关键词不能为空

当前您在: 主页 > 数学 >

高级中学数学所有定律(非常有用)

作者:高考题库网
来源:https://www.bjmy2z.cn/gaokao
2020-09-21 01:12
tags:高中数学定理

高中数学 满分-北师大高中数学选修2-3总结

2020年9月21日发(作者:鲁学政)


.

高中数学常用公式及常用结论

1. 元素与集合的关系
x?A?x?C
U
A
,
x?C
U
A?x?A
.
2.德摩根公式
C
U
(AIB)?C
U
AUC
U
B;C
U
(AUB)?C
U
AICU
B
.
3.包含关系
AIB?A?AUB?B
?A?B?C
U
B?C
U
A

?AIC
U
B???C
U
AUB?R

4.集合< br>{a
1
,a
2
,L,a
n
}的子集个数共有
2
n
个;真子集有
2
n
–1个;
非空子集有
2
n
–1个;非空的真子集有
2
n
–2个.

5.二次函数的解析式的三种形式
(1)一般式
f(x)?ax
2
?bx?c(a?0)
;
(2)顶点式
f(x)?a(x?h)
2
?k(a?0)
;
(3)零点式
f(x)?a(x?x
1
)(x?x
2
)(a?0)
.

6.闭区间上的二次函数的最值
二次函数
f
(
x
)
?ax
2
?bx?c
(
a?
0)
在闭区间
?
p,q
?
上的最值只能在
x??
b
2a
及区间的两端点处取得,具体如下:
b
b
(1)当a> 0时,若
x???
?
p
,
q
?
,则
f(x )
min
?f(?),f(x)
max
?
max
?
f(p),f(q)
?

2a
2a
b

x?? ?
?
p
,
q
?

f(x)
max
?
max
?
f(p),f(q)
?

f(x)
mi n
?
min
?
f(p),f(q)
?
.
2ab
(2)当a<0时,若
x???
?
p
,
q
?
,则
f(x)
min
?min
?
f(p),f(q)
?

2a
b

x???
?
p
,
q
?
,则
f(x)
max
?max
?
f(p), f(q)
?

f(x)
min
?min
?
f(p) ,f(q)
?
.
2a

7.定区间上含参数的二次不等式恒成立的条件依据
(1)在给定区间
?
?
,
?
?
上含参数的二次不等式
f(x,t)?0
(
t
为参数)恒成立的充要
条件是
f(x,t)
min
?0(x?L )

(2)在给定区间
?
?
,
?
?
上含 参数的二次不等式
f(x,t)?0
(
t
为参数)恒成立的充要
条件 是
f
(
x
,
t
)
man
?
0(< br>x?L
)
.


.
?
a?0
?
a?0
?
(3)
f
(
x
)
?ax
4
?bx
2
?c?
0
恒成立 的充要条件是
?
b?0

?
2
.
?
c?0
?
b?4ac?0
?



8.四种命题的相互关系

原命题 互逆 逆命题
若p则q 若q则p
互 互
互 为 为 互
否 否
逆 逆
否 否
否命题 逆否命题
若非p则非q 互逆 若非q则非p

9.充要条件
(1)充分条件:若
p?q
,则p是
q
充分条件.
(2)必要条件:若
q?p
,则
p

q
必要条件.
(3)充要条件:若
p?q
,且
q?p
,则
p
是< br>q
充要条件.
注:如果甲是乙的充分条件,则乙是甲的必要条件;反之亦然.

10.函数的单调性
(1)设
x
1
?x
2
?
?
a,b
?
,x
1
?x
2
那么
(x
1
?x
2
)
?
f(x
1
)? f(x
2
)
?
?0
?
f(x
1
)?f(x
2
)
?0?f(x)在
?
a,b
?
上是增函数;
x
1
?x
2
f(x
1
)?f(x
2
)
?0?f(x)在
?
a,b
?
上是减函数.
(x1
?x
2
)
?
f(x
1
)?f(x
2
)
?
?0?
x
1
?x
2
(2)设函数
y?f(x)
在某个区间内可导,如果
f
?
(x)?0
,则
f(x)
为增函数;如

f
?
(x)?0
,则f(x)
为减函数.

11.奇偶函数的图象特征


.
奇函数的图象关于原点对称,偶函数的图象关于y轴对称;反过来,如果一
个函数的图象关 于原点对称,那么这个函数是奇函数;如果一个函数的图象关于
y轴对称,那么这个函数是偶函数.

12.对于函数
y?f(x)
(
x?R
),
f( x?a)?f(b?x)
恒成立,则函数
f(x)
的对称轴是
a?ba?b< br>函数
x?
;两个函数
y?f(x?a)

y?f(b?x)< br> 的图象关于直线
x?

22
称.

13.两个函数图象的对称性
(1)函数
y?f(x)
与函数
y? f(?x)
的图象关于直线
x?0
(即
y
轴)对称.
a? b
(2)函数
y?f(mx?a)
与函数
y?f(b?mx)
的图象 关于直线
x?
对称.
2m
(3)函数
y?f(x)
y?f
?1
(
x
)
的图象关于直线y=x对称.
14 .若将函数
y?f(x)
的图象右移
a
、上移
b
个单位,得 到函数
y?f(x?a)?b

图象;若将曲线
f(x,y)?0
的 图象右移
a
、上移
b
个单位,得到曲线
f(x?a,y?b)?0< br>的图象.

15.几个常见的函数方程
(1)正比例函数
f(x)?cx
,
f(x?y)?f(x)?f(y),f(1)?c
.
( 2)指数函数
f
(
x
)
?a
x
,
f(x? y)?f(x)f(y),f(1)?a?0
.
(3)对数函数
f
(
x
)
?
log
a
x
,
f(xy)?f(x)?f (y),f(a)?1(a?0,a?1)
.
(4)幂函数
f(x)
?x
?
,
f(xy)?f(x)f(y),f
'
(1)?
?
.

16.有理指数幂的运算性质
(1)
a
r< br>?a
s
?a
r?s
(
a?
0,
r
,
s?Q
)
.
(2)
(
a
r
)
s
?a
rs
(
a?
0,
r
,
s?Q
)
.
(3)
(
ab
)
r
?a
r
b
r
(
a?
0,
b?
0,
r?Q
).
注: 若a>0,p是一个无理数,则a
p
表示一个确定的实数.上述有理指
数幂的运算性质,对于无理数指数幂都适用.

17.指数式与对数式的互化式

log
a
N?b?a
b
?N
(a?0,a?1, N?0)
.
18.对数的换底公式


.
log
m
N
(
a?0
,且
a?1
,m?0
,且
m?1
,

N?0
).
log
m
a
n
推论
log
a
m
b
n
?
log
a
b
(
a?0
,且
a?1
,
m,n?0
,且
m?1
,
n?1
,

N?0
).
m
log
a
N?

19.对数的四则运算法则
若a>0,a≠1,M>0,N>0,则
(1)
log
a
(
MN
)
?
log
a
M?log
a
N
;
M
(2)
log
a
?
log
a
M?
log
a
N
;
N
(3)
log
a
M
n
?n
log
a
M< br>(
n?R
)
.

20.等差数列的通项公式
a< br>n
?a
1
?(n?1)d?dn?a
1
?d(n?N
*
)

其前n项和公式为
n(a
1
?a
n)
n(n?1)
s
n
??na
1
?d

22
d1
?n
2
?(a
1
?d)n
.
22
21.等比数列的通项公式
a
a
n
?a
1< br>q
n?1
?
1
?q
n
(n?N
*
)

q
其前n项的和公式为
?
a
1
(1?qn
)
,q?1
?
s
n
?
?
1?q
?
na,q?1
?
1

22.常见三角不等式
(1)若
x?
(0,)
,则
sinx?x?tanx
.
2
(2) 若
x?
(0,)
,则
1?sinx?cosx?2
.
2
(3)
|sinx|?|cosx|?1
.

23.同角三角函数的基本关系式
?
?


.
s in
2
?
?cos
2
?
?1

tan?
=
sin
?

tan
?
?cot
?
?1
.
cos
?
24.正弦、余弦的诱导公式
奇变偶不变 符号看象限

25.和角与差角公式

sin(?
?
?
)?sin
?
cos
?
?cos
?
sin
?
;
cos(
?
?
?
)?c os
?
cos
?
msin
?
sin
?
;
tan
?
?tan
?
tan(
?
?
?)?

1
m
tan
?
tan
?
asi n
?
?bcos
?
=
a
2
?b
2
sin(
?
?
?
)
(辅助角
?
所在象限由点
(a,b)
的象限决
b
定,
tan
?
?
).
a
26.二倍角公式

sin2
?
?sin
?
cos
?
.
co s2
?
?cos
2
?
?sin
2
?
?2c os
2
?
?1?1?2sin
2
?
.
2tan
?
tan2
?
?
.
1?tan
2
?
.
27.三角函数的周期公式
函数< br>y?sin(
?
x?
?
)
,x∈R及函数
y?cos (
?
x?
?
)
,x∈R(A,ω,
?
为常数,且< br>2
?
A≠0,ω>0)的周期
T?

?
函数
y?tan(
?
x?
?
)

x?k
?
?
周期
T
?
?
2
,
k?Z
(A,ω,
?
为常数,且A≠0,ω>0)的
?
.
?
28.正弦定理
abc
???2R
.(R是外接圆的半径)
sinAsinBsinC

29.余弦定理
a
2
?b
2
?c
2
?2bccosA
;
b
2
?c
2
?a
2
?2cacosB
;
c
2
?a
2
?b
2
?2abcosC
.

30.面积定理


.
111
ah
a< br>?bh
b
?ch
c

h
a
、h
b< br>、h
c
分别表示a、b、c边上的高).
222
111
(2 )
S?absinC?bcsinA?casinB
.
222
(1)
S?

31.三角形内角和定理
在△A BC中,有
A?B?C?
?
?C?
?
?(A?B)

C
?
A?B
?2C?2
?
?2(A?B)
.
???
222

32.向量的数量积的运算律:
(1)
a
·b= b·
a
(交换律);
(2)(
?
a
)·b=
?

a
·b)=
?
a
·b=
a
·(
?
b);
(3)(
a
+b)·c=
a
·c +b·c.

33.平面向量基本定理
如果e
1
、e
2
是同一平面内的两个不共线向量,那么对于这一平 面内的任一
向量,有且只有一对实数λ
1
、λ
2
,使得a=λ
1
e
1

2
e
2

不共线的向量e
1
、e
2
叫做表示这一平面内所有向量的一组基底.

34.
a
与b的数量积(或内积)
a
·b=|
a
||b|cosθ.数量积a·b等于a的长度|a|与b在a的方向上的投影
|b|cosθ的乘积.

35.平面向量的坐标运算
(1)设a=(x
1
,y
1
)
,b=
(x
2
,y< br>2
)
,则a+b=
(x
1
?x
2
,y
1
?y
2
)
.
(2)设a=
(x
1
, y
1
)
,b=
(x
2
,y
2
)
, 则a-b=
(x
1
?x
2
,y
1
?y
2< br>)
.
uuuruuuruuur
(x,y)(x,y)
(3)设A
11
,B
22
,则
AB?OB?OA?(x
2< br>?x
1
,y
2
?y
1
)
.
(4) 设a=
(x,y),
?
?R
,则
?
a=
(
?
x,
?
y)
.
(5)设a=
(x
1
, y
1
)
,b=
(x
2
,y
2
)
, 则a·b=
(x
1
x
2
?y
1
y
2
)
.



36.两向量的夹角公式


.
cos
?
?

x
1
x
2
?y
1
y
2
x?y?x?y
2
1
2
1
2
2
2
2
(
a
=
(x
1
,y1
)
,b=
(x
2
,y
2
)
).
37.平面两点间的距离公式
uuuruuuruuur

d
A,B
=
|AB|?AB?AB

?(x
2?x
1
)
2
?(y
2
?y
1
)
2
(A
(x
1
,y
1
)
,B
(x
2
,y
2
)
).

38.向量的平行与垂直
设a=
(x
1
,y
1
)
,b=
(x
2< br>,y
2
)
,且b
?
0,则
a||b
?
b=λa
?x
1
y
2
?x< br>2
y
1
?0
.
a
?
b(a
?0)
?
a
·b=0
?x
1
x
2
?y< br>1
y
2
?0
.

39.线段的定比分点公式
uuuruuur

P
?
?
PP
2
,则
1
P
2
的分点,
?
是实数,且
PP
1(x
1
,y
1
)

P
2
(x
2
,y
2
)

P(x,y)
是线段
P
1< br>x
1
?
?
x
2
?
uuuruuur
x?
uuur
?
OP?
?
OP
2
?
1?< br>?

?
OP?
1
?
1?
?
?
y?
y
1
?
?
y
2
?
1?
?< br>?
uuuruuuruuur
1
t?
().
?(1?t)OP
?
OP?tOP
12
1?
?

40.三角形的重心坐标公式
△ABC三个顶点的坐标分别为
A(x
1< br>,y
1
)

B(x
2
,y
2
)
C(x
3
,y
3
)
,则△ABC的重
x?x ?xy?y?y
3
心的坐标是
G(
123
,
12
)
.
33
uuuruuuruuurr
O

?ABC
的重心
?OA?OB?OC?0
.

41.点的平移公式
u uur
uuu
r
r
uuu
?
x
'
?x?h
?
x?x
'
?h
??
''
?OP?OP?PP?
?
.
?
''
??
?
y?y?k
?
y?y?k
uuur
PP
'
的坐标为
(h,k)
.
注:图形F上的任意一点P(x,y)在平移后图形
F
'
上的对应点为< br>P
'
(x
'
,y
'
)
,且

42.“按向量平移”的几个结论
(1)点
P(x,y)
按向量a=
(h,k)
平移后得到点
P
'
(x?h,y?k)
.


.
(2) 函数
y?f(x)
的图象
C
按向量a=
(h,k)
平移后得到图象
C
'
,则
C
'
的函数
解析式为
y?f(x?h)?k
.
(3) 图象
C
'
按向量a=
(h,k)
平移后得到图象
C
,若
C
的解析式
y?f(x)
,则
C
'
的函数解析式为
y?f(x?h)?k
.
(4)曲线
C
:
f(x,y)?0
按向量a=
(h,k)
平移后得到图象
C
'
,则
C
'
的方程为
f(x?h,y?k)?0
.
(5) 向量m=
(x ,y)
按向量a=
(h,k)
平移后得到的向量仍然为m=
(x,y)
.

43.常用不等式:
(1)
a,b?R
?
a2
?b
2
?2ab
(当且仅当a=b时取“=”号).
(2)
a,b
?
R
?
?
a?b
2
?ab
(当且仅当a=b时取“=”号).
(3)
a
3
?b
3
? c
3
?3abc(a?0,b?0,c?0).

(4)柯西不等式:
(a
2
?b
2
)(c
2
?d
2
)?(a c?bd)
2
,a,b,c,d?R.

(5)
a?b?a?b?a?b
.

44.最值定理(积定和最小)
已知
x,y
都是正数,则有
(1 )若积
xy
是定值
p
,则当
x?y
时和
x?y有最小值
2p

(2)若和
x?y
是定值
s
,则当
x?y
时积
xy
有最大值
1
4
s
2
.
推广 已知
x,y?R
,则有
(x
?
y)2
?
(x
?
y)
2
?
2xy

(1)若积
xy
是定值,则当
|x?y|
最大时,
|x?y|最大;

|x?y|
最小时,
|x?y|
最小.
(2)若和
|x?y|
是定值,则当
|x?y|
最大时,
|xy|
最小;

|x?y|
最小时,
|xy|
最大.

45.指数不等式与对数不等式
(1)当
a?1
时,

a
f(x)
?a
g(x)
?f(x)?g(x)
;
?
f(x)?0

logx)?log
?
a
f (
a
g(x)?
?
g(x)?0
.
?
?
f(x)?g(x)
(2)当
0?a?1
时,

a
f(x)
?a
g(x)
?f(x)?g(x)
;


.
?
f(x)?0
?

loga
f(x)?log
a
g(x)?
?
g(x)?0

?
f(x)?g(x)
?

46.斜率公式
y?yk?
21

P
1
(x
1
,y
1
)

P
2
(x
2
,y
2
)
).
x
2
?x
1



47.直线的五种方程
(1)点斜式
y?y
1
?k(x?x
1
)
(直 线
l
过点
P
1
(x
1
,y
1
)< br>,且斜率为
k
).
(2)斜截式
y?kx?b
(b为直线
l
在y轴上的截距).
y?y
1
x?x
1
?
(3)两点式 (
y
1
?y
2
)(
P
1
(x
1
,y
1
)

P
2
(x
2
,y
2
)
(
x
1
?x
2
)).
y
2
?y1
x
2
?x
1
xy
(4)截距式
??1
(
a、b
分别为直线的横、纵截距,
a、b?0
)
ab
(5)一般式
Ax?By?C?0
(其中A、B不同时为0).

48.两条直线的平行和垂直

l
1
:y?k< br>1
x?b
1

l
2
:y?k
2
x? b
2


l
1
||l
2
?k
1< br>?k
2
,b
1
?b
2
;

l1
?l
2
?k
1
k
2
??1
.

49.
l
1

l
2
的倒角公式
k?k
(1)
tan
?
?
21
.
1?k
2
k
1
(
l
1
:y?k
1
x?b
1

l
2
:y?k
2
x?b
2
,
k
1
k
2
??1
)

50.两种常用直线系方程
(1)平行直线系方程:与直线
Ax?By?C?0
平行的直线系方程是
Ax?By?
?
?0
(
?
?0
),λ是参变量.
(2)垂直直线系方程:与直线
Ax?By?C?0
(A≠0,B≠0)垂直的直线系方
程是
Bx?Ay?
?
?0
,λ是 参变量.


.
51.点到直线的距离
|Ax
0
?By
0
?C|
d?
(点
P(x
0
, y
0
)
,直线
l

Ax?By?C?0
).
22
A?B

52.
Ax?By?C?0

?0
所表示的平面区域
设直线
l: Ax?By?C?0
,则
Ax?By?C?0

?0
所表示的平面区 域是:
(1)若
B?0
,当
B

Ax?By?C
同号时,表示直线
l
的上方的区域;当
B

Ax?By?C
异号时,表示直线
l
的下方的区域.简言之,同号在上,异号在下.

(2 )若
B?0
,当
A

Ax?By?C
同号时,表示直线l
的右方的区域;当
A

Ax?By?C
异号时,表示直线l
的左方的区域. 简言之,同号在右,异号在左.







53. 圆的四种方程
(1)圆的标准方程
(x?a)
2
?(y?b)
2
?r
2
.
(2)圆的一般方程
x
2
?y
2
?Dx?Ey?F?0< br>(
D
2
?E
2
?4F
>0).
?
x?a?rcos
?
(3)圆的参数方程
?
.
y?b?rsin
?
?
(4)圆的直径式方程
(x?x
1
)(x?x
2
)?(y?y
1
)(y?y
2
)?0
(圆的直径的端点是
A(x
1
,y
1
)

B(x
2
,y
2
)
).

54.直线与圆的位置关系
直线
Ax?By?C?0
与圆
(x?a )
2
?(y?b)
2
?r
2
的位置关系有三种:
d?r?相离???0
;
d?r?相切???0
;
d?r?相交???0
.
其中
d?

Aa?Bb?C
A?B
22
.


.
?< br>x?acos
?
x
2
y
2
55.椭圆
2?
2
?1(a?b?0)
的参数方程是
?
.
ab
?
y?bsin
?

x
2
y
2
椭圆
2
?
2
?1(a?b?0)
焦半径公式
aba
2
a
2
PF
1
?e(x?)

PF
2
?e(?x)
.
cc

椭圆的的内外部
x
2
y
2
(1)点
P(x
0
,y
0)
在椭圆
2
?
2
?1(a?b?0)
的内部
?
ab
x
2
y
2
(2)点
P(x
0
,y
0
)
在椭圆
2
?
2
?1(a?b?0)
的外部
?
ab
22
x
0
y
0
??1.
a
2
b
2
22
x
0
y
0
?
2
?1
.
2
ab

x
2
y
2
56.双曲线
2
?
2
?1(a?0,b?0)
的焦半径公式
ab
a
2
a
2
PF
1
?|e(x?)|

PF
2
?|e(?x)|
.
cc

双曲线的内外部
x
2
y
2
(1)点
P(x
0,y
0
)
在双曲线
2
?
2
?1(a?0,b? 0)
的内部
?
ab
x
2
y
2
(2)点P(x
0
,y
0
)
在双曲线
2
?
2< br>?1(a?0,b?0)
的外部
?
ab
22
x
0y
0
?
2
?1
.
2
ab
22
x
0
y
0
??1
.
a
2
b
2

双曲线的方程与渐近线方程的关系
x
2
y
2
x
2
y
2
b
(1)若双曲线方程为
2
?
2
?
1
?
渐近线方程:
2
?
2
?0?
y??x
.
ab
aba
x
2
y
2
xy
b
(2)若渐近线方 程为
y??
x
?
??0
?
双曲线可设为
2
?
2
??
.
ab
ab
a
x
2
y
2
x
2
y
2
(3)若双曲线与
2
?
2
?
1
有公共渐近线,可设为
2
?
2
? ?

??0
,焦点
abab
在x轴上,
??0
,焦 点在y轴上).

57. 抛物线
y
2
?
2px
的焦半径公式
抛物线
y2
?2px(p?0)
焦半径
CF?x
0
?
过焦点弦长
CD?x
1
?
p
.
2
pp
?x
2
??
x
1
?
x
2
?
p
.
22


.

58.直线与圆锥曲线相交的弦长公式
AB?(1?k
2
)(x
2
?x
1
)
2
?|x
1
?x
2
|1?tan
2
?
?|y
1
?y
2
|1?cot
2
?

?
y?kx ?b
(弦端点A
(
x
1
,
y
1
),
B
(
x
2
,
y
2
)
,由方程
?
消去y得到
ax
2
?bx?c?
0

?
F(x,y)?0
??0
,
?
为直线
AB
的倾斜角,
k
为直线的斜率).

59.证明直线与直线的平行的思考途径
(1)转化为判定共面二直线无交点;
(2)转化为二直线同与第三条直线平行;
(3)转化为线面平行;
(4)转化为线面垂直;
(5)转化为面面平行.

证明直线与平面的平行的思考途径
(1)转化为直线与平面无公共点;
(2)转化为线线平行;
(3)转化为面面平行.

证明平面与平面平行的思考途径
(1)转化为判定二平面无公共点;
(2)转化为线面平行;
(3)转化为线面垂直.

证明直线与直线的垂直的思考途径
(1)转化为相交垂直;
(2)转化为线面垂直;
(3)转化为线与另一线的射影垂直;
(4)转化为线与形成射影的斜线垂直.
证明直线与平面垂直的思考途径
(1)转化为该直线与平面内任一直线垂直;
(2)转化为该直线与平面内相交二直线垂直;
(3)转化为该直线与平面的一条垂线平行;
(4)转化为该直线垂直于另一个平行平面;


.
(5)转化为该直线与两个垂直平面的交线垂直.

证明平面与平面的垂直的思考途径
(1)转化为判断二面角是直二面角;
(2)转化为线面垂直.

60.平面向量加法的平行四边形法则向空间的推广 < br>始点相同且不在同一个平面内的三个向量之和,等于以这三个向量为棱的平
行六面体的以公共始点 为始点的对角线所表示的向量.

61.共线向量定理
对空间任意两个向量a、b(b≠0 ),a∥b
?
存在实数λ使a=λb.
uuuruuur
uuuruuuruuur
P、A、B
三点共线
?
AP||AB
?
AP?tAB
?
OP?(1?t)OA?tOB
.
r
uuuruuur
uuur
uuu
AB||CD
?
AB

CD
共线且
AB、CD
不共线
?
AB?t CD

AB、CD
不共线.

62.共面向量定理
向 量p与两个不共线的向量a、b共面的
?
存在实数对
x,y
,使
p? ax?by

推论:空间一点P位于平面MAB内的
?
存在有序实数对x,y
,使
uuuruuuruuur
MP?xMA?yMB
,或对空间 任一定点O,有序实数对
x,y
,使
uuuruuuuruuuruuur
O P?OM?xMA?yMB
.

uuuruuuruuuruuur
63. 对空间任一点
O
和不共线的三点A、B、C,满足
OP?xOA?yOB?zOC
x?y?z?k
),则当
k?1
时,对于空间任一点
O
,总有P、A、B、C四点共面;

k?1
时,若
O?
平面ABC ,则P、A、B、C四点共面;若
O?
平面ABC,则P、
A、B、C四点不共面.
r
uuuruuuruuur
uuuruuur
uuu
A、B、 C、D
四点共面
?
AD

AB

AC
共 面
?
AD?xAB?yAC
?

uuuruuuruuuruuur
OD?(1?x?y)OA?xOB?yOC

O?
平面ABC).

64.空间向量基本定理
如果三个向量a、b、c不共面,那么对空间任一向 量p,存在一个唯一的
有序实数组x,y,z,使p=xa+yb+zc.
推论 设O、A 、B、C是不共面的四点,则对空间任一点P,都存在唯一
uuuruuuruuuruuur
的三个有序实数x,y,z,使
OP?xOA?yOB?zOC
.


.





65.向量的直角坐标运算
设< br>a

(a
1
,a
2
,a
3
)
,b=
(b
1
,b
2
,b
3
)
(1)
a
+b=
(a
1
?b
1
,a
2
?b
2
,a
3
?b
3
)

(2 )
a
-b=
(a
1
?b
1
,a
2
?b
2
,a
3
?b
3
)

(3)λa

(
?
a
1
,
?
a
2,
?
a
3
)
(λ∈R);
(4)
a
·b=
a
1
b
1
?a
2
b
2
? a
3
b
3


设A
(x
1
,y
1
,z
1
),B(x
2
,y
2
,z
2
),则
uuuruuuruuur
AB?OB?OA
=
(x
2
?x
1
,y
2
?y
1
,z
2< br>?z
1
)
.

66.空间的线线平行或垂直
rr

a?(x
1
,y
1
,z
1
)

b?(x
2
,y
2
,z
2
)
,则
?
x
1
?
?
x
2
rrrr
?
a ||b
?
a?
?
b(b?0)
?
?
y
1< br>?
?
y
2

?
z?
?
z
2
?
1
rr
rr
a?b
?
a?b?0
?< br>x
1
x
2
?y
1
y
2
?z
1
z
2
?0
.

67.夹角公式

a

(a
1
,a
2
,a
3
)
,b =
(b
1
,b
2
,b
3
)
,则
a
1
b
1
?a
2
b
2
?a
3b
3
cos〈
a
,b〉=.
222222
a
1
?a
2
?a
3
b
1
?b
2
?b
3
222
?a
3
)(b
1
2
?b
2
?b
3
2
)
,此即三维柯西不等式.
推论
( a
1
b
1
?a
2
b
2
?a
3b
3
)
2
?(a
1
2
?a
2


68.异面直线所成角
rr
cos
?
?|cosa,b|

rr
|x1
x
2
?y
1
y
2
?z
1
z
2
|
|a?b|
=
rr
?

222222
|a|?|b|
x
1
?y
1
?z
1
?x< br>2
?y
2
?z
2


.
rr
(其中
?

0?
?
?90
)为异面直线
a,b所成角,
a,b
分别表示异面直线
a,b
的方
oo
向向 量)

69.直线
AB
与平面所成角
uuurur
r< br>AB?m
u
uuurur
(
m
为平面
?
的法 向量).
?
?arcsin
|AB||m|

70..二面角
?
?l?
?
的平面角
urrurr
urr
m?nm?n
rr

?
?arc
cos
u rr

m

n
为平面
?

?
的法 向量).
?
?arccos
u
|m||n||m||n|

71.空间两点间的距离公式
若A
(x
1
,y
1
,z
1
)
,B
(x
2
,y
2
,z
2
)
,则
uuuruuuruuur

d
A,B
=
|AB|?AB?AB
?(x
2
?x
1
)
2< br>?(y
2
?y
1
)
2
?(z
2
?z
1
)
2
.

72.点
Q
到直线
l
距离
uuur
1
2 2
h?(|a||b|)?(a?b)
(点
P
在直线
l
上, 直线
l
的方向向量a=
PA
,向量
|a|
uuur
b=
PQ
).


73.异面直线间的距离
uuur uur
r
|CD?n|
r
(
l
1
,l
2< br>是两异面直线,其公垂向量为
n

C、D
分别是
l
1
,l
2
上任一
d?
|n|
点,
d

l
1
,l
2
间的距离).

74.点
B
到平面
?
的距离
uuuruur
| AB?n|
r
r

n
为平面
?
的法向量,
AB
是经过面
?
的一条斜线,
A?
?
).
d?
|n|

75.异面直线上两点距离公式
222
u uur
uuur
'
d?h?m?n?2mncosEA,AF
.
(两条异面直线a、b所成的角为θ,其公垂线段
AA
'
的长度为h.在直线a、b上
分别取两点E、F,
A
'
E?m
,
AF?n
,EF?d
).


.

76.三个向量和的平方公式
rrr
2
r
2
r
2
r
2
rrrr rr

(a?b?c)?a?b?c?2a?b?2b?c?2c?a

r< br>2
r
2
r
2
rrrrrrrrrrrr
?a?b?c ?2|a|?|b|cosa,b?2|b|?|c|cosb,c?2|c|?|a|cosc,a


77. 面积射影定理
S
'
S?
.
cos
?
(平面多边形及其射影的面积分别是
S

S
'
, 它们所在平面所成锐二面角的为
?
).

78.欧拉定理(欧拉公式)
V?F?E?2
(简单多面体的顶点数V、棱数E和面数F).
(1)
E< br>=各面多边形边数和的一半.特别地,若每个面的边数为
n
的多边形,则面
1< br>数F与棱数E的关系:
E?nF

2
1
(2)若每个顶点引 出的棱数为
m
,则顶点数V与棱数E的关系:
E?mV
.
2

79.球的半径是R,则
4
其体积
V?
?
R
3
,
3
其表面积
S?4
?
R
2

1

V
锥体
?Sh

S
是锥体的底面积、
h
是 锥体的高).
3
.
80.组合数公式
A
n
m
n(n?1)?(n?m?1)
n!
=(
n
∈N
*
m?N
,且
m?n
).
C
=
m
=
m !?(n?m)!
1?2???m
A
m
m
n

m< br>n?m
性质:(1)
C
n
=
C
n

m
m?1m
(2)
C
n
+
C
n
=
C
n?1
.
0
注:规定
C
n
?
1
.
0 12rn
?C
n
?C
n
???C
n
???C
n
?2
n
.
(3)
C
n

81.n次独立重复试验中某事件恰好发生k次的概率


.
kk< br>P
n
(k)?C
n
P(1?P)
n?k
.


82.离散型随机变量的分布列的两个性质
(1)
P
i
?
0(
i?
1,2,
L
)
;
(2)
P
1
?P
2
?L?1.

83.数学期望
E
?
?x
1
P
1
?x< br>2
P
2
?L?x
n
P
n
?L

数学期望的性质:
(1)
E(a
?
?b)?aE(
?
)?b
. (2)若
?

B(n,p)
,则
E
?
?np< br>.
(3) 若
?
服从几何分布,且
P(
?
?k) ?g(k,p)?q
k?1
p
,则
E
?
?
84.方 差
D
?
?
?
x
1
?E
?
?
?p
1
?
?
x
2
?E
?
?
?p
2
?L?
?
x
n
?E
?
?
?p< br>n
?L

222
1
.
p
标准差
??
=
D
?
.
方差的性质:( 1)
D
?
a
?
?b
?
?a
2
D< br>?

(2)若
?

B(n,p)
, 则
D
?
?np(1?p)
.
(3) 若
?< br>服从几何分布,且
P(
?
?k)?g(k,p)?q
k?1
p
,则
D
?
?
方差与期望的关系:
D
?
?E
?
2
?
?
E
?
?
.
2
q
.
p
2



85.
f(x)

x
0
处的导数(或变化率)
f(x
0
??x)?f(x
0
)
?y
.
f
?
(x
0
)?y
?
x?x
0
?lim? lim
?x?0
?x
?x?0
?x

函数
y?f(x)
在点
x
0
处的导数的几何意义
函数< br>y?f(x)
在点
x
0
处的导数是曲线
y?f(x)

P(x
0
,f(x
0
))
处的切线的斜

f
?
(
x
0
)
,相应的切线方程是
y?y
0
?f
?
(x
0
)(x?x
0
)
.

86.几种常见函数的导数
(1)
C
?
?0
(C为常数).
(2)
(x
n
)
'
?nx
n?1
(n?Q)
.


.
(3)
(sinx)
?
?cosx
.
(4)
(cosx)
?
??sinx
.
11
e
(5)
(lnx)
?
?

(loga
x
)
?
?log
a
.
xx
(6)
(e
x
)
?
?e
x
;
(a
x
)
?
?a
x
lna
.

87.导数的运算法则
(1)
(u?v)
'
?u
'
?v
'
.
(2)
(uv)
'
?u
'
v?uv
'
.
u
'
u
'
v?uv
'
(v?0)
.
(3)
()?
vv
2
88.复合函数的求导法则
设函 数
u?
?
(x)
在点
x
处有导数
u
x'
?
?
'
(x)
,函数
y?f(u)
在点x
处的对应点
'''
?y
u
?u
x
U处有导数
y
u
'
?f
'
(u)
,则复合函数
y?f (
?
(x))
在点
x
处有导数,且
y
x

或写作
f
x
'
(
?
(x))?f
'
(u)
?
'
(x)
.

89.判别
f
(
x
0
)
是极大(小)值的方法
当函数
f(x)
在点
x
0
处连续时,
(1)如果 在
x
0
附近的左侧
f
?
(x)?0
,右侧
f
?
(x)?0
,则
f(x
0
)
是极大值; (2)如果在
x
0
附近的左侧
f
?
(x)?0
,右侧
f
?
(x)?0
,则
f(x
0
)
是 极小值.
90.复数的相等
a?bi?c?di?a?c,b?d
.(
a, b,c,d?R


复数
z?a?bi
的模(或绝对值)
|z|
=
|a?bi|
=
a
2
?b
2
.

91.复数的四则运算法则
(1)
(a?bi)?(c?di)?(a?c)?(b?d)i
;
(2)
(a?bi)?(c?di)?(a?c)?(b?d)i
;
(3)
(a?bi)(c?di)?(ac?bd)?(bc?ad)i
;
ac?bdbc?ad
?i(c?di?0)
. (4)
(a?bi)?(c ?di)?
2
c?d
2
c
2
?d
2
92. 实系数一元二次方程的解
实系数一元二次方程
ax
2
?bx?c?0

?b?b< br>2
?4ac
①若
??b?4ac?0
,则
x
1,2< br>?
;
2a
2


.
b
;
2a
③若
??b
2
?4ac?0
,它在实数集
R
内 没有实数根;在复数集
C
内有且仅有
②若
??b
2
?4ac ?0
,则
x
1
?x
2
??
?b??(b
2
?4ac)i
2
两个共轭复数根
x?(b?4ac?0)
.
2a

高中数学最好的辅导书江苏-2020高中数学教学


2016年高中数学竞赛题-高中数学高二月考分析


河南高中数学必修一课本答案-高中数学教资面试偶函数


高中数学必修5图片-高中数学最后一课是什么


高中数学题航海-高中数学 生活中具体运用


高中数学高考经验结论-2018职业高中数学高考云南


关于高中数学课堂教学的反思-高中数学立体几何小题目


某高中数学老师从一张-高中数学圆锥曲线教学视频关旭



本文更新与2020-09-21 01:12,由作者提供,不代表本网站立场,转载请注明出处:https://www.bjmy2z.cn/gaokao/406102.html

高级中学数学所有定律(非常有用)的相关文章

  • 爱心与尊严的高中作文题库

    1.关于爱心和尊严的作文八百字 我们不必怀疑富翁的捐助,毕竟普施爱心,善莫大焉,它是一 种美;我们也不必指责苛求受捐者的冷漠的拒绝,因为人总是有尊 严的,这也是一种美。

    小学作文
  • 爱心与尊严高中作文题库

    1.关于爱心和尊严的作文八百字 我们不必怀疑富翁的捐助,毕竟普施爱心,善莫大焉,它是一 种美;我们也不必指责苛求受捐者的冷漠的拒绝,因为人总是有尊 严的,这也是一种美。

    小学作文
  • 爱心与尊重的作文题库

    1.作文关爱与尊重议论文 如果说没有爱就没有教育的话,那么离开了尊重同样也谈不上教育。 因为每一位孩子都渴望得到他人的尊重,尤其是教师的尊重。可是在现实生活中,不时会有

    小学作文
  • 爱心责任100字作文题库

    1.有关爱心,坚持,责任的作文题库各三个 一则150字左右 (要事例) “胜不骄,败不馁”这句话我常听外婆说起。 这句名言的意思是说胜利了抄不骄傲,失败了不气馁。我真正体会到它

    小学作文
  • 爱心责任心的作文题库

    1.有关爱心,坚持,责任的作文题库各三个 一则150字左右 (要事例) “胜不骄,败不馁”这句话我常听外婆说起。 这句名言的意思是说胜利了抄不骄傲,失败了不气馁。我真正体会到它

    小学作文
  • 爱心责任作文题库

    1.有关爱心,坚持,责任的作文题库各三个 一则150字左右 (要事例) “胜不骄,败不馁”这句话我常听外婆说起。 这句名言的意思是说胜利了抄不骄傲,失败了不气馁。我真正体会到它

    小学作文