关键词不能为空

当前您在: 主页 > 数学 >

函数的单调性知识点总结与题型归纳

作者:高考题库网
来源:https://www.bjmy2z.cn/gaokao
2020-09-22 09:16
tags:高中数学的知识点

高中数学天天练凤凰出版社答案-高中数学选择题蒙提

2020年9月22日发(作者:程秉文)


函数的单调性

知识梳理

1. 单调性概念
一般地,设函数
f(x)
的定义域为
I


(1) 如果对于定义域
I
内的某个区间
D
上的任意两个自变量的值
x
1
,x
2
,当
x
1
?x
2
时,都有f(x
1
)?f(x
2
)
,那么就说函数
f(x)在区间
D
上是增函数;
(2)如果对于定义域
I
内的某个区间
D
上的任意两个自变量的值
x
1
,x
2
,当
x
1
?x
2
时,都有
f(x
1
)?f(x
2
)
,那么就说函数
f(x)
在区间
D
上是减函数.
2. 单调性的判定方法
(1)图像法:从左往右,图像上升即为增函数,从左往右,图像下降即为减函数。
(2)定义法步骤;
①取值:设
x
1
,x
2
是给 定区间内的两个任意值,且
x
1
?x
2
(或
x
1
?x
2
);
②作差:作差
f(x< br>1
)?f(x
2
)
,并将此差式变形(注意变形到能判断整个差
式符号为止);
③定号:判断
f(x
1
)?f(x
2
)
的正负(要注意说理的充分性),必要时要讨论;
④下结论:根据定义得出其单调性.
(3)复合函数的单调性:
当内外层函数的单调性相同时则复合函数为增函数;当内外层函数 的单调性相反
时则复合函数为减函数。也就是说:同增异减(类似于“负负得正”)
3. 单调区间的定义
如果函数
y?f(x)
,在区间
D
上是增函数或减 函数,那么就说函数在这个区间上
具有单调性,区间
D
叫做
y?f(x)的单调区间.
例题精讲

【例1】下图为某地区24小时内的气温变化图.
(1)从左向右看,图形是如何变化的?
(2)在哪些区间上升哪些区间下降?
解:(1)从左向右看,图形先下降,后上升,再下降;
(2)在区间
[0 ,4]

[14,24]
下降,在区间
[4,14]
下降。
【例2】画出下列函数的图象,观察其变化规律:
(1)
f
(
x
)=
x
;
①从左至右图象上升还是下降
②在区间(-∞,+∞)上,随着
x
的增 大,
f
(
x
)的值随着怎么变化?


(2)
f
(
x
)=
x

①在区间(-∞,0)上,随着
x
的增大,
f
(
x
)的值随 着怎么变化?
②在区间[0 ,+∞)上,随着
x
的增大,
f
(
x
)的值随着怎么变化?
解:(1)①从左至右图象是上升的;
②在区间(-∞,+∞)上,随着
x
的增大,
f
(
x
)的值随着增大.
(2)①在 区间(-∞,0)上,随着
x
的增大,
f
(
x
)的值随着减 小;
②在区间[0 ,+∞)上,随着
x
的增大,
f
(
x
)的值随着增大. < br>【例3】函数
y?f(x)
在定义域的某区间
D
上存在
x1
,x
2
,满足
x
1
?x
2

f(x
1
)?f(x
2
)
,那么函数
y?f(x)
在该区间上一定是增函数吗?
2
解:不一定,例如下图:
【例4】下图是定义在 闭区间
[?5,5]
上的函数
y?f(x)
的图象,根据图象说出函数
的单调区间,以及在每一单调区间上,它是增函数还是减函数.
解:函数
y?f(x)的单调区间有
[?5,?2),[?2,1),[1,3),[3,5)

其中 在区间
[?5,?2),[1,3)
上是减函数,在区间
[?2,1),[3,5)< br>上是增函数.
【例5】证明函数
f(x)?3x?2

R
上是增函数.
证明:设
x
1
,x
2

R
上的任意两个实数,且< br>x
1
?x
2
(取值)

f( x
1
)?f(x
2
)?(3x
1
?2)?(3x
2
?2)
(作差)

x
1
?x
2
,得
x
1
?x
2
?0

于是
f(x
1
)?f(x
2
)?0
(定号)
所以
f(x
1
)?f(x
2
)

所以,函数
f(x)?3x?2

R
上是增函数。 (下结论)
课堂练习
? 仔细读题,一定要选择最佳答案哟!
1.
< br>若函数
f(x)
在区间
(a,b)
上是增函数,在区间
(c, d)
上也是增函数,则函数
f(x)
在区

(a,b)U(c,d)
上 ( )
A.必是增函数 B.必是减函数 C.先增后减 D.无法确定单调性
2. 在区间
(??,0)
上为增函数的是( )


A.
y?1
B.
y?
x
?2

1?x
C.
y??x
2
?2x?1
D.
y?1?x
2

3.函数,在上是( )
A.增函数 B.减函数 C.先增后减 D.无单调性
4. 如果函数f(x)在[a,b]上是增函数,对于任意的x
1
,x
2
∈[a, b](x
1
≠x
2
),下列结论不
正确的是( )


fx
1
-fx
2
A.>0 B.(x
1
-x
2
) [f(x
1
)-f(x
2
)]>0
x
1
-x2
x
2
-x
1
C.f(a)1
)2
)0
fx
2
-fx
1
1
y?
5.函数
x?1
的减区间是 .
6.证明:函数
f(x)?
1

(0,??)
上是减函数。
x
?
3
?
7.已知f(x)在(0,+∞)上是减函数,判断f(a
2
-a+1)与f
?
4
?
的大小关系.
??8.若函数f(x)=4x
2
-kx-8在[5,8]上是单调函数,求k的取值范围.
9.已知函数
f(x)?
(l)求的值.
(2)利用单调性定义证明函数在区间的单调性.
ax
,若
x?1
.

高中数学必修3的编程-高中数学2-1电子书


广东省高中数学联赛-高中数学必修二测试题单元


高中数学提高教辅-高中数学 渗透职业


高二第一学期高中数学培训心得-高中数学教师职业简介


高中数学拾贝-高中数学a版 必修2


高中数学几何题-高中数学考试反思400


高中数学必修二直线方程题-高中数学必修三检测题答案


高中数学拓展的书-高中数学课堂 活跃



本文更新与2020-09-22 09:16,由作者提供,不代表本网站立场,转载请注明出处:https://www.bjmy2z.cn/gaokao/408148.html

函数的单调性知识点总结与题型归纳的相关文章

  • 余华爱情经典语录,余华爱情句子

    余华的经典语录——余华《第七天》40、我不怕死,一点都不怕,只怕再也不能看见你——余华《第七天》4可是我再也没遇到一个像福贵这样令我难忘的人了,对自己的经历如此清楚,

    语文
  • 心情低落的图片压抑,心情低落的图片发朋友圈

    心情压抑的图片(心太累没人理解的说说带图片)1、有时候很想找个人倾诉一下,却又不知从何说起,最终是什么也不说,只想快点睡过去,告诉自己,明天就好了。有时候,突然会觉得

    语文
  • 经典古训100句图片大全,古训名言警句

    古代经典励志名言100句译:好的药物味苦但对治病有利;忠言劝诫的话听起来不顺耳却对人的行为有利。3良言一句三冬暖,恶语伤人六月寒。喷泉的高度不会超过它的源头;一个人的事

    语文
  • 关于青春奋斗的名人名言鲁迅,关于青年奋斗的名言鲁迅

    鲁迅名言名句大全励志1、世上本没有路,走的人多了自然便成了路。下面是我整理的鲁迅先生的名言名句大全,希望对你有所帮助!当生存时,还是将遭践踏,将遭删刈,直至于死亡而

    语文
  • 三国群英单机版手游礼包码,三国群英手机单机版攻略

    三国群英传7五神兽洞有什么用那是多一个武将技能。青龙飞升召唤出东方的守护兽,神兽之一的青龙。玄武怒流召唤出北方的守护兽,神兽之一的玄武。白虎傲啸召唤出西方的守护兽,

    语文
  • 不收费的情感挽回专家电话,情感挽回免费咨询

    免费的情感挽回机构(揭秘情感挽回机构骗局)1、牛牛(化名)向上海市公安局金山分局报案,称自己为了挽回与女友的感情,被一家名为“实花教育咨询”的情感咨询机构诈骗4万余元。

    语文