关键词不能为空

当前您在: 主页 > 数学 >

高中数学圆锥曲线与导数知识点总结

作者:高考题库网
来源:https://www.bjmy2z.cn/gaokao
2020-09-22 06:28
tags:高中数学圆锥曲线

高中数学必修5不等式试卷-高中数学竞赛初赛线

2020年9月22日发(作者:汤逸人)


. . .
圆锥曲线方程 知识要点
一、椭圆方程及其性质.
PF
1
?P F
2
?2a
?
F
1
F
2
方程为椭圆,1. 椭圆的第一定义:
PF
1
?PF
2
?2a
?F
1
F
2
无轨迹,
PF
1
?PF
2< br>?2a?F
1
F
2
以F
1
,F
2
为 端点的线段

椭圆的第二定义:
PF
?e

PF

P
到定点
F
的距离,
d
为点
P
到直线l
的距离
d
其中
F
为椭圆焦点,
l
为椭圆准线
椭圆方程< br>图形特征
x
2
y
2
?
2
?1(a?b?0)
a
2
b
B
2
y
M(x
0
,y0
)
y
2
x
2
?
2
?1(a?b?0 )
a
2
b
y
F
2
A
2
M
B
2
A
1
A
1
F
1
O
B
1
F
2
A
2
x
B
1
O
x
F
1
范围
|x|?a,|y|?b
(?a,0),(0,?b)
|x |?b,|y|?a
(?b,0),(0,?a)
(0,?c)
y??
a2
c




顶点
焦点
准线
对称性
长短轴
离心率
焦半径
(?c,0)
a
2
x? ?
c
关于x轴、y轴、原点对称关于x轴、y轴、原点对称
长轴长|AA|?2a,短 轴长|B
1
B
2
|?2b
12
长轴长|AA|?2a,短轴 长|B
1
B
2
|?2b
12
e?
c
(0? e?1)
a
e?
c
(0?e?1)
a
|MF
1|?a?ex
0
,|MF
2
|?a?ex
0
|MF1
|?a?ey
0
,|MF
2
|?a?ey
0
①椭圆的标准方程:
要详细讲).
x
2
a
2
?
y
2
b
2
?
x?acos
?
?

0 ?
?
?
)(现在了解,后面选修4-4
?1
的参数方程为
?
2
?
y?bsin
?
2b
2
②通径:垂直于对称轴 且过焦点的弦叫做通径,椭圆通径长为
a
22
b
③设椭圆:
x?
y
?1
上弦
AB
的中点为
M
(
x< br>0
,
y
0
),则斜率
k
AB
=
?< br>2
a
a
2
b
2
2
y
2
x< br>2
x
0
,对椭圆:
2
?
2
?1
, 则
ab
y
0
?
a
2
x
0
2
k
AB
=
?
2
.弦长
AB?
1?k
< br>a
by
0
⑸若P是椭圆:
x
2
a
2
?
y
2
b
2
?1
上的点.
F
1
, F
2
为焦点,若
?F
1
PF
2
?
?
,则
?PF
1
F
2
的面积为
b
2
tan
?
2
(可
..........


. . .
b
2
用余弦定理与
PF
1
?PF
2
? 2a
推导). 若是双曲线,则面积为.
tan
?
二、双曲线方程及其性质.
PF
1
?PF
2
?2a
?
F
1
F
2
方程为双曲线
1. 双曲线的第一定义:
PF
1
?PF
2
?2a
?
F< br>1
F
2
无轨迹
PF
1
?PF
2
?2 a?F
1
F
2
以F
1
,F
2
的一个端点的 一条射线

双曲线的第二定义:
PF
?e

PF

P
到定点
F
的距离,
d
为点
P
到直线l
的距离
d
其中
F
为双曲线的焦点,
l
为双曲线的准线
2.双曲线的简单几何性质:
标准方程


图 象

x
2
y
2
??1

a?0,b?0

a
2
b
2




y
2
x
2
??1

a?0,b?0

a
2
b
2
a,b,c
关系
范 围
顶 点
对 称 性
渐 近 线
离 心 率
焦 点
准 线
222
a
2
?b
2
?c
2

|x|?a,y?R

|y|?a,x?R

(?a,0)

(0,?a)

关于
x,y
轴成轴对称、关于原点成中心对称
ba
y??x

y??
x

ab
c
e?(?1)

a
F(?c,0)

F(0,?c)

a
2
x??

c
a
2
y??

c
等轴双曲线:
x-y=
a
(
a
≠0)
,它的渐近线方程为
y=±x
,离心 率
e=
2
.

注:①双曲线标准方程:
x
22
abab
?
x?asec
?
?
x?btan
?
参数方程:
?

?
. (现在了解,后面选修4-4要详细讲)
?
y?btan
?
?
y?asec
?
?
y
2
2
?1(a,b
?
0),
y
2
2
?
x
2
2
?1(
a
,
b?
0)
.
2b
2
②通径:垂直于对称轴且过焦点的弦叫做通径,椭圆通径长为
a
③焦半径:对于双曲线方程
x
2
a
2
?
y
2
b
2

“长加短减”原则:(与椭圆焦半径不同,椭圆焦半径要带符号计算,而双曲线不带符号)
y

?1

F
1
,F
2
分别为双曲线的左、 右焦点或上、下焦点)

y
F
1
M
MF
1
?ex
0
?a
MF
2
?ex
0
?a
构成满足
MF
1
?MF
2
?2a

M
?
F
1
??ex
0
?a
M
?
F
2< br>??ex
0
?a

F
1
M'
M
x< br>F
2
M'
F
2
x
..........


. . .



x
2
y
2
y
2
x
2
b
2
x
0
④设双曲线
2
?
2
?1
:上弦
AB
的中点为
M
(
x
0,
y
0
),则斜率
k
AB
=
2
,对双 曲线:
2
?
2
?1
, 则
abab
ay
0
?
a
2
x
0
2
k
AB
=
2
.弦长
AB?
1?k

a
by
0
x2
y
2
x
2
y
2
⑤常设与
2
?
2
?1
渐近线相同的双曲线方程为
2
?
2
??

ab
ab
常设渐近线方程为
mx?ny?0
的双 曲线方程为
mx?ny?
?

例如:若双曲线一条渐近线为
y?1
1
x
且过
p(3,?)
,求双曲线的方程?
22
F
1
2222

y
4
3
2
1
F
2
x
⑥从双曲线一个焦点到另一条渐近线的距离等于b
⑦直线与双曲线的位置关系:
将直线方程代入双曲线方程得到一元二次方程,讨论方程二次项系数和
?

三、抛物线方程及其性质.
5
3
3
抛物线的定义:
PF? d

PF
为点
P
到定点
F
的距离,
d为点
P
到直线
l
的距离
其中
F
为抛物线的焦点,
l
为抛物线的准线

p?0
,抛物线的标准方程、类型及其几何性质:

图形
y
2
?2px


y
2
??2px


x
2
?2py

y

x
2
??2py


y
y< br>y
x
O
x
O
x
O
x
O

焦点
准线
范围
对称轴
顶点
离心率
焦半径
PF?
p
?x
1

2
PF?
p
?x
1

2

F(?
p
,0)

2

F(0,
p
)

2
F(0,?
p
)

2

p
F(,0)

2
p

2
x?0,y?R

x??
p

2
x?0,y?R

x?
x

p

2
x?R,y?0

y??
p

2
x?R,y?0

y?
y

(0,0)
e?1

PF?
p
?y
1

2
PF?
p
?y
1

2
注:①抛物线通径为2p,这是过焦点的所有弦中最短的.
?
x?2pt
2
?
x?2pt
y?2px
(或
x?2py
)的参 数方程为
?
(或)(
t
为参数). (现在了解,
?
2
y?2pty?2pt
??
22
..........


. . .
后面选修4-4要详细讲)
4.抛物线的焦半径、焦点弦.(抛物线中常用结论和方法)
如图所示,抛物线方程为
y
=2
px
(
p
>0).
(1)焦半径
2


A
点在准线上的射影为
A< br>1
,设
A
(
x
1

y
1
) ,准线方程为
x
=-,由抛物线定义|
AF
|=|
AA
1< br>|=
x
1
2
+. 抛物线上任意一条弦的弦长为
1?k
2
p
p
2
?

a
(2)关于抛物线焦点弦的几个结论
2

AB
为过抛物 线
y
=2
px
(
p
>0)焦点的弦,
A
(
x
1

y
1
)、
B
(
x
2

y
2
),
AB
中点为
M(x
0
,y
0
)
,直线
AB
的倾斜角为
θ
,则①
x
1
x
2
=,
y
1
y
2
=-< br>p
2

x
1
?x
2
时,有
x
1
?x
2
?p?
4
p
2
p
2
p
2p
②|
AB
|=
2

x
1
+< br>x
2

p
=
2p?
2
(x
1
?x
2
)

k
AB
?

S
?A OB
sin
θ
y
0
k
③以
AB
为直径的圆 与准线相切;
④焦点
F

A

B
在准线上射影的张角为90°;
112
⑤+=.
|
FA
||
FB
|
p
2p

2
k
p
2
?

2sin
?

四、圆锥曲线的统一定义..
4. 圆锥曲线的统一定义:平面内到定点F和定直线
l
的距离之比为常数
e
的点的轨迹.

0?e?1
时,轨 迹为椭圆;当
e?1
时,轨迹为抛物线;当
e?1
时,轨迹为双曲线;当e?0
时,轨迹
c
为圆(
e?
,当
c?0,a?b时).
a
5. 圆锥曲线方程具有对称性. 例如:椭圆的标准方程对原点的一条直线与 双曲线的交点是关于原点
对称的.因为具有对称性,所以欲证AB=CD, 即证AD与BC的中点重合即可.
注:椭圆、双曲线、抛物线的标准方程与几何性质



定义
椭圆 双曲线 抛物线
1.到两定点F
1< br>,F
2
的距离之和为定1.到两定点F
1
,F
2
的距 离之差的
值2a(2a>|F
1
F
2
|)的点的轨迹 绝对值为定值2a(0<2a<|F
1
F
2
|)
的点的轨迹
2.与定点和直线的距离之比为定
值e的点的轨迹.(0 标准
方 方程
2.与定点和直线的距离之比为
定值e的点的轨迹.(e>1)
与定点和直线的距离
相等的点的轨迹.
y=2px
2
x
2
y
2
?
2
?1
(
a?b
>0)
2
ab
x
2
y
2
?
2
?1
(a >0,b>0)
2
ab
..........


. . .
参数
?
x?acos
?
?

方程
?
y?bsin
?
(参数
?
为离心角)

范围
中心
顶点
对称轴
焦点
焦距
离心率
准线
x=
?
渐近线
焦半径
通径
─a?x?a,─b?y?b
原点O(0,0)
(a,0), (─a,0), (0,b) ,
(0,─b)
?
x?asec
?
?
y?btan
?

?
(参数
?
为离心角)
|x| ? a,y?R
原点O(0,0)
(a,0), (─a,0)
?
x?2pt
2
?
y?2pt
(t为参
?
数)

x?0

(0,0)
x轴 x轴,y轴;长轴长2a,短轴长2b x轴,y轴;实轴长2a, 虚轴长
2b.
F
1
(c,0), F
2
(─c,0) F
1
(c,0), F
2
(─c,0)
p
F(,0)

2

e=1
2c (c=
a
2
?b
2
) 2c (c=
a
2
?b
2

e?
c
(0?e?1)

a
a

c
2
e?
c
(e?1)

a
a

c
2
x=
?
x??

p

2

y=±
b
x
a
r?a?ex

2b
2

a
r??(ex?a)

2b
2

a

r?x?
2p
p

2

导数的基础知识
一.导数的定义:
1.(1).函数y?f (x)在x?x
0
处的导数:f'(x
0
)?y'|
x?x
0
?lim
f(x
0
??x)?f(x
0
)
?x? 0
?x

f(x??x)?f(x)
(2).函数y?f(x)的导数: f'(x)?y'?lim
?x?0
?x
2.利用定义求导数的步骤:
①求 函数的增量:
?y?f(x
0
??x)?f(x
0
)
;②求 平均变化率:
③取极限得导数:
f'(x
0
)?lim
(下面内容必 记)
?y
f(x
0
??x)?f(x
0
)

?
?x?x
?y

?x?0
?x
二、导数的运算:
..........


. . .
(1)基本初等函数的导数公式及常用导数运算公式:

C'?0(C为常数);②
(x)'?nx
nn?1
m
n
?1
1
n< br>n
m
?n?n?1

(
n
)'?(x)'??nx< br>;
(x)'?(x)'?x

n
x
xxxx
mm

(sinx)'?cosx
; ④
(cosx)'??sinx

(e)'?e

(a)'?alna(a?0,且a?1)


(lnx)'?
11
; ⑧
(log
a
x)'?(a?0,且a?1)

xxlna
法则1:
[f(x)?g(x)]'?f'(x)?g'(x)
;(口诀:和差的导数等于导数 的和差).
法则2:
[f(x)?g(x)]'?f'(x)?g(x)?f(x)?g'( x)
(口诀:左导右不导+左不导右导)
法则3:
[
f(x)f'(x)? g(x)?f(x)?g'(x)
]'?(g(x)?0)

g(x)[g(x)]
2
(口诀:(上导下不导-上不导下导)
?
下平方)
(2)复合函数
y?f(g(x))
的导数求法:(理科必须掌握)
①换元 ,令
u?g(x)
,则
y?f(u)
②分别求导再相乘
y'?
?
g(x)
?
'?
?
f(u)
?
'
③回 代
u?g(x)

题型一、导数定义的理解
题型二:导数运算
1 、已知
f
?
x
?
?x
2
?2x?sin
?
,则
f
'
?
0
?
?

f
'
?
x
?
?
2、若
f
?
x
?
?e
x
sinx
,则
3.
f(x)
=
ax+3x+2

32
f
?
(?1)?4
,则
a
=( )
C.
16
3
D.
19

3
三.导数的物理意义
A.
10
3
B.
133
1.求瞬时速度:物体在时刻
t
0
时的瞬时速度
V
0
就是物体运动规律
S?f
?
t
?

t?t
0
时的导数
f
?
?
t
0
?
,即有
V
0
?f
?
?
t
0
?

''
2.
V?S(t)
表示即时速度。
a?V(t)
表示加速度。
四.导数的几何意义:
函数
f
?
x
?

x
0
处导数的几何意义,曲线
y?f
?
x
?
在点< br>Px
0
,f
?
x
0
?
处切线的斜率是
k?f
?
?
x
0
?

于是相应的切线方程是:< br>y?y
0
?f
?
?
x
0
??
x?x
0
?

题型三.用导数求曲线的切线
注意两种情况:
(1)曲线
y?f
?
x
?
在点
Px
0
,f
?
x
0
?
处切线:性质:
k
切线
?f?
?
x
0
?
。相应的切线方程是:
y?y
0< br>?f
?
?
x
0
??
x?x
0
?
(2)曲线
y?f
?
x
?
过点
P
?
x
0
,y
0
?
处切线(有可能点
P
不在曲 线上):先设切点,切点为
Q(a,b)
,
则斜率k=
f'(a)
,切点
Q(a,b)
在曲线
y? f
?
x
?
上,切点
Q(a,b)
在切线
y?y0
?f
?
?
a
??
x?x
0
?
上,
切点
Q(a,b)
坐标代入方程得关于a,b的方程组,解方程组来确定切点, 最后求斜率k=
f'(a)
,确定
切线方程。
??
??
例 题在曲线y=x
3
+3x
2
+6x-10的切线中,求斜率最小的切线方程;
解析:(1)
k?y'|
x?x
0
?3x
0
2?6 x
0
?6?3(x
0
?1)
2
?3
当x
0
=-1时,k有最小值3,
..........


. . .
此时P的坐标为(-1,-14)故所求切线的方程为3x-y-11=0
五.函数的单调性:设函数
y?f(x)
在某个区间内可导,
(1)
f'(x)?0?f(x)
该区间内为增函数;
(2)
f'(x)?0
?
f(x)
该区间内为减函数;
注 意:当
f'(x)
在某个区间内个别点处为零,在其余点处为正(或负)时,
f(x)
在这个区间上仍是
递增(或递减)的。
(3)
f(x)
在该区间内 单调递增
?
f'(x)?0
在该区间内恒成立;
(4)
f(x)< br>在该区间内单调递减
?
f'(x)?0
在该区间内恒成立;
题型一、利用导数证明(或判断)函数f(x)在某一区间上单调性:
步骤: (1)求导数
y
?
?f
?
(x)

(2)判断导函数
y
?
?f
?
(x)
在区间上的符号
(3)下结论

f'(x)?0?f(x)
该区间内为增函数; ②
f'(x)?0
?
f(x)
该区间内为减函数;
题型二、利用导数求单调区间
求函数
y?f(x)
单调区间的步骤为:
(1)分析
y?f(x)
的定义域; (2)求导数
y
?
?f
?
(x)

(3)解不等式
f
?
(x)?0
,解集在定义域内的部分为增区间
(4)解不等式
f
?
(x)?0
,解集在定义域内的部分为减区间
题型三、利用单调性求参数的取值(转化为恒成立问题)
思路一.(1)
f(x)< br>在该区间内单调递增
?
f'(x)?0
在该区间内恒成立;
(2)< br>f(x)
在该区间内单调递减
?
f'(x)?0
在该区间内恒成立;
思路二.先求出函数在定义域上的单调增或减区间,则已知中限定的单调增或减区间是定义域上的单调增或减区间的子集。
注意:若函数
f

x
)在
(a ,c)
上为减函数,在
(c,b)
上为增函数,则
x=c
两侧使函数
f
?

x
)变
号,即
x=c
为函数的一个 极值点,所以
f'(c)?0

例题.若函数
f(x)?
lnx,若
a?f(3),b?f(4),c?f(5)
则( )
x

A. a< b < c B. c < b < a C. c < a < b D. b < a < c
六、函数的极值与其导数的关系:
1.①极值的定义:设函数
f(x)
在点
x
0
附近有定义,且若对
x
0
附近的所有的点都有
f(x)?f(x
0
)
( 或
f(x)?f(x
0
)
,则称
f(x
0
)
为函数的一个极大(或小)值,
x
0
为极大(或极小)值点。
②可导数< br>f(x)
在极值点,但函数
f(x)
在某点
x
0
处的 导数为0,并
...
x
0
处的导数为0(即
f'(x
0)?0

3
不一定函数
f(x)
在该处取得极值(如
f (x)?x

x
0
?0
处的导数为0,但
f(x)
没有极值)。
③求极值的步骤:
第一步:求导数
f'(x)

第二步:求方程
f'(x)?0
的所有实根;
第三步:列表考察在每个根< br>x
0
附近,从左到右,导数
f'(x)
的符号如何变化,(用表格)

f'(x)
的符号左正右负,则
f(x
0
)
是极 大值;

f'(x)
的符号左负右正,则
f(x
0
)是极小值;

f'(x)
的符号不变,则
f(x
0
)
不是极值,
x
0
不是极值点。
2、函数的最值:
①最值 的定义:若函数在定义域D内存
x
0
,使得对任意的
x?D
,都有< br>f(x)?f(x
(或
0
)

f(x)?f(x
0< br>)
)则称
f(x
0
)
为函数的最大(小)值,记作
y
max
?f(x
0
)
(或
y
min
?f( x
0
)

②如果函数
y?f(x)
在闭区间
[a ,b]
上的图象是一条连续不间断的曲线,则该函数在闭区间
[a,b]

必 有最大值和最小值。
③求可导函数
f(x)
在闭区间
[a,b]
上的最值方法:
..........


. . .
第一步: 求导数
f'(x)

第二步:求方程
f'(x)?0
的所有实根
第三步:比较
f(x)
在方程
f'(x)?0
的根处的函数值与
f(a)

f(b )
的大小,最大的为最大值,最小
的为最小值。
注意:1、极值与最值关系:函数的 最值是比较整个定义域区间的函数值得出的,函数的最大值和最
小值点可以在极值点、不可导点、区间的 端点处取得。极值≠最值。函数
f(x)
在区间
[a,b]
上的最大
值为极大值和
f(a) 、f(b)
中最大的一个。最小值为极小值和
f(a) 、f(b)
中最小的一个。
2.函数在定义域上只有一个极值,则它对应一个最值(极大值对应最大值;极小值对应最小值)
1
的极大值为
?2
,极小值为2。
x
注意:函数
y?f(x)

x
0
处有极值
?
f'(x
0
)?0
。但是,
f'(x
0
)?0
不能得到当
x=x0
时,函数有极
3、注意:极大值不一定比极小值大。如
f(x)?x?
值;
题型一、求极值与最值
题型二、导数的极值与最值的应用
题型三、导数图象与原函数图象关系
导函数 原函数

f'(x)
的符号
f(x)
单调性

f'(x)
与x轴的交点且交点两侧异号
f(x)
极值

f'(x)
的增减性
f(x)
的每一点的切线斜率的变化趋势 (
f(x)
的图象的增减幅
度)

f'(x)
的增
f(x)
的每一点的切线斜率增大(
f(x)
的图象的变化幅度快)
f'(x)

f(x)
的每一点的切线斜率减小 (
f(x)
的图象的变化幅度慢)
典型例题
例1. 已知
f(x)=e-ax-
1
x
(1)求
f(x)
的单调增区间;(2)若
f(x)
在定义域R内单调递 增,求
a
的取值范围;
(3)是否存在
a
,使
f(x)< br>在(-∞,0]上单调递减,在[0,+∞)上单调递增?若存在,求出
a
的值;
若不存在,说明理由.
解:
f?(x)
=
e-a
x
x< br>(1)若
a≤0

f?(x)
=e-a≥0
恒成立,即f(x )在R上递增
x
x


a>0,e-a≥0
,∴
e ≥a,x≥lna.

f(x)
的单调递增区间为
(lna,+∞)
(2)∵
f(x)
在R内单调递增,∴
f?(x)
≥0在R上恒成立

e-a≥0
,即
a≤e
在R上恒成立
xx



2
3
a≤(e
x

min
,又∵
e
x
>0
,∴
a≤0
0
(3) 由题意知,
x=0为f(x)
的极小值点.∴
f?(0)
=0,即
e-a=0
, ∴
a=1
.
例2. 已知函数
f(x)=x+ax+bx+c
,曲 线
y=f(x)
在点
x=1
处的切线为
l:3x-y+1=0
,若
x=
时,
y=f(x)
有极值.
(1)求
a,b, c
的值;(2)求
y=f(x)
在[-3,1]上的最大值和最小值.
解 (1)由
f(x)=x+ax+bx+c
,得
f?(x)
=
3x+2 ax+b
322
32





x=1< br>时,切线
l
的斜率为3,可得
2a+b=0

2
2
?

x=
时,
y=f(x)
有极值, 则
f
?
?
??
=0,可得
4a+3b+4=0

3
?
3
?
由①②解得
a=2,b=-4
.由于切点 的横坐标为
x=
1,∴
f(1)=4
..........
1
+a+b+c=4
.∴
c=5


. . .
(2)由(1)可得
f(x)=x+2x- 4x+5
,∴
f?(x)
=3x+4x-

x
变化时,y

,y′
的取值及变化如下表:
x -3 (-3,-2)
+
单调递增

2
??
?2,
?

?
-2
?
3
?
2

3
322

f?(x)
=0,得
x=-2
,
x=
2< br>3

?
2
?
?
,1
?

?
3
?
1

4
y′
y 8
0
13
- 0
27
+

单调递增

95
.

27
单调递减
95


y=f(x)
在[-3,1]上的最大值为13,最小值为

例3.当
x?0
,证明不等式
证明:
f(x)?ln(x?1)?
x
?ln(1?x)?x
.
1?x
x
x

g(x)?ln(x?1)?x
,则
f
?
(x)?

2
1?x
(1?x)

x?0
时。
?f(x)
?
0,??
?
内是增函数,
?f(x)?f(0)
,即
ln(1?x)?

g
?
(x)?
x
?0
1?x
?x
,当
x?0
时,
g
?
(x)?0< br>,
?g(x)

?
0,??
?
内是减函数,
?g(x)?g(0)
,即
1?x
x
?ln(1?x)?x
成立.
ln(1?x)?x?0
,因此,当
x?0
时,不等式
1?x
x
点评:由题意构造出两个函数
f(x)?ln(x?1)?

g(x)? ln(x?1)?x
.
1?x
利用导数求函数的单调区间或求最值,从而导出是解决本题的关键.
32
例4 设函数
f(x)?2x?3ax?3bx?8c

x?1

x?2
时取得极值.
(Ⅰ)求
a、b
的值;
2
f(x)?c
x?[0,3]
(Ⅱ)若对于任意的,都有成立,求c的取值 范围.
2
?
f(x)?6x?6ax?3b
, 解答过程:(Ⅰ)
??
因为函数
f(x)

x?1

x?2
取得极值 ,则有
f(1)?0

f(2)?0

?
6?6a?3b ?0,
?
24?12a?3b?0


?
解得
a? ?3

b?4

32
f(x)?2x?9x?12x?8c
, (Ⅱ)由(Ⅰ)可知,
f?
(x)?6x
2
?18x?12?6(x?1)(x?2)
'

f(x)?0
,有
6(x?1)(x?2)?0
,解得x
1
?1
,
x
2
?2

..........


. . .
f(1)?5?8c

f(0)?8c

f(2)?4?8c< br> ,
f(3)?9?8c


x?[0,3]
时,
f(x)
max
?9?8c

因为对于任意的
x?
?
0,3
?
2
2
2
f(x)?c
,有恒成立,所以
f(x)
max
?c
,即
9?8c?c

?1)
解得
c??1

c?9
,因此
c
的取值范围为
(??,





例5 设函数
f(x)?x(e?1)?ax

(Ⅰ)若
a?









x2
(9,??)

1
,求
f(x)
的单调区间 ;(Ⅱ)若当
x?0
时,
f(x)?0
,求
a
的取值范围
2
例6已知函数
f(x)?x?ln(x?a)
的最小值为0,其中
a?0

(1)求
a
的值;(2)若对任意的
x?[0,??),有
f(x)?kx
成立,求实数
k
的最小值











x
例7设函数
f
(
x
)= e-
ax
-2
(Ⅰ)求
f
(
x
)的单调区间;(Ⅱ)若
a
=1,
k
为整数,且当
x
>0时,(
x
-
k
)< br> f?
(
x
)+
x
+1>0,求
k
的最大值

欢迎您的光临,Word文档下载后可修改编辑.双击可删除页眉页脚.谢谢!让我们共同学 习共同进步!学无止境.更上一层楼。
2
..........


. . .


..........

高中数学好物理差的原因-高中数学参数取值例题


绥化高中数学家教-2014年全国高中数学优质课


高中数学并集基础题-高中数学选择题出错


高中数学学考学案-高中数学2020高考会考的内容


高中数学选修一抛物线-高中数学核心素养是什么


高中数学圆的标准方程教学设计-高中数学中cn是什么


公式定理高中数学-高中数学不等式的教材分析


高中数学上选修几-高中数学圆曲线函数的知识点



本文更新与2020-09-22 06:28,由作者提供,不代表本网站立场,转载请注明出处:https://www.bjmy2z.cn/gaokao/407934.html

高中数学圆锥曲线与导数知识点总结的相关文章

  • 爱心与尊严的高中作文题库

    1.关于爱心和尊严的作文八百字 我们不必怀疑富翁的捐助,毕竟普施爱心,善莫大焉,它是一 种美;我们也不必指责苛求受捐者的冷漠的拒绝,因为人总是有尊 严的,这也是一种美。

    小学作文
  • 爱心与尊严高中作文题库

    1.关于爱心和尊严的作文八百字 我们不必怀疑富翁的捐助,毕竟普施爱心,善莫大焉,它是一 种美;我们也不必指责苛求受捐者的冷漠的拒绝,因为人总是有尊 严的,这也是一种美。

    小学作文
  • 爱心与尊重的作文题库

    1.作文关爱与尊重议论文 如果说没有爱就没有教育的话,那么离开了尊重同样也谈不上教育。 因为每一位孩子都渴望得到他人的尊重,尤其是教师的尊重。可是在现实生活中,不时会有

    小学作文
  • 爱心责任100字作文题库

    1.有关爱心,坚持,责任的作文题库各三个 一则150字左右 (要事例) “胜不骄,败不馁”这句话我常听外婆说起。 这句名言的意思是说胜利了抄不骄傲,失败了不气馁。我真正体会到它

    小学作文
  • 爱心责任心的作文题库

    1.有关爱心,坚持,责任的作文题库各三个 一则150字左右 (要事例) “胜不骄,败不馁”这句话我常听外婆说起。 这句名言的意思是说胜利了抄不骄傲,失败了不气馁。我真正体会到它

    小学作文
  • 爱心责任作文题库

    1.有关爱心,坚持,责任的作文题库各三个 一则150字左右 (要事例) “胜不骄,败不馁”这句话我常听外婆说起。 这句名言的意思是说胜利了抄不骄傲,失败了不气馁。我真正体会到它

    小学作文