关键词不能为空

当前您在: 主页 > 数学 >

高中数学竞赛定理

作者:高考题库网
来源:https://www.bjmy2z.cn/gaokao
2020-09-21 01:00
tags:高中数学定理

高中数学必修一视频-高中数学周期计算

2020年9月21日发(作者:焦建春)



重 心


定义:重心是三角形三边中线的交点,
可用燕尾定理证明,十分简单。证明过程又是塞瓦定理的特例。

已知:△ABC中,D为BC中点,E为AC中点,AD与BE交于O,CO延长线交AB
于F。求证:F为AB中点。
证明:根据燕尾定理,
S△AOB=S△AOC,
又S△AOB=S△BOC,
∴S△AOC=S△BOC,
再应用燕尾定理即得AF=BF,命题得证。

重心的性质:
1、重心到顶点的距离与重心到对边中点的距离之比为2:1。
2、重心和三角形3个顶点组成的3个三角形面积相等。
3、重心到三角形3个顶点距离的平方和最小。
4、三角形内到三边距离之积最大的点。
5、在平面直角坐标系中,重心的坐标是顶点坐标的算术平均,即其坐标为
((
x
1
?x
2
?x
3
)3,(
y
1
? y
2
?y
3
)3);空间直角坐标系——横坐标:(
x
1< br>?x
2
?x
3
)3 纵坐标:
(
y
1
?y
2
?y
3
)3 竖坐标:(
z
1
?z
2
?z
3
)3


外 心
定义:外心是三角形三条边的垂直平分线的交点,即外接圆的圆心。
外心定理:三角形的三边的垂直平分线交于一点,该点叫做三角形的外心。



d
1
,
d
2
,
d
3分别是三角形三个顶点连向另外两个顶点向量的数量积

c
1
=
d
2
d
3

c
2
=
d
1
d
3

c
3
=
d
1
d
2
;c=
c
1
+
c
2
+
c
3< br>
重心坐标:( (
c
2
?c
3
)2c, (
c
1
?c
3
)2c,(
c
1
?c
2
)2c )

外心性质:三角形的外心是三边中垂线的交点,且这点到三角形三顶点的距离相等。

垂 心
定义:三角形的三条高的交点叫做三角形的垂心。
性质:
锐角三角形垂心在三角形内部
直角三角形垂心在三角形直角顶点
钝角三角形垂心在三角形外部


1




d
1
,
d2
,
d
3
分别是三角形三个顶点连向另外两个顶点向量的数量积。
c
1
=
d
2
d
3

c
2
=
d
1
d
3

c
3
=
d
1
d
2
;c=
c
1
+
c
2
+
c
3

垂心坐标:(
c
1
c,
c
2
c,
c
3
c )



九点圆

三角形三边的中点,三 高的垂足和三个欧拉点〔连结三角形各顶点与垂心所得三线
段的中点〕九点共圆,这个圆为九点圆 〔 或欧拉圆 或 费尔巴哈圆. )


九点圆性质:
1.三角形的九点圆的半径是三角形的外接圆半径之半; 即
r
九点圆

r
外接圆
=
2:1

2.九点圆的圆心在
欧拉线
上,且恰为垂心与外心连线的中点;
3.三角形的九点圆与三角形的内切圆,三个旁切圆均相切


d
1
,
d
2
,
d
3
分别是三角形三个顶点 连向另外两个顶点向量的数量积
c
1
=
d
2
d
3

c
2
=
d
1
d
3

c
3
=
d
1
d
2
;c=
c
1
+
c
2
+
c
3



垂心坐标::( (
2c
1
?c
2
?c
3
)4c,(
c
1
?2c
2
?c
3
)4c,(
c
1
?c
2
?2c
3
)4c )





欧拉线
定义:三角形的外心、重心、九点圆圆心、垂心,依次位于同一直线上,这条直线就
叫三角形的欧拉线。

欧拉线定理:三角形的重心在欧拉线上,即三角形的重心、垂心和外心共线。

欧拉线的性质:
1、在任意三角形中,以上四点共线。
2、欧拉线上的四点中,九点圆圆心到垂心和外心的距离相等,而且重心到外心的距离
是重心到垂心距离 的一半。


2




欧拉线的证法1
如图 作△ABC的外接圆,连结并延长BO,交外接圆于点D。连结AD、CD、AH、CH、OH。作中线AM,设AM交OH于点G’
∵ BD是直径
∴ ∠BAD、∠BCD是直角
∴ AD⊥AB,DC⊥BC
∵ CH⊥AB,AH⊥BC
∴ DACH,DCAH
∴ 四边形ADCH是平行四边形
∴ AH=DC
∵ M是BC的中点,O是BD的中点
∴ OM=
∴ OM=
1
2
1
DC
AH
2
∵ OMAH
∴ △OMG’ ∽△HAG’
AG
2
∴=
GM
1
∴ G’是△ABC的重心
∴ G与G’重合
∴ O、G、H三点在同一条直线上


欧拉线的证法2
如图 设H,G,O,分别为△ABC的垂心、重心、外心。连接AG并延长交BC于D, 则可
知D为BC中点。
连接OD
?
O为外心
∴OD⊥BC
连接AH并延长交BC于E
?
H为垂心
∴ AE⊥BC
∴ODAE,有∠ODA=∠EAD。由于G为重心,则GA:GD=2:1。
连接CG并延长交BA于F则可知F为AB中点
同理,OFCM
∴∠OFC=∠MCF
连接FD
?
FDAC,DF:AC=1:2
∴∠DFC=∠FCA,∠FDA=∠CAD
又∠OFC=∠MCF,∠ODA=∠EAD
相减可得
∠OFD=∠HCA,∠ODF=∠EAC

3



∴△OFD∽△HCA
∴OD:HA=DF:AC=1:2
又GA:GD=2:1
∴OD:HA=GA:GD=2:1
又∠ODA=∠EAD
∴△OGD∽△HGA
∴∠OGD=∠AGH
又连接AG并延长
∴∠AGH+∠DGH=180°
∴∠OGD+∠DGH=180°
即O、G、H三点共线



欧拉线的证法3
设H,G,O,分别为△ABC的垂心、重心、外心.
则OH=OA+OB+OC
OG=(OA+OB+OC)3,
3 ×OG=OH
∴O、G、H三点共线 (注:OH, OA, OB , OC ,OG 均为向量)






费马点
定义:在一个三角形中,到3个顶点距离之和最小的点叫做这个三角形的费马点。


费马点的判定
(1)对于任意三角形△ABC,若三角形内或三角形上某一点E, 若EA+EB+EC有最小
值,则E为费马点。
(2)如果三角形有一个内角大于 或等于120°,这个内角的顶点就是费马点;如果3
个内角均小于120°,则在三角形内部对3边张 角均为120°的点,是三角形的费马点。

费马点性质:
(1)平面内一点P到△ABC三顶点的之和为PA+PB+PC,当点P为费马点时,距离
之和最小。
(2).特殊三角形中,三内角皆小于120°的三角形,分别以 AB,BC,CA,为边 ,向三
角形外侧做正三角形ABC1,ACB1,BCA1,然后连接AA1,BB1,CC1,则三线 交于一点P,则点P
就是所求的费马点.
(3).特殊三角形中,若三角形有一内角大于或等于120度,则此钝角的顶点就是费马点
(4)特殊三角形中,当△ABC为等边三角形时,此时外心与费马点重合

4






证明
(1)费马点对边的张角为120度

?CC
1
B

?AA
1
B

BC=
BA
1
,BA=
BC
1
,
?CBC
1
=∠B+
60?
=
?ABA
1
,

?CC
1
B

?AA
1
B
是全等三角形
∴∠PCB=
?PA
1
B

同理可得∠CBP=
?CA
1
P


?PA
1
B
+
?CA
1
P
=
60?
,得∠PC B+∠CBP=
60?
,
∴∠CPB=
120?

同理,∠APB=
120?
,∠APC=
120?

(2)PA+PB+PC=
AA
1

将△BPC以点B 为旋转中心旋转
60?

?BDA
1
重合,连结PD,则△PDB为 等边三角形
∴∠BPD=
60?

又∠BPA=
120?

因此A、P、D三点在同一直线上
又∠CPB=
?A
1
DB
=
120?
,∠PDB=
60?

?PDA
=
180?

∴A、P、D、
A
1
四点在同一直线上
故PA+PB+PC=
AA
1

(3)PA+PB+PC最短
在△ABC内任意取一点M(不与点P重合),连结AM、BM、CM,将△BMC以点B为旋转中心旋转
60?

?BGA
1
重合,连结AM、GM、A
1
G
(同上),则
AA
1







5



梅涅劳斯定理
内容:如果一条直线与△ABC的三边AB、BC、CA或其延长线交于F、D、E点,
那么
A F
FB
BD
DC
CE
EA
××=1。 或 设X、Y、Z 分别在△ABC的BC、CA、AB所在直线上,
AZ
ZB
则X、Y、Z共线的充要条 件是

证明一

×
BX
XC
×
CY
YA
=1
如图 过点A作AG∥BC交DF的延长线于G,

AF
FB
=
AG
BD
,
BD
DC
=
BD
DC
,
CE
EA
=
DC
AG

三式相乘得: < br>AF
FB
×
BD
DC
×
CE
EA
=
AG
BD
×
BD
DC
×
DC
AG
=1

证明二:
过点C作CP∥DF交AB于P,则
∴< br>AF
FB
BD
DC
=
FB
PF

C E
EA
=
PF
AF

×
BD
DC< br>×
CE
EA
=
AF
FB
×
FB
PF
×
PF
AF
=1
它的逆定理也成立:若有三点F、D、E分 别在△ABC的边AB、BC、CA或其延长线上,
且满足
AF
FB
×
BD
DC
×
CE
EA
=1,则F、D、E三点共线。利用这个逆定 理,可以判断三点共线。
证明三:

过ABC三点向三边引垂线AA'BB'CC',
∴AD:DB=AA':BB',
BE:EC=BB':CC',
CF:FA=CC':AA'













6
AF
FB
×
BD
DC
×
CE
EA
=1



在△ABC的三边BC、CA、AB或其延长线上分别取L、M、N三点,
又分比是λ=BL LC、μ=CMMA、ν=ANNB。于是L、M、N三点共线的充要条件是λμν=1。


第一角元形式的梅涅劳斯定理
如图:若E,F,D三点共线,则
s in?ACF
sin?FCB
sin?BAD
sin?DAC
sin?CBA
sin?ABE
××=1
即图中的蓝角正弦值之积等于红角正弦值之积



第二角元形式的梅涅劳斯定理
在平面上任取一点O,且EDF共线,则
sin?AOF
sin?DOB
×
sin?BOD
sin?DOC< br>×
sin?COA
sin?AOE
=1。(O不与点A、B、C重合)


塞瓦定理
内容:在△ABC内任取一点O直线AO、BO、CO分别交对边于D、E、F,则
(BDDC)*(CEEA)*(AFFB)=1

证法:
(Ⅰ)本题可利用梅涅劳斯定理证明:
∵△ADC被直线BOE所截
∴ (CBBD)*(DOOA)*(AEEC)=1 ①
而由△ABD被直线COF所截
∴(BCCD)*(DOOA)*(AFFB)=1 ②
②÷①:即得:
(BDDC)*(CEEA)*(AFFB)=1
(Ⅱ)也可以利用面积关系证明
∵BDDC=S△ABDS△ACD=S△BODS△COD
=(S△ABD-S△BOD)(S△ACD-S△COD)=S△AOBS△AOC ③
同理 CEEA=S△BOC S△AOB ④
AFFB=S△AOCS△BOC ⑤
③×④×⑤得BDDC*CEEA*AFFB=1

利用塞瓦定理证明三角形三条高线必交于一点:
设三边AB、BC、AC的垂足分别为D、E、F,
根据塞瓦定理逆定理,
∵(AD:DB)*(BE:EC)*(CF:FA)=[(CD*ctgA)
[(CD*c tgB)]*[(AE*ctgB)(AE*ctgC)]*[(BF*ctgC)[(BF*ctgA)]=1 ,
∴三条高CD、AE、BF交于一点。
可用塞瓦定理证明的其他定理;
7



三角形三条中线交于一点(重心):
如图5 D , E分别为BC , AC 中点
∴BD=DC AE=EC 所以BDDC=1 CEEA=1
∵AF=BF
∴ AFFB=1
∴AF=FB
∴三角形三条中线交于一点

可用定比分点来定义塞瓦定理:
在△ABC的三边BC、CA、A B或其延长线上分别取L、M、N三点,又分比是
λ=BLLC、μ=CMMA、ν=ANNB。于是A L、BM、CN三线交于一点的充要条件是λμν=1。

塞瓦定理推论:
1.设E是△ABD内任意一点,AE、BE、DE分别交对边于C、G、F,
则(BDBC)*(CEAE)*(GADG)=1
∵(BCCD)*(DGGA)*(AFFB)=1,(塞瓦定理)
∴ (BDCD)* (CEAE)*(AFFB)=K(K为未知参数)且(BDBC)*(CEAE)*(GADG)=K
(K为未知参数)
又由梅涅劳斯定理得:(BDCD)*(CEAE)*(AFFB)=1
∴(BDBC)*(CEAE)*(GADG)=1

2.塞瓦定理角元形式
AD,BE,CF交于一点的充分必要条件是
(sin∠BADsin∠DAC)*(sin∠ACFsin∠FCB)*(sin∠CBEs in∠EBA)=1
由正弦定理及三角形面积公式易证

3.如 图,对于圆周上顺次6点A,B,C,D,E,F,直线AD,BE,CF交于一点
的充分必要条件是: (ABBC)*(CDDE)*(EFFA)=1
由塞瓦定理的角元形式,正弦定理及圆弦长与所对圆周角关系易证




4..还能利用塞瓦定理证三角形三条高交于一点
设三边AB、BC、AC的垂足分别为D、E、F,
根据塞瓦定理逆定 理,
∵( AD:DB)*(BE:EC)*(CF:FA)=[(CD*ctgA[(CD*ctgB)]*[(AE*c tgB)(AE*ctgC)]*[(BF*ct
gC)[(AE*ctgB)]=1,
∴三条高CD、AE、BF交于一点。






8



燕尾定理
燕尾定理,因此图类似燕尾而得名,是一个关于三角形的定理
(如图△ABC,D、E、F为BC、CA、AB 上的点,AD、BE、CF 交于O点)
S△ABC中,S△AOB:S△AOC=S△BDO:S△CDO=BD:CD
同理,S△AOC:S△BOC=S△AFO:S△BFO=AF:BF
S△BOC:S△BOA=S△CEO:S△AEO=EC:EA



证法1
下面的是第一种方法:相似三角形法
已知:△ABC的两条中线AD、CF相交于点O,连接并延长BO,
交AC于点E。
求证:AE=CE
证明:如图1,过点O作MN∥BC,交AB于点M,交AC于点N; 过点O作PQ∥AB,
交BC于点P,交AC于点Q。
∵MN∥BC
∴△AMO∽△ABD,△ANO∽△ACD
∴MO:BD=AO:AD,NO:CD=AO:AD
∴MO:BD=NO:CD
∵AD是△ABC的一条中线
∴BD=CD
∴MO=NO
∵PQ∥AB
∴△CPO∽△CBF,△CQO∽△CAF
∴PO:BF=CO:CF,QO:AF=CO:CF
∴PO:BF=QO:AF
∵CF是△ABC的一条中线
∴AF=BF
∴PO=QO
图1

∵MO=NO,∠MOP=∠NOQ,PO=QO
∴△MOP≌△NOQ(SAS)
∴∠MPO=∠NQO
∴MP∥AC(内错角相等,两条直线平行)
∴△BMR∽△BAE(R为MP与BO的交点),△BPR∽△BCE
∴MR:AE=BR:BE,PR:CE=BR:BE
∴MR:AE=PR:CE
∵MN∥BC,PQ∥AB
∴四边形BMOP是平行四边形
∴MR=PR(平行四边形的对角线互相平分)
∴AE=CE 命题得证。
证法2
下面的是第二种方法:面积法

9



已知:△ABC的两条中线AD、CF相交于点O,连接并延长BO,交AC于点E。
求证:AE=CE
证明:如图2
∵点D是BC的中点,点F是AB的中点
∴S△CAD = S△BAD,S△COD = S△BOD
∴S△CAD - S△COD = S△BAD - S△BOD
即S△AOC = S△AOB
∵S△ACF = S△BCF,S△AOF = S△BOF
∴S△ACF - S△AOF = S△BCF
图2

- S△BOF
即S△AOC = S△BOC
∴S△AOB = S△BOC
∵S△AOE:S△AOB=OE:OB,S△COE:S△BOC=OE:OB
∴S△AOE:S△AOB= S△COE:S△BOC
∵S△AOB = S△BOC
∴S△AOE = S△COE
∴AE=CE 命题得证。
证法3
下面的是第三种方法:中位线法
已知:△ABC的两条中线AD、CF相交于点O,连接并延长BO,交AC于点E。
求证:AE=CE
证明:如图2,延长OE到点G,使OG=OB
∵OG=OB
∴点O是BG的中点
又∵点D是BC的中点
∴OD是△BGC的一条中位线
∴AD∥CG(三角形的中位线平行于第三边,且等于第三边的一半)
∵点O是BG的中点,点F是AB的中点
∴OF是△BGA的一条中位线
∴CF∥AG
∵AD∥CG,CF∥AG
∴四边形AOCG是平行四边形
∴AC、OG互相平分
∴AE=CE 命题得证。

证法四:
因为ABCO是凹四边形,根据共边比例定理,命题得证







10



托勒密定理
定 理的内容:圆内接四边形中,两条对角线的乘积(两对角线所包矩形的面积)等于两
组对边乘积之和(一 组对边所包矩形的面积与另一组对边所包矩形的面积之和).

证明
一、(以下是推论的证明,托勒密定理可视作特殊情况。)
在任意四边形ABCD中,作△ABE使∠BAE=∠CAD ∠ABE=∠ ACD
∵△ABE∽△ACD
∴ BECD=ABAC,即BE·AC=AB·CD (1)
而∠BAC=∠DAE,∠ACB=∠ADE
∴△ABC∽△AED相似. BCED=ACAD即ED·AC=BC·AD (2)
(1)+(2),得 AC(BE+ED)=AB·CD+AD·BC
又∵BE+ED≥BD (仅在四边形ABCD是某圆的内接四边形时,等号成立,即“托
勒密定理”)
∴命题得证

复数证明
用a、b、c、d分别表示四边 形顶点A、B、C、D的复数,则AB、CD、AD、BC、
AC、BD的长度分别是:(a-b)、( c-d)、(a-d)、(b-c)、(a-c)、(b-d) 。
首先注意到复数恒等式: (a ? b)(c ? d) + (a ? d)(b ? c) = (a ? c)(b ? d) ,两边取
模,运用三角不等式得。 等号成立的条件是(a-b)(c-d)与( a-d)(b-c)的辐角相等,这与A、B、
C、D四点共圆等价。 四点不限于同一平面。
平面上,托勒密不等式是三角不等式的反演形式。

二、 设ABCD是圆内接四边形。 在弦BC上,圆周角∠BAC = ∠BDC,而在AB上,
∠ADB = ∠ACB。 在AC上取一点K,使得∠ABK = ∠CBD;
∵∠ABK + ∠CBK = ∠ABC = ∠CBD + ∠ABD,所以∠CBK = ∠ABD。
因此△ABK与△DBC相似
同理也有△ABD ~ △KBC
因此AKAB = CDBD,且CKBC = DABD
因此AK·BD = AB·CD,且CK·BD = BC·DA
两式相加,得(AK+CK)·BD = AB·CD + BC·DA
但AK+CK = AC,因此AC·BD = AB·CD + BC·DA。证毕

三、已知:圆内接四边形ABCD
求证:AC·BD=AB·CD+AD·BC
证明:如图,过C作CP交BD于P,使∠1=∠2,又∠3=∠4
∴△ACD∽△BCP
∴AC:BC=AD:BP,AC·BP=AD·BC ①
又∠ACB=∠DCP,∠5=∠6,
∴△ACB∽△DCP
∴AC:CD=AB:DP,AC·DP=AB·CD ②
①+②得 AC(BP+DP)=AB·CD+AD·BC
即AC·BD=AB·CD+AD·BC

11



推论
1.任意凸四边形ABCD,必有AC·BD≤AB·CD+AD·BC,当且仅当ABCD四点 共圆
时取等号。
2.托勒密定理的逆定理同样成立:一个凸四边形两对对边乘积的和等 于两条对角线的
乘积,则这个凸四边形内接于一圆


推广
托勒密不等式:四边形的任两组对边乘积不小于另外一组对边的乘积,取等号当且
仅当共圆或共线。
简单的证明:复数恒等式:(a-b)(c-d)+(a-d)(b-c)=(a-c)(b-d),两边取模,
得不等式AC·BD≤|(a-b)(c-d)|+|(b-c)(a-d)|=AB·CD+BC·AD

注意:
1.等号成立的条件是(a-b)(c-d)与(a -d)(b-c)的辐角相等,这与A、B、C、D四点共圆等价。
2.四点不限于同一平面。


西姆松定理
西姆松定理:过三角形外接圆上异于三角形顶点 的任意一点作三边的垂线,则三垂足
共线(此线常称为西姆松线)。
西姆松逆定理:若一点在三角形三边所在直线上的射影共线,则该点在此三角形的外
接圆上。

性质:
(1)称三角形的垂心为H。西姆松线和PH的交点为线段PH的中点,且这点在九点圆上。
(2)两点的西姆松线的交角等于该两点的圆周角。
(3)若两个三角形的外接圆相同,这外接圆上的一点P对应两者的西姆松线的交角,跟
P的位置无关。
(4)从一点向三角形的三边所引垂线的垂足共线的充要条件是该点落在三角形的外接圆
上。

证明一:
△ABC外接圆上有点P,且PE⊥AC于E,PF⊥AB于F,PD⊥BC于D,分别连
DE、DF.
易证P、B、F、D及P、D、C、E和A、B、P、C分别共圆,
于是∠FDP=∠ACP ①
∵都是∠ABP的补角 且∠PDE=∠PCE ②
而∠ACP+∠PCE=180° ③
∴∠FDP+∠PDE=180° ④
即F、D、E共线.
反之
当F、D、E共线时,由④→②→③→①可见A、B、P、C共圆.


12



证明二:
如图,若L、M、N三点共线,连结BP, CP,则因PL垂直于BC,PM垂直于AC,
PN垂直于AB,
有B、P、L、N和M、P、L、C分别四点共圆,
有∠PBN = ∠PLN = ∠PLM = ∠PCM.
故A、B、P、C四点共圆。
若A、B、P、C四点共圆,则∠PBN = ∠PCM。
因PL垂直于BC,PM垂直于AC,PN垂直于AB,
有B、P、L、N和M、P、L、C四点共圆,
有 ∠PBN =∠PLN =∠PCM=∠PLM.
故L、M、N三点共线。

相关性质的证明
连AH延长线交圆于G,
连PG交西姆松线与R,BC于Q
如图连其他相关线段
AH⊥BC,PF⊥BC==>AGPF==>∠1=∠2
A.G.C.P共圆==>∠2=∠3
PE⊥AC,PF⊥BC==>P.E.F.C共圆==>∠3=∠4==>∠1=∠4
PF⊥BC==>PR=RQ
BH⊥AC,AH⊥BC==>∠5=∠6
A.B.G.C共圆==>∠6=∠7==>∠5=∠7
AG⊥BC==>BC垂直GH==>∠8=∠2=∠4
∠8+∠9=90,∠10+∠4=90==>∠9=∠10 ==>HQDF ==>PM=MH






13

2019高中数学奥赛报送-高中数学选择题做法


山西太原高中数学会考试题-人教 高中数学b 选修4-4 坐标系与参数方程 电子教科书


新课标全程学案 高中数学-高中数学技巧线性规划


王后雄高中数学必修五电子版-高中数学思维方法有哪些法有哪些


高中数学重点有哪几个-高中数学报刊杂志


学好高中数学物理化学-高中数学会考卷试题


高中数学全国卷试题及答案-高中数学竞赛 获奖比例


谁有高中数学知识点总结-高中数学人教版和北师大版哪个好点



本文更新与2020-09-21 01:00,由作者提供,不代表本网站立场,转载请注明出处:https://www.bjmy2z.cn/gaokao/406090.html

高中数学竞赛定理的相关文章