关键词不能为空

当前您在: 主页 > 数学 >

(完整版)函数的最值知识点总结与经典题型归纳

作者:高考题库网
来源:https://www.bjmy2z.cn/gaokao
2020-09-22 09:15
tags:高中数学的知识点

高中数学基底怎么求-高中数学双变量解题技巧

2020年9月22日发(作者:莫君陈)


函数的最值

知识梳理

1. 函数最大值
一般地,设函数
y?f(x)
的定义域为
I
. 如果存在实数
M
满足:
①对于任意
x
都有
f(x)?M
.
②存在
x0
?I
,使得
f(x
0
)?M
.
那么,称
M
是函数
y?f(x)
的最大值.
2. 函数最小值
一般地,设函数
y?f(x)
的定义域为
I
. 如果存在实数
M
满足:
①对于任意
x
都有
f(x)?M
.
②存在
x0
?I
,使得
f(x
0
)?M
.
那么,称
M
是函数
y?f(x)
的最小值.
注意:对于一个函数来说,不一定有最值,若有最值,则最值一定是值域中的一个元素.
3. 函数的最值与其单调性的关系.
(1)若函数在闭区间
[a,b]
上是减函数,则< br>f(x)

[a,b]
上的最大值为 f(a),最小值为 f(b); (2)若函数在闭区间
[a,b]
上是增函数,则
f(x)

[ a,b]
上的最大值为 f(b),最小值为 f(a).
4.二次函数在闭区间上的最值.
探求二次函数在给定区间上的最值问题,一般要先作出
y?f(x)
的草图,然后根据 图象的增减
性进行研究.特别要注意二次函数的对称轴与所给区间的位置关系,它是求解二次函数在已知 区间
上最值问题的主要依据,并且最大(小)值不一定在顶点处取得.
例题精讲

【例1】求函数
f(x)?3x
在[0,3]上的最大值和最小值.
解:因为函数
f(x)?3x
在[0,3]上单调递增
所以
f(x)?3x
在[0,3]上的最大值为
f(3)?3?3?9

f(x)?3x
在[0,3]上的最小值为
f(0)?3?0?0

2
【例2】求函数
y?
在区间[2,6]上的最大值和最小值.
x ?1
22
解:函数
y?
的图象如下图所示,所以
y?
在区间 [2,6]上单调递减;
x?1x?1
2
2
所以
y?
在区间[2,6]上的最大值为
?2

x?1
2?1
22
?
.

最小值为
6?15

1


题型一 利用图象求最值
【例3】求下列函数的最大值和最小值.
53
(1)
y?3?2x?x
2
,x?[?,]

22
(2)
y?|x?1|?|x?2|

解:(1)二次函数
y?3?2x?x
2
的对称轴为 x=-1.
画出函数的图象,由下图,可知:
39

x??1
时,
y
max
?4
;当
x?
时,
y
min
??< br>.
24
539
所以函数
y?3?2x?x
2
,x? [?,]
最大值为4,最小值为
?
.
224
?
3,
?
(2)
y?|x?1|?|x?2|?
?
2x?1,
?
?3,
?
x?2
?1?x?2

x??1
作出函数图象,如下图,可知:
y?[?3,3]

所以函数的最大值为 3, 最小值为-3.

题型二 利用函数单调性求最值
9
【例4】求函数
f(x)?x?

x?[1,3]
上的最 大值和最小值.
x
分析:先判断函数的单调性,再求最值.
解:因为
1?x
1
?x
2
?3

所以f(x
1
)?f(x
2
)?x
1
?
9(x2
?x
1
)
9999
?(x
2
?)
? x
1
?x
2
?(?)
?x
1
?x
2
?

x
1
x
2
x
1
x
2
x
1
x
2
9
)

x
1
x
2
?(x
1
?x
2
)(1?
因为
1?x
1
?x
2
?3
所以
x
1
?x
2
? 0

x
1
x
2
?9

所以
1?< br>9
?0
,所以
f(x
1
)?f(x
2
)?0
,
f(x
1
)?f(x
2
)

x
1
x
2
所以
f(x)?x?
9
在区间
[1,3]< br>上单调递减;
x
9189
?
,最大值为
f(1)?1??10
.
331
所以求函数
f(x)

x?[1,3]
上的最小值为
f(3)?3?
题型三 函数最值的应用
2


【例5 】已知函数
f(x)?
x
2
?2x?a
x

x?[ 1,??)

(1)当
a?
1
2
时,求函数
f(x)
的最小值.
(2)若对任意的
x?[1,??)

f(x)?0
恒成立,试求< br>a
的取值范围.
1
x
2
?2x?
1
解:( 1)当
a?
时,
f(x)
2
2
?
x


1?x
1
?x
2


f(x
1
)?f(x
2
)?(x
1
?
1
2x
?2)?(x
1
2
??2)

1
2x
2
?(x
x
2
?x
1
1
?x
2< br>)?
x
?(x?x
2x
1
x
2
?1
2
12
)

1
x
2
2x
1
x
2
因 为
x
1
?x
2
?0
,所以
2x
1
x
2
?1

2x
1
x
2
?1?0

所以
f(x
1
)?f(x
2
)?0
f(x
1
)?f(x
2
)

所以
f(x)
在区间
[1,??)
上单调递增
所以的最小值为
f(1)?1?
17
2
?2?
2
.
(2)
f(x)?0

x?[1,??)
恒成立?
x
2
?2x?a?0

x?[1,??)
恒成立?
a??x
2
?2x

x?[1,??)
恒成立.

u??x
2
?2x??(x?1)
2
?1
,其在
[1,??)
上是减函数,
∴当
x?1
时,
u
max
??3
. 因此
a??3
.
故实数
a
的取值范围是
(?3,??)



课堂练习
? 仔细读题,一定要选择最佳答案哟!
1.函数f(x)=
?
?
2x+6 x∈[1,2]
?
x+7 x∈[-1,1]

,则f(x)的最大值、最小值分别为(
A.10,6 B.10,8 C.8,6 D.以上都不对
2.已知f(x)在R上是增函数,对实数a、b若a+b>0,则有( )
A.f(a)+f(b)>f(-a)+f(-b)
B.f(a)+f(b)<f(-a)+f(-b)
3

)


C.f(a)-f(b)>f(-a)-f(-b)
D.f(a)-f(b)<f(-a)+f(-b)
3. 若f(x)=-x
2
+2ax与g(x)=
A.(-1,0)∪(0,1)
a
在区间[1,2]上都是减函数,则a的取值范围是( )
x+1
D.(0,1] B.(-1,0)∪(0,1] C.(0,1)
4.函数y=|x-3|-|x+1|有( )
A.最大值4,最小值0 B.最大值0,最小值-4
C.最大值4,最小值-4 D.最大值、最小值都不存在
5.函数y=-x
2
-10x+11在区间[-1,2 ]上的最小值是________.
6.如果函数f(x)=-x
2
+2x的定义域 为[m,n],值域为[-3,1],则|m-n|的最小值为________.





7. 已知函数
f(x)?x
2
?2x?3
,若
x?[t,t?2]
时,求函数
f(x)
的最值.










8. 求函数
f(x)?








9. 已知函数 f(x)=x
2
+2ax+2,x∈[-5,5].
4
x
在区间
[2,5]
上的最大值和最小值.
x?1


(1)当 a=-1 时,求 f(x)的最大值和最小值;
(2)求使函数 y=f(x)在区间[-5,5]上是单调函数的 a 的取值范围.

5

高中数学辅导线下辅导-头条号延龙高中数学考点21


下载高中数学论文免费下载-高中数学操作秀视频


高中数学概率事件可能性-高中数学竞赛几何难吗


高中数学集合要点-高中数学错简单题


现高中数学的教学目标-高中数学教师资格证攻略


高中数学必修二直线与方程教学设计-昆一中高中数学顾老师


2018理科高中数学公式大全-2019年天津高中数学会考答案


高中数学平面向量专题莲山课件-成都高中数学试讲教案



本文更新与2020-09-22 09:15,由作者提供,不代表本网站立场,转载请注明出处:https://www.bjmy2z.cn/gaokao/408146.html

(完整版)函数的最值知识点总结与经典题型归纳的相关文章

  • 余华爱情经典语录,余华爱情句子

    余华的经典语录——余华《第七天》40、我不怕死,一点都不怕,只怕再也不能看见你——余华《第七天》4可是我再也没遇到一个像福贵这样令我难忘的人了,对自己的经历如此清楚,

    语文
  • 心情低落的图片压抑,心情低落的图片发朋友圈

    心情压抑的图片(心太累没人理解的说说带图片)1、有时候很想找个人倾诉一下,却又不知从何说起,最终是什么也不说,只想快点睡过去,告诉自己,明天就好了。有时候,突然会觉得

    语文
  • 经典古训100句图片大全,古训名言警句

    古代经典励志名言100句译:好的药物味苦但对治病有利;忠言劝诫的话听起来不顺耳却对人的行为有利。3良言一句三冬暖,恶语伤人六月寒。喷泉的高度不会超过它的源头;一个人的事

    语文
  • 关于青春奋斗的名人名言鲁迅,关于青年奋斗的名言鲁迅

    鲁迅名言名句大全励志1、世上本没有路,走的人多了自然便成了路。下面是我整理的鲁迅先生的名言名句大全,希望对你有所帮助!当生存时,还是将遭践踏,将遭删刈,直至于死亡而

    语文
  • 三国群英单机版手游礼包码,三国群英手机单机版攻略

    三国群英传7五神兽洞有什么用那是多一个武将技能。青龙飞升召唤出东方的守护兽,神兽之一的青龙。玄武怒流召唤出北方的守护兽,神兽之一的玄武。白虎傲啸召唤出西方的守护兽,

    语文
  • 不收费的情感挽回专家电话,情感挽回免费咨询

    免费的情感挽回机构(揭秘情感挽回机构骗局)1、牛牛(化名)向上海市公安局金山分局报案,称自己为了挽回与女友的感情,被一家名为“实花教育咨询”的情感咨询机构诈骗4万余元。

    语文