等比数列(即等比数列中等距是等比数列, 是等差数列,且
离分离出的子数列仍为等比数列);
(7)设
(8)设
是正项等比数列,则

是等差数列;

,公比为,前项和为

)为等比数列,公比
,则有
,则

(9)其他衍生等比数列:若已知等比数列
①.
②.
为;
为等比数列,公比为
(即


三、解题技巧:
A、数列求和的常用方法:
1、拆项分组法:即把每一项拆成几项,重新组合分成几组,转化为特殊数列求和。
2、错项 相减法:适用于差比数列(如果
?
a
n
?
等差,
?
b
n
?
等比,那么
?
a
n
b
n
?
叫做差比数列)

第 2 页 共 2 页


有德教育 < br>即把每一项都乘以
?
b
n
?
的公比
q
,向后 错一项,再对应同次项相减,转化为等比数列求和。
3、裂项相消法:即把每一项都拆成正负两项,使 其正负抵消,只余有限几项,可求和。适用于数
??
?
1
?
1
1111
??

?
和(其中等差)。可裂项为:
?(?)

a
??
??
?
n
a
n
?a
n? 1
da
n
a
n?1
??
?
a
n
? a
n?1
?
?
a
n
?a
n?1
?
11
?(a
n?1
?a
n
)

a
n
?a
n?1
d
B、等差数列前
n
项和的最值问题:
1、 若等差数列
?
a
n
?
的首项
a
1
?0,公差
d?0
,则前
n
项和
S
n
有最大值。
?
a
n
?0
(ⅰ)若已知通项
a
n
,则< br>S
n
最大
?
?

a?0
?
n?1
(ⅱ)若已知
S
n
?pn
2
?qn
,则当
n
取最靠近
?
q
的非零自然数时
S
n
最大; 2p
2、若等差数列
?
a
n
?
的首项
a
1
?0
,公差
d?0
,则前
n
项和
S
n
有最小值
?
a?0
(ⅰ)若已知通项
a
n
,则< br>S
n
最小
?
?
n

?
a
n?1
?0
(ⅱ)若已知
S
n
?pn
2
?qn,则当
n
取最靠近
?
q
的非零自然数时
S
n< br>最小;
2p
C、根据递推公式求通项:
1、构造法:
1°递推 关系形如“
a
n?1
?pa
n
?q
”,利用待定系数法求解
【例题】已知数列
?
a
n
?
中,
a
1< br>?1,a
n?1
?2a
n
?3
,求数列
?
a
n
?
的通项公式.
2°递推关系形如“,两边同除
p
n?1
或待定系数法求解
【例题】a
1
?1,a
n?1
?2a
n
?3
n
,求数列
?
a
n
?
的通项公式.
3°递推已知数列?
a
n
?
中,关系形如“
a
n?2
?p?a< br>n?1
?q?a
n
”,利用待定系数法求解
【例题】已知数列?
a
n
?
中,
a
1
?1,a
2
?2,a
n?2
?3a
n?1
?2a
n
,求数列
?
a
n
?
的通项公式.
4°递推关系形如
a
n
?pa
n?1
?qa
n
a
n?
,两边同除以
a
n
a
n?1


1
p,q?0)
【 例题】已知数列
?
a
n
?
中,
a
n
?a< br>n?1
?2a
n
a
n?
a
n
?
的通 项公式.

1
n?2),a
1
?2
,求数列
?< br>2a
n
【例题】数列
?
a
n
?
中,
a
1
?2,a
n?1
?(n?N
?
)
,求数列< br>?
a
n
?
的通项公式.
4?a
n
2、迭代法:
a、⑴已知关系式
a
n?1?a
n
?f(n)
,可利用迭加法或迭代法;
a
n
?( a
n
?a
n?1
)?(a
n?1
?a
n?2
)?(a
n?2
?a
n?3
)?
?
?(a
2?a
1
)?a
1

【例题】已知数列
?
an
?
中,
a
1
?2,a
n
?a
n?1
?2n?1(n?2)
,求数列
?
a
n
?
的通项公 式
aaaa
a
b、已知关系式
a
n?1
?a
n
?f(n)
,可利用迭乘法.
a
n
?
n
?n?1
?
n?2
?
?
?
3
?
2
?a
1
a
n?1
a
n?2
a
n?3
a< br>2
a
1


第 3 页 共 3 页


有德教育
【例题】已知数列
?
a
n
?满足:
3、给出关于
S
n

a
m
的关系 a
n
n?1
?(n?2),a
1
?2
,求求数列
?
a
n
?
的通项公式;
a
n?1
n?1
【例题】设数列
?
a
n
?
的前
n
项和为
S
n
,已知
a
1
?a,a
n?1
?S
n
?3
n
(n?N
?
)
,设
b
n
?S
n
?3
n

求数列
?
b
n
?
的通项公式.


第 4 页 共 4 页

高中数学全套教材 pdf-高中数学试讲经典教案20分钟


高中数学应用题题库-高中数学正态函数


高中数学奥数题大全-2019高中数学新教材b版


高中数学怎么记例题-2018年山西高中数学课本


高中数学公式pdf网盘-高中数学起群名


高中数学课堂教学中的同化与顺应-高中数学竞赛省二证书


高中数学课程顺序-高中数学竞赛老师就业前景


2015山西省高中数学竞赛成绩查询-尖峰高中数学刘



本文更新与2020-09-20 02:35,由作者提供,不代表本网站立场,转载请注明出处:https://www.bjmy2z.cn/gaokao/404840.html

数学必修五数列知识点解题技巧的相关文章

  • 余华爱情经典语录,余华爱情句子

    余华的经典语录——余华《第七天》40、我不怕死,一点都不怕,只怕再也不能看见你——余华《第七天》4可是我再也没遇到一个像福贵这样令我难忘的人了,对自己的经历如此清楚,

    语文
  • 心情低落的图片压抑,心情低落的图片发朋友圈

    心情压抑的图片(心太累没人理解的说说带图片)1、有时候很想找个人倾诉一下,却又不知从何说起,最终是什么也不说,只想快点睡过去,告诉自己,明天就好了。有时候,突然会觉得

    语文
  • 经典古训100句图片大全,古训名言警句

    古代经典励志名言100句译:好的药物味苦但对治病有利;忠言劝诫的话听起来不顺耳却对人的行为有利。3良言一句三冬暖,恶语伤人六月寒。喷泉的高度不会超过它的源头;一个人的事

    语文
  • 关于青春奋斗的名人名言鲁迅,关于青年奋斗的名言鲁迅

    鲁迅名言名句大全励志1、世上本没有路,走的人多了自然便成了路。下面是我整理的鲁迅先生的名言名句大全,希望对你有所帮助!当生存时,还是将遭践踏,将遭删刈,直至于死亡而

    语文
  • 三国群英单机版手游礼包码,三国群英手机单机版攻略

    三国群英传7五神兽洞有什么用那是多一个武将技能。青龙飞升召唤出东方的守护兽,神兽之一的青龙。玄武怒流召唤出北方的守护兽,神兽之一的玄武。白虎傲啸召唤出西方的守护兽,

    语文
  • 不收费的情感挽回专家电话,情感挽回免费咨询

    免费的情感挽回机构(揭秘情感挽回机构骗局)1、牛牛(化名)向上海市公安局金山分局报案,称自己为了挽回与女友的感情,被一家名为“实花教育咨询”的情感咨询机构诈骗4万余元。

    语文