关键词不能为空

当前您在: 主页 > 高中公式大全 >

散兵坑 公式等积变形(附解答)

作者:高考题库网
来源:https://www.bjmy2z.cn/gaokao
2020-10-05 17:45
tags:等积公式

不限学历可以考的证书-联想笔记本性价比

2020年10月5日发(作者:程通)

三角形的等积变形
我们已经掌握了三角形面积的计算公式:
三角形面积=底×高÷2
这个公式告诉我们:三角形面积的大小,取决于三角形底和高的乘积.如
果三角形的底不变,高越大(小),三角形面积也就越大(小).同样若三角形的
高不变,底越 大(小),三角形面积也就越大(小).这说明;当三角形的面积变
化时,它的底和高之中至少有一个要 发生变化.但是,当三角形的底和高同时
发生变化时,三角形的面积不一定变化.比如当高变为原来
角形的面积变化与否取决于它的高和底的乘积,而不仅仅取决于高或底的变
化.同时也告 诉我们:一个三角形在面积不改变的情况下,可以有无数多个不
同的形状.本讲即研究面积相同的三角形 的各种形状以及它们之间的关系.
为便于实际问题的研究,我们还会常常用到以下结论:
①等底等高的两个三角形面积相等.
②底在同一条直线上并且相等,该底所对的角的 顶点是同一个点或在与底
平行的直线上,这两个三角形面积相等.
③若两个三角形的高( 或底)相等,其中一个三角形的底(或高)是另一个三
角形的几倍,那么这个三角形的面积也是另一个三 角形面积的几倍.

它们所对的顶点同为A点,(也就是它们的高相等)那么这两个三角形的面积相
等.

同时也可以知道△ABC的面积是△ABD或△AEC面积的3倍.

例如 在图中,△ABC与△DBC的底相同(它们的底都是BC),它所对的两个顶点
A、D在与底BC平行 的直线上,(也就是它们的高相等),那么这两个三角形的
面积相等.


例如图中,△ABC与△DBC的底相同(它们的底都是BC),△ABC的高是△DBC
高的2倍(D 是AB中点,AB=2BD,有AH=2DE),则△ABC的面积是△DBC面积的
2倍.

上述结论,是我们研究三角形等积变形的重要依据.

例1、用三种不同的方法,把任意一个三角形分成四个面积相等的三角形.


方法2:如右图,先将BC二等分,分点D、连结AD,得到两个等积三角
形,即△ABD 与△ADC等积.然后取AC、AB中点E、F,并连结DE、DF.以而
得到四个等积三角形,即△A DF、△BDF、△DCE、△ADE等积.




例2、 用三种不同的方法将任意一个三角形分成三个小三角形,使它们的面积
比为及1∶3∶4.
方法 1:如下左图,将BC边八等分,取1∶3∶4的分点D、E,连结AD、
AE,从而得到△AB D、△ADE、△AEC的面积比为1∶3∶4.


DE,从而得到三个三角形:△ADE、△BDE、△ACD.其面积比为1∶3∶4.


当然本题还有许多种其他分法,同学们可以自己寻找解决.

例3、 如图,在梯形ABCD中,AC与BD是对角线,其交点O,求证:△AOB与
△COD面积相等.











证明:∵△ABC与△DBC等底等高,
∴S
△ABC
=S
△DBC

又∵ S
△AOB
=S
△ABC
—S
△BOC

S
△DOC
=S
△DBC
—S
△BOC

∴S
△AOB
=S
△COD


例4、如图,把四边形ABCD改成一个等积的三角形.

分析 本题有两点要 求,一是把四边形改成一个三角形,二是改成的三角
形与原四边形面积相等.我们可以利用三角形等积变 形的方法,如右图,

把顶点A移到CB的延长线上的A′处,△A′BD与△ABD面 积相等,从而
△A′DC面积与原四边形ABCD面积也相等.这样就把四边形ABCD等积地改成了三角形△A′DC.问题是A′位置的选择是依据三角形等积变形原则.过A
作一条和DB平行的 直线与CB的延长线交于A′点.
解:①连结BD;
②过A作BD的平行线,与CB的延长线交于A′.
③连结A′D,则△A′CD与四边形ABCD等积.

例5、如图,已知在△ABC中,B E=3AE,CD=2AD.若△ADE的面积为1平方厘
米.求三角形ABC的面积.













解法1:连结BD,在△ABD中
∵ BE=3AE,
∴ S
△ABD
=4S
△ADE
=4(平方厘米).
在△ABC中,∵CD=2AD,
∴ S
△ABC
=3S
△ABD
=3×4=12(平方厘米).


解法2:连结CE,如右图所示,在△ACE中,











∵ CD=2AD,
∴ S
△ACE
=3S
△ADE
=3(平方厘米).
在△ABC中,∵BE=3AE
∴ S
△ABC
=4S
△ACE

=4×3=12(平方厘米).

例6、如下图,在△ABC中,BD=2AD,AG=2CG,BE=EF=FC=


解:连结BG,在△ABG中,

∴ S
△ADG
+S
△BDE
+S
△CFG







例7、如右图,ABCD为平行四边形,E F平行AC,如果△ADE的面积为4平方
厘米.求三角形CDF的面积.

解 :连结AF、CE,∴S
△ADE
=S
△ACE
;S
△CDF
=S
△ACF
;又∵AC与EF平行,∴S

ACE
=S
△ACF

∴ S
△ADE
=S
△CDF
=4(平方厘米).

例8、如 右图,四边形ABCD面积为1,且AB=AE,BC=BF,DC=CG,AD=DH.求
四边形EF GH的面积.

解:连结BD,将四边形ABCD分成两个部分S
1
与 S
2
.连结FD,有S
△FBD
=S
△DBC
=S
1
所以S
△CGF
=S
△DFC
=2S
1

同理 S
△AEH
=2S
2

因此S
△ AEH
+S
△CGF
=2S
1
+2S
2
=2(S< br>1
+S
2
)=2×1=2.
同理,连结AC之后,可求出S△HGD
+S
△EBF
=2所以四边形EFGH的面积为
2+2+1=5 (平方单位).

例9、如右图,在平行四边形ABCD中,直线CF交AB于E,交DA延 长线于F,
若S△ADE=1,求△BEF的面积.









解:连结AC,∵ABCD,∴S
△ADE
=S
△ACE

又∵ADBC,∴S
△ACF
=S
△ABF

而 S
△ACF
=S
△ACE
+S
△AEF
∶S
△ABF
=S
△BEF
+S
△AEF

∴ S
△ACE
=S
△BEF
∴S
△BEF
=S
△ADE
=1.

酒店管理就业前景-唯物辩证法的核心是


哈尔滨理工大学排名-化学反应与能量


学基础化妆学费多少钱-在家如何挣钱


社会主义的本质是-淘宝单怎么刷才能赚钱


当兵需要什么学历-图片带字


化学物质分类-回本


植物体细胞杂交过程-开心的句子


不定积分公式大全-造句什么像什么



本文更新与2020-10-05 17:45,由作者提供,不代表本网站立场,转载请注明出处:https://www.bjmy2z.cn/gaokao/409909.html

等积变形(附解答)的相关文章

  • 余华爱情经典语录,余华爱情句子

    余华的经典语录——余华《第七天》40、我不怕死,一点都不怕,只怕再也不能看见你——余华《第七天》4可是我再也没遇到一个像福贵这样令我难忘的人了,对自己的经历如此清楚,

    语文
  • 心情低落的图片压抑,心情低落的图片发朋友圈

    心情压抑的图片(心太累没人理解的说说带图片)1、有时候很想找个人倾诉一下,却又不知从何说起,最终是什么也不说,只想快点睡过去,告诉自己,明天就好了。有时候,突然会觉得

    语文
  • 经典古训100句图片大全,古训名言警句

    古代经典励志名言100句译:好的药物味苦但对治病有利;忠言劝诫的话听起来不顺耳却对人的行为有利。3良言一句三冬暖,恶语伤人六月寒。喷泉的高度不会超过它的源头;一个人的事

    语文
  • 关于青春奋斗的名人名言鲁迅,关于青年奋斗的名言鲁迅

    鲁迅名言名句大全励志1、世上本没有路,走的人多了自然便成了路。下面是我整理的鲁迅先生的名言名句大全,希望对你有所帮助!当生存时,还是将遭践踏,将遭删刈,直至于死亡而

    语文
  • 三国群英单机版手游礼包码,三国群英手机单机版攻略

    三国群英传7五神兽洞有什么用那是多一个武将技能。青龙飞升召唤出东方的守护兽,神兽之一的青龙。玄武怒流召唤出北方的守护兽,神兽之一的玄武。白虎傲啸召唤出西方的守护兽,

    语文
  • 不收费的情感挽回专家电话,情感挽回免费咨询

    免费的情感挽回机构(揭秘情感挽回机构骗局)1、牛牛(化名)向上海市公安局金山分局报案,称自己为了挽回与女友的感情,被一家名为“实花教育咨询”的情感咨询机构诈骗4万余元。

    语文