关键词不能为空

当前您在: 主页 > 数学 >

高考数学概率与统计知识点

作者:高考题库网
来源:https://www.bjmy2z.cn/gaokao
2020-09-20 19:21
tags:高中数学概率

高中数学题表白-高中数学函数符号理解

2020年9月20日发(作者:鲍先志)




高中数学之概率与统计
求等可能性事件、互斥事件和相互独立事件的概率
解此类题目常应用以下知识:
c ard(A)
m
(1)等可能性事件(古典概型)的概率:P(A)=
card(I)

n
;
等可能事件概率的计算步骤:
计算一次试验的基本事件总数
n
;
设所求事件A,并计算事件A包含的基本事件的个数
m
;
依公式
P(A)?
m
n
求值;
答,即给问题一个明确的答复.
(2)互斥事件有一个发生的概率:P(A+B)=P(A)+P(B);
特例:对立事件的概率:P(A)+P(
A
)=P(A+
A
)=1.
(3)相互独立事件同时发生的概率:P(A·B)=P(A)·P(B);
kkn?k
特例:独立重复试验的概率:Pn(k)=
C
n
p( 1?p)
.其中P为事件A在一次试验中发生的
概率,此式为二项式[(1-P)+P]n展开 的第k+1项.
(4)解决概率问题要注意“四个步骤,一个结合”:
求概率的步骤是:
?
等可能事件
?
?
互斥事件
?
?
独立事件
?
?
n次独立重复试验
第一步,确定事件性质
即所给的问题归结为四类事件中的某一种.
第二步,判断事件的运算
?
和事件
?
?
积事件

即是至少有一个发生,还是同时发生,分别运用相加或相乘事件.
m
?
等可能事件: P(A)?
?
n
?
?
互斥事件:P(A?B)?P(A)?P(B)
?
?
独立事件:P(A?B)?P(A)?P(B)
?
kkn?k
?
n次独立重复试验:P
n
(k)?C
n
p( 1?p)
第三步,运用公式
?
求解
第四步,答,即给提出的问题有一个明确的答复.
23,,45
中,例1. 在五个数字
1,,

例2. 若随机取出三个数字,则剩下两个数字都是奇数的概率是
(结果用数值表示).
C
1
33
3
P?
3
??.
C
5
5?4
10
2
[解答过程]0.3提示:



例2.一个总体含有100个个体,以简单随机抽样方式从该总体中抽取一个 容量为5的样本,
则指定的某个个体被抽到的概率为 .
51
1
P??.
.
10020
[解答过程]
2 0
提示:
例3.接种某疫苗后,出现发热反应的概率为0.80.现有5人接种该疫苗,至少有 3人出现发
热反应的概率为__________.(精确到0.01)
[考查目的] 本题主要考查运用组合、概率的基本知识和分类计数原理解决问题的能力,以
及推理和运算能力.
[解答提示]至少有3人出现发热反应的概率为
35
C
5
?0. 80
3
?0.20
2
?C
5
4
?0.80
4
?0.20?C
5
?0.80
5
?0.94
.
故填0.94.
离散型随机变量的分布列
1.随机变量及相关概念
①随 机试验的结果可以用一个变量来表示,这样的变量叫做随机变量,常用希腊字母ξ、η
等表示.
②随机变量可能取的值,可以按一定次序一一列出,这样的随机变量叫做离散型随机变量.
③随机变量可以取某区间内的一切值,这样的随机变量叫做连续型随机变量.
2.离散型随机变量的分布列
①离散型随机变量的分布列的概念和性质
x
?
取每一个值
x
i

i?
1,一般地,设离散型随机变量< br>?
可能取的值为
x
1

x
2
,……,
i
,……,
2,……)的概率P(
?
?x
i
)=
P
i
,则称下表.
?

x
1

P1
x
2

P2


x
i
P
i



P




为随机变量
?
的概率分布,简称
?
的分布列.
由概率的性质可知,任一离散型随机变量的分布列都具有下述两个性质:
(1)
P< br>i
?0

i?
1,2,…;(2)
P
1
?P
2
?
…=1.
②常见的离散型随机变量的分布列:
(1)二项分布
n
次独立重复试验中,事件A发生的次数
?
是一个 随机变量,其所有可能的取值为0,1,2,…
kkn?k
n,并且
P
k?P(
?
?k)?C
n
pq
,其中
0?k?n

q?1?p
,随机变量
?
的分布列如下:
?

P
0
00n
C
n
pq
1

11n?1
C
n
pq



k
C
n
p
k
q
n?k
k




n

nn0
C
n
pq

称这样随机变量
?
服从 二项分布,记作
?
~B(n,p)
,其中
n

p
为 参数,并记:
kkn?k
C
n
pq?b(k;n,p)
.



(2) 几何分布
在独立重复试验中,某事件第一次发生时所作 的试验的次数
?
是一个取值为正整数的离散型
随机变量,“
?
?k< br>”表示在第k次独立重复试验时事件第一次发生.
随机变量
?
的概率分布为:
?

1
p
2
qp
3
q
2
p



k
q
k?1
p



P
例1. < br>厂家在产品出厂前,需对产品做检验,厂家将一批产品发给商家时,商家按合同规定也需随机
抽取 一定数量的产品做检验,以决定是否接收这批产品.
(Ⅰ)若厂家库房中的每件产品合格的概率为0. 8,从中任意取出4件进行检验,求至少有1
件是合格的概率;
(Ⅱ)若厂家发给商家20件 产品中,其中有3件不合格,按合同规定该商家从中任取2件.都
进行检验,只有2件都合格时才接收这 批产品.否则拒收,求出该商家检验出不合格产品数
?

分布列及期望
E?
,并求出该商家拒收这批产品的概率.
[解答过程](Ⅰ)记“厂家任取4件产品检验,其中至少有1件是合格品”为事件A
用对立 事件A来算,有
P
?
A
?
?1?PA?1?0.2
4
?0.9984
??

(Ⅱ)
?
可能的取值为
0,1,2

2
C
17
136
P
?
?
?0
?
?
2
?
C
20
190

11
C
3
C
51
P
?
?
?1
?
?
2
17
?
C
20
190

C
3
2
3
P< br>?
?
?2
?
?
2
?
C
20
190




?

P

0

136
190

1

51
190

2

3
190

E
?
?0?
1365133
?1??2??


13627
?
19095

记“商家任取2件产品检验,都合格”为事件B,则商家拒收这批产品的概率
P?1?P?
B
?
?1?
27
所以商家拒收这批产品的概率为
95

例12.



某项选拔共有三轮考核,每轮设有一个问 题,能正确回答问题者进入下一轮考核,否则即被
4
3
2
淘汰. 已知某选手 能正确回答第一、二、三轮的问题的概率分别为
5

5

5
,且各轮问题能
否正确回答互不影响.
(Ⅰ)求该选手被淘汰的概率;
(Ⅱ)该选 手在选拔中回答问题的个数记为
?
,求随机变量
?
的分布列与数学期望.
(注:本小题结果可用分数表示)
2,3)
[解答过程]解法一:(Ⅰ)记“该选 手能正确回答第
i
轮的问题”的事件为
A
i
(i?1,
,则
P(A
1
)?
432
P(A
2
)?P(A
3
)?
5

5

5

?
该选手被淘汰的概率
P?P(A
1
?A
1
A< br>2
?A
2
A
2
A
3
)?P(A
1< br>)?P(A
1
)P(A
2
)?P(A
1
)P(A2
)P(A
3
)

142433101
???????
555555125

2,3
,(Ⅱ)
?
的可能值为
1,
P(
?
?1)?P(A
1
)?
1
5

428
P(
?
? 2)?P(A
1
A
2
)?P(A
1
)P(A
2)???
5525

4312
P(
?
?3)?P(A
1
A
2
)?P(A
1
)P(A
2
)???
5525

?
?
的分布列为
?

P

1
1
5

2
8
25

3
12
25

181257< br>?E
?
?1??2??3??
5252525

2,3)< br>解法二:(Ⅰ)记“该选手能正确回答第
i
轮的问题”的事件为
A
i< br>(i?1,
,则
P(A
1
)?
4
5

P(A
2
)?
32
P(A
3
)?
5
,< br>5

432101
?1????
555125

?
该选手被淘汰的概率
P?1?P(A
1
A
2
A
3
)?1?P(A
1
)P(A
2
)P(A
3
)
(Ⅱ)同解法一.


(3)离散型随机变量的期望与方差
随机变量的数学期望和方差
(1)离散型随机变量的数学期望:
E
??x
1
p
1
?x
2
p
2
?
… ;期望反映随机变量取值的平均水



平.
2
22
⑵ 离散型随机变量的方差:
D
?
?(x
1
?E
?
)p
1
?(x
2
?E
?
)p
2
?
…< br>?(x
n
?E
?
)p
n
?
…;
方差反映随机变量取值的稳定与波动,集中与离散的程度.
2
⑶基本性质:
E(a
?
?b)?aE
?
?b

D(a
?
?b)?aD
?
.
(4)若
?
~B(n,p),则
E
?
?np
D
?
=npq(这里q=1-p) ;
如果随机变量
?
服从几何分布,
P(
?
?k)?g (k,p)
,则
例1.甲、乙两名工人加工同一种零件,两人每天加工的零件数相等,所得次品 数分别为ε、
η,ε和η的分布列如下:
ε
P
0
6
10

E
?
?
q
1
2
p
,D
?
=
p
其中q=1-p.
1
1
10

2
3
10

η
P
0
5
10

1
3
10

2
2
10

则比较两名工人的技术水平的高低为 .
思路:一是要比较两名工人在加工零件数相 等的条件下出次品数的平均值,即期望;二是要
看出次品数的波动情况,即方差值的大小.
解答过程:工人甲生产出次品数ε的期望和方差分别为:
E
?
?0?613
?1??2??0.7
101010

613
?(1? 0.7)
2
??(2?0.7)
2
??0.891
101010
D
?
?(0?0.7)
2
?
工人乙生产出次品数η 的期望和方差分别为:
E
?
?0?
532
532
?0.6 64
?1??2??0.7
D
?
?(0?0.7)
2
??( 1?0.7)
2
??(2?0.7)
2
?
101010
10 1010

由Eε=Eη知,两人出次品的平均数相同,技术水平相当,但Dε>Dη,可见 乙的技术比较
稳定.
小结:期望反映随机变量取值的平均水平;方差反映随机变量取值的稳定 与波动,集中与离
散的程度.
例2.
某商场经销某商品,根据以往资料统计,顾客采用的付款期数
?
的分布列为
?

P

1
0.4
2
0.2
3
0.2
4
0.1
5
0.1
商场经销 一件该商品,采用1期付款,其利润为200元;分2期或3期付款,其利润为250
元;分4期或5期 付款,其利润为300元.
?
表示经销一件该商品的利润.
(Ⅰ)求事件
A
:“购买该商品的3位顾客中,至少有1位采用1期付款”的概率
P(A)

(Ⅱ)求
?
的分布列及期望
E
?



[解答过程](Ⅰ)由
A
表示事件“购买该商品的3位顾客中至少有1位采用1期付款”.

A
表示事件“购买该商品的3位顾客中无人采用1期付款”
P(A)?(1?0.4)
2
?0.216

P(A)?1?P(A)?1?0.216?0.784

(Ⅱ)
?
的可能取值为
200
元,
250
元,
300
元.
P(
?
?200)?P(
?
?1)?0.4

P (
?
?250)?P(
?
?2)?P(
?
?3)?0.2? 0.2?0.4

P(
?
?300)?1?P(
?
?20 0)?P(
?
?250)?1?0.4?0.4?0.2

?
的分布列为
?

P

200

0.4

250

0.4

300

0.2

E
?
?200?0.4?250?0.4?300?0.2
?240
(元).
抽样方法与总体分布的估计
抽样方法
1.简 单随机抽样:设一个总体的个数为N,如果通过逐个抽取的方法从中抽取一个样本,
且每次抽取时各个个 体被抽到的概率相等,就称这样的抽样为简单随机抽样.常用抽签法和
随机数表法.
2.系统 抽样:当总体中的个数较多时,可将总体分成均衡的几个部分,然后按照预先定出
的规则,从每一部分抽 取1个个体,得到所需要的样本,这种抽样叫做系统抽样(也称为机
械抽样).
3.分层抽样 :当已知总体由差异明显的几部分组成时,常将总体分成几部分,然后按照各
部分所占的比进行抽样,这 种抽样叫做分层抽样.
总体分布的估计
由于总体分布通常不易知道,我们往往用样本的频率 分布去估计总体的分布,一般地,样本
容量越大,这种估计就越精确.
总体分布:总体取值的概率分布规律通常称为总体分布.
当总体中的个体取不同数值很少时, 其频率分布表由所取样本的不同数值及相应的频率表
示,几何表示就是相应的条形图.
当总体中的个体取值在某个区间上时用频率分布直方图来表示相应样本的频率分布.
总体密度 曲线:当样本容量无限增大,分组的组距无限缩小,那么频率分布直方图就会无限
接近于一条光滑曲线, 即总体密度曲线.
典型例题
例1.某工厂生产A、B、C三种不同型号的产品,产品数量之 比依次为2:3:5.现用分层抽
样方法抽出一个容量为n的样本,样本中A种型号产品有16件.那么 此样本的容量n= .
2
10
16??80
2
解答过程: A种型号的总体是
10
,则样本容量n=.



例2.一个总 体中有100个个体,随机编号0,1,2,…,99,依编号顺序平均分成10个
小组,组号依次为1 ,2,3,…,10.现用系统抽样方法抽取一个容量为10的样本,规定如
果在第1组随机抽取的号码 为
m
,那么在第
k
组中抽取的号码个位数字与
m?k
的个位 数字
相同,若
m?6
,则在第7组中抽取的号码是 .
解答过程:第K组的号码为
(k?1)10

(k?1)10?1
,…,
(k?1)10?9
,当m=6时,第k组抽
取的号的个位数字为m+k的个位 数字,所以第7组中抽取的号码的个位数字为3 ,所以抽
取号码为63.
正态分布与线性回归
1.正态分布的概念及主要性质
(1)正态分布的概念 f(x)?
1
2
??
e
?
(x?
?
)
2
2
?
2
如果连续型随机变量
?
的概率密度函数为 ,x
?R
其中
?

?
为常
2
数,并且
?
>0,则称
?
服从正态分布,记为
?
~N

?

?
).
2
(2)期望E
?
=μ,方差
D
?
?
?
.
(3)正态分布的性质
正态曲线具有下列性质:
①曲线在x轴上方,并且关于直线x=μ对称.
②曲线在x=μ时处于最高点,由这一点向左右两边延伸时,曲线逐渐降低.
③曲线的对称轴 位置由μ确定;曲线的形状由
?
确定,
?
越大,曲线越“矮胖”;反之越“高
瘦”.
三σ原则即为
数值分布在(μ—σ,μ+σ)中的概率为0.6526
数值分布在(μ—2σ,μ+2σ)中的概率为0.9544
数值分布在(μ—3σ,μ+3σ)中的概率为0.9974
(4)标准正态分布

?
=0,
?
=1时
?
服从标准的正态分布,记作
?
~N
(0,1)
(5)两个重要的公式

?
(?x)?1?
?
(x)
,②
P(a??
?b)?
?
(b)?
?
(a)
.
2
(6)
N(
?
,
?
)

N(0,1)
二 者联系.

?
~N(
?
,
?
)
,则2
2
?
?
?
?
?
~N(0,1)
?< br>
b?
?
②若
?
~N(
?
,
?
)
,则
P(a?
?
?b)?
?
(
?)?
?
(
a?
?
?
)
.
2.线性回归
简单的说,线性回归就是处理变量与变量之间的线性关系的一种数学方法. < br>变量和变量之间的关系大致可分为两种类型:确定性的函数关系和不确定的函数关系.不确



定性的两个变量之间往往仍有规律可循.回归分析就是处理变量之间的相关关系的一种数量< br>统计方法.它可以提供变量之间相关关系的经验公式.
具体说来,对n个样本数据(
x
1
,y
1
),(
x
2
,y
2
), …,(
x
n
,y
n
),其回归直线方程,或经验公式
b?< br>?
xy
i
n
i
?nxy
,a?y?b?x,
2
?
?bx?a
.其中为:
y
?
x
i?1
i?1
n
2
i
?n(x)
,其中
x,y
分别为|< br>x
i
|、|
y
i
|的平均数.
例1.如果随机变量ξ~N(μ,σ2),且Eξ=3,Dξ=1,则P(-1<ξ≤1=等于( )
A.2Φ(1)-1 B.Φ(4)-Φ(2)
C.Φ(2)-Φ(4) D.Φ(-4)-Φ(-2)
解 答过程:对正态分布,μ=Eξ=3,σ2=Dξ=1,故P(-1<ξ≤1)=Φ(1-3)-Φ(-
1-3)=Φ(-2)-Φ(-4)=Φ(4)-Φ(2).
答案:B
例2. 将温度调节器放置在贮存着某种液体的容器内,调节器设定在d ℃,液体的温度ξ(单
位:℃)是一个随机变量,且ξ~N(d,0.52).
(1)若d=90°,则ξ<89的概率为 ;
(2)若要保持液体的温度至少为80 ℃的概率不低于0.99,则d至少是 ?(其中若η ~
N(0,1),则Φ(2)=P(η<2)=0.9772,Φ(-2.327)=P(η<-2.3 27)=0.01).
解答过程:(1)P(ξ
89?90
<89)=F(89)= Φ(
0.5
)=Φ(-2)=1-Φ(2)=1-0.9772=0.0228.
(2)由已知d满足0.99≤P(ξ≥80),
即1-P(ξ<80)≥1-0.01,∴P(ξ<80)≤0.01.
80?d
∴ Φ(
0.5
80?d

0.5
)≤0.01=Φ(-2.327).
≤-2.327.
∴d≤81.1635.
故d至少为81.1635.
?
?
?
小结:(1)若ξ~N(0,1),则η=
?
~N(0,1 ).(2)标准正态分布的密度函数f(x)
是偶函数,x<0时,f(x)为增函数,x>0时,f( x)为减函数.

初高中数学衔接教案答案-高中数学不等式和数列


山东高中数学几本书-高中数学必修三考试重点


高中数学计算基础知识-高中数学课程表


高中数学选修2-2的推理-高中数学学些什么


高中数学教案必修三-高中数学函数椭圆 圆


王后雄教育高中数学视频-学苑新报高中数学天地


高中数学不好 大学才好-高中数学abc的公式


高中数学大单元教学反思-来川高中数学必刷题



本文更新与2020-09-20 19:21,由作者提供,不代表本网站立场,转载请注明出处:https://www.bjmy2z.cn/gaokao/405762.html

高考数学概率与统计知识点的相关文章