关键词不能为空

当前您在: 主页 > 数学 >

高中数学基础知识手册(理科)

作者:高考题库网
来源:https://www.bjmy2z.cn/gaokao
2020-10-06 02:47
tags:高中数学手册

高中数学球类专题-高中数学知识点重难点典型例题

2020年10月6日发(作者:骆玉笙)


第一章 集合与简易逻辑
一、集合知识
1. 基本概念:集合、元素;有限集、无限集;空集、全集;符号的使用.
2. 集合的表示法:列举法、描述法、图形表示法.
3. 集合元素的特征:确定性、互异性、无序性.
4. 集合运算:交、并、补.
5. 主要性质: ①
A?B?AB?A?AB?B?CB?U

U
A
②C
U
(A∩B)= (C
U
A)∪(C
U
B) C
U
(A∪B)= (C
U
A)∩(C
U
B)
6. 设集合A中有n个元素,则①A的 子集个数为
2
n
;②A的真子集个数为
2
n
?1


③A的非空子集个数为
2?1
;④A的非空真子集个数为
2?2
.
7. 空集是一切集合的子集,是一切非空集合的真子集
nn
二.含绝对值不等式、一元二次不等式的解法
1.整式不等式的解法:① 一元一次不等式
ax?b的解集

分a?0或a?0)

②一元二次 不等式
ax?bx?c?0(a?0)的解集
:(大于取两边,小于取中间)
③一元 高次不等式:穿根法(零点分段法)(记忆:x的系数全化为正,从右到左、从上到
下,奇(次幂)穿, 偶(次幂)穿而不过)
2.分式不等式的解法
2
f(x)f(x)
f(x)g(x)?0
(移项通分,不能去分母) ?0?f(x)g(x)?0;?0?
?
?
g(x)?0
?
g( x)g(x)
3.含绝对值不等式的解法
ax?b?c
,与
ax?b?c(c?0)
型的不等式的解法.
(将x的系数化为正,大于取两边,小于取中间)
三.简易逻辑
1.构成复合命题的形式:p或q(记作“p∨q” )(一真则真);
p且q(记作“p∧q” )(一假则假);非p(记作“┑q” )(真假相反) 。
2.四种命题的形式:原命题:若P则q; 逆命题:若q则p;
否命题:若┑P则┑q;逆否命题:若┑q则┑p。
原命题
(原命题
?
逆否命题)
若p则q
3、充要条件:

否< br>互







逆命题
若q则p


逆否命题
若┐q则┐p


否命题< br>若┐p则┐q


4、反证法:从命题结论的反面出发(假设) ,引出(与已知、公理、定理…)矛盾,从而否定
假设证明原命题成立,这样的证明方法叫做反证法。
第二章 函 数
一、函数与映射
1.
映射的性质:从A到B的映射:①A中不能有剩余元素,B中可以有剩余元素,
②允许多对一,不允许一对多。③若A有3个元素,B有4个元素,则有
4
3
个映射。
2.
函数的三要素:定义域,值域,对应法则。
二、函数的性质
(1)奇偶性(在整个定义域内考虑定义域是否关于原点对称)
奇函数:
f(?x)??f(x)
、图象关于原点对称,在两个对称区间具有相同的单调性;
偶函数:
f(?x)?f(x)
、图象关于
y
轴对称,在两个对称区 间具有相反的单调性;
常用的结论:若
f(x)
是奇函数,且
0?定义域< br>,则
f(0)?0或f(?1)??f(1)


f(x)
是偶函数,则
f(?1)?f(1)
;反之不然。
常见的奇函数:①
y?lg(x?x
2
?1)

y?lg
1?x
x?x

y?e?e

1 ?x
e
x
?1
1?x
2
11

y??x

y?
x

y?

x?2?2
e?1
2
2?1
非奇非偶函数:f(x)=
1?cosx?sinx
.
1?cosx?sinx
(2)单调性(在定义域的某一个子集内考虑)
①定义法 步骤:a.设
x
1
,x
2
?A且x
1
? x
2
;b.作差
f(x
1
)?f(x
2
)
;c.判断正负号。
②掌握函数
y?


ax?bb?aca
?a?(b?ac?0);y?x?(a?0)
的图象和性质;
x?cx?cx
ax?bb?aca
y??a?
y?x?(a?0

x?cx?c

x
(b – ac≠0)

















Y=a
y

y
o
X=-c
o
当b-ac>0时:

(??,?c)和(c,??)
上单调递减;
当b-ac<0时:

(??,?c)和(c,??)
上单调递增。
X

(??,?a]和[a,??)
上单调递增;

[?a,0)和(0,a]
上单
调递增。
x
③一些有用的结论: .在公共定义域内
增函数
f(x)?
增函数
g(x)
是增函数; 减函数
f(x)?
减函数
g(x)
是减函数;
增函数
f(x)?
减函数
g(x)
是增函数; 减函数
f(x)?
增函数
g(x)
是减函数。
(3)函数的周期性:
f(x?T)?f(x)

①y=f(x)对x∈R时,f(x +a)=f(x-a) (a>0)恒成立,则y=f(x)的周期为2a;
②若y=f(x)是偶函数,其图像又关于直线x=a对称,则f(x)的周期为2︱a︱;
③若y=f(x)奇函数,其图像又关于直线x=a对称,则f(x) 的周期为4︱a︱;
④y=f(x)对x∈R时,f(x+a)=-f(x)(或f(x+a)=
?
1
,则y=f(x) 的周期为2
a

f(x)

三、函数的图象
1、基本函数的图象:(1)一次函数、(2)二次函数、(3)反比例函数、
(4)指数函数、(5)对数函数、(6)三角函数。
2、图象的变换:(1)平移变换 (先表示成y=f(x)

左加右减,上加下减。)
(2)对称变换:函数
y?f(x)
与函数
y?f(?x)
的图象关于
y
轴对称;
函数
y?f(x)
与函数
y??f(x)
的图象关于
x
轴 对称;
函数
y?f(x)
与函数
y??f(?x)
的图象关于坐标 原点对称;
②如果对于函数y=f(x)都有f(x+a)=f(a-x),那么y=f(x) 的图象关于直线
x?a
对称。
如果对于函数y=f(x)都有f(x+a)=f(b-x),那么y=f(x) 的图象关于直线
x?
a?b
对称。
2



y?f(x)
?
y?f(x)
(把
x
轴下方的图象翻折到上方)

y?f(x)
?
y?f(x)
(擦掉
y
轴左侧的图象,把右侧的图象对称到左侧)

y?f
?1
(x)

y?f(x)
关于直线
y?x
对称。性质:
f(a)?b?f
?1
(b)?a

(3)伸缩变换: ②
y?f (x)
?
y?f(ax),(a?0)
系数变小伸长;系数变大缩短。
四、函数的反函数
求反函数的步骤:①求原函数
y?f(x)

(x?A)
的值域B ②把
y?f(x)
看作方程,解

x??(y)
;x,y互换的y?f(x)
的反函数为
y?f
?1
(x)

(x?B )

五、求函数的值域的常用解题方法:
① 配方法。如函数
y?x?x?1
的值域,特点是可化为二次函数的形式;
x
②换元法:如y=
1?2x?x
③单调性:如函数
y?2?log
2
x
x∈[1,2]
42
x
2
?2x?3
④判别式法(△法)如函数y=
2

x?2x?3
⑤利用函数的图像:如函数y=|x+3|+|x-2| ⑥利用反函数:如函数y=
⑦利用基本不等式:如函数y=
2?sinx

2?sinx
2
⑧.方程k=f(x)有解
?
k∈D(D为f(x)的值域);
x
2
?3
⑨.a≥f(x)
?
a≥[f(x)]
max,
; a≤f(x)
?
a≤[f(x)]
min
;
六、指数、对数的性质:
?
1
1
n
n
m
n
a?a(a?0),a?(a?0 )
数运算:a?1(a?0),a?(a?0)
1.

,
p
m
n
a
a
0?p
mm
log
a
(M·N )?log
a
M?log
a
N
?
M?0,N?0
?
2.
对数运算:
n
M1
n
n
logb?log< br>a
b

log
a
?log
a
M? log
a
N,log
a
M?log
a
M

a
m
m
Nn

对数恒等式:a
log
a
x
?x(x?0)

log
a
a
k
?k(k?R)


对数换底公式:log
a
b?
log
cb
,

log
c
a
3.
log
a
b
的符号由口诀“同正异负”记忆; 如:
log
2
3?0.....log
1
2
5?0


七、复合函数单调性:
y?f
?
g
?
x
?
?
f(x)与g(x)

同增同减为增,一增一减为减

第三章 数 列
一.数列及数列的通项公式
1.数列的前n项和:
S
n
?a
1
?a
2
?a
3
???a
n
2.数列的通项公式:
a
n
?
?
?
a< br>1
?S
1
(n?1)

S?S(n?2)
n?1?
n
3.递推公式:已知数列
?
a
n
?
的第一 项(或前几项),且任一项
a
n
与它的前一项
a
n?1
(或 前几项)
间的关系可以用一个公式来表示,那么这个公式叫做数列的递推公式。
二.等差数列
1.定义: 即:
a
n
?a
n?1
?d(n?2,a
n
?0,q?0)?{a
n
}成等差数列

2.判定方法:①定义法:
a
n?1
?a
n
?d
(常数); ②等差中项法:
2a
n?1
?a
n
?a
n?2

3.通 项公式:若首项是
a
1
,公差是
d
,则通项为
a
n
?a
1
?(n?1)d
。是关于n的一次函数。
4.等差数列的前n项和: ①
S
n
?
n(a
1
? a
n
)
n(n?1)
d

S
n< br>?na
1
?
2
2
对于公式②整理后是关于n的没有常数项的二 次函数(充要条件)。
5.等差中项:如果
a

A

b< br>成等差数列,则有
A?
a?b

2A?a?b

2
6.等差数列的性质: ①.等差数列任意两项间的关系:如果
a
n
是等差数列的第
n
项,
a
m
是等差数列的第
m
项,且
m?n
,公差为d
,则有
a
n
?a
m
?(n?m)d

②.若
n?m?p?q
,则
a
n
?a
m
?ap
?a
q

*
③.
S
n
是其前n项 的和,
k?N
,那么
S
k

S
2k
?S< br>k

S
3k
?S
2k
成等差数列。
④.< br>S

是奇数项的和,
S

是偶数项的和,
S
n
是前n项的和,
结论:(i)
若有偶数项2n项,则S

?a
1
?a
2n?1
a?a
2n
?n?n?a
n

S

?
2
?n?n?a
n?1

22
a
1
?a
2n?1
?(n?1)?a
n?1
?(n?1)

2
所以有
S

?S

?
?
a
2
?a
1
?
?
?
a
4
?a
3
?
???
?
a
2n
? a
2n?1
?
?nd

(ii)
若有奇数项2n?1项,则S

?

S< br>偶
?
?
S

?S

?a
n?1?(2n?1)?(2n?1)a

?
a
2
?a
2n< br>
?n?a
n?1
?n
?
S

?S
?a
n?1
?a

2

?
S< br>奇
S

S

?S

S
n
n ?1

???2n?1

nS

?S

S

?S

⑤.若等差数列
?
a
n
?< br>的前
2n?1
项的和为
S
2n?1
,等差数列
?b
n
?
的前
2n?1
项的和为
T
2n?1



a
n
S
2n?1
aSaS
?
。(比如:
9
?
17

10
?
19< br>)
b
n
T
2n?1
b
9
T
17< br>b
10
T
19
三.等比数列
a
1.定义:
n
?q(n?2,a
n
?0,q?0)?{a
n
}成等比数列

a
n?1
2.等比中项:如果
a

G

b
成等比数列,那么
3.等比数列的判定方法:
⑴定义法:对于数列
?< br>a
n
?
,若
a
n?1
?q(q?0)
,则数 列
?
a
n
?
是等比数列。
a
n
Gb< br>2
?
,即
G
aG
?ab

2
⑵等 比中项:对于数列
?
a
n
?
,若
a
n
a< br>n?2
?a
n?1
(a
n
?0)
,则数列
?
a
n
?
是等比数列。
n?1
4.等比数列的通项公式:< br>a
n
?a
1
q

na
1
(q?1 )
?
?
n
5.等比数列的前n项和:
S
n
?
?
a
1
(1?q)
a
1
?a
n
q

?(q?1)
?
1?q
?
1?q
6.等比数列的性质:
⑴.等比数列任意两项间的关系:如果
a
n
是等比数列的第
n
项,
a
m
是等差数列的第
m
项,
⑵.对于等比数列?
a
n
?
,若
n?m?p?q
,则
a
n
?a
m
?a
p
?a
q

⑶.若数列?
a
n
?
是等比数列,
S
n
是其前n项的和,
k?N
*
,那么
S
k

S
2k
? S
k

S
3k
?S
2k

成等比数列。
四.数列的通项求法: (1)等差,等比数列的通项公式;
(2)
已知S
n
求a
n
,则有a
n
?
?

m?n,公比为
q
,则有
a
n
?a
m
q
n? m

a
1
,(n?1)
a
(3)累乘法:
形如
n
?g(n)

a
n?1
?< br>S
n
?S
n?1
,(n?2)
?

(5)构造法:
形如a
n?1
?pa
n
?q.
(4)累 加法:
形如a
n
?a
n?1
?f(n),(n?2)
五.数 列的求和方法:(1)公式法:即等差与等比数列的公式;
(2)裂项相消法: 如:
a
n?1
?
111
??

n(n?1)nn?1
?
c
n
?
为等比数列
为等差数列,
(3)错位相减法:
a
n
?b
n
?cn
,
?
b
n
?
n
⑷倒序相加法:如an
=
nC
100
; ⑸分组求和法:
a
n
?b
n
?c
n
如:a
n
=2n+3
n

六.其他结论:
1、
?
a
n
?
成等差数列?a< br>n
?An?B?S
n
?An?Bn

2


(1)
?
a
n
?
成等差数列?b
(2)
?a
n
?
成等比数列?
??
成等比数列

an
k
a
n
a
n
?0
nb
??
成等比数列

?
a
?
成等比数列
?
?
lo ga
n
?
成等差数列

2、在等差数列
?
a
n
?
中,(1)当
a
1
?0
,d<0时,满足
?
?
a
m
?0
的项数m使得
S
m
取最大值.
a?0
?
m?1
?
a
m
?0
(2)当
a
1
?0
,d>0时, 满足
?
的项数m使得
S
m
取最小值。
a?0
?
m?1
3、三个数成等差的设法:a-d,a,a+d;四个数成等差的设法:a-3d,a- d,,a+d,a+3d
4、三个数成等比的设法:aq,a,aq;
第四章 三角函数
一、基本概念和知识要点
1.三角函数定义:sin
?
=
xr
yxyr
,cos
?
=,tan
?
=,cot
?
=,sec
?
=,csc
?
=。

yy
rx
rx
22
2.同角三角函数的关系中,平方关系是:
sin
?
?cos
?
?1

cos
?
?
倒数关系是 :
tan
?
?cot
?
?1
,商数关系是:
tan
?
?
2
1

2
1?tan
?
s in
?
cos
?

cot
?
?

cos
?
sin
?
3. 诱导公式可用十个字概括为:奇变偶不变, 符号看象限(
如:
sin(
?
的奇、偶数倍)。
2
3?
15
?
?
?
)?
?cos
?
cot(?
?
)
=
tan
?

tan(3?
?
?
)?
?tan
?

22
4、
三角函数的图象:

y=sinx

y=cosx

y?tanx
(略)
(其中A?0,
?
?0)
5. 函数
y?Asin(
?x?
?
)?B
的最大值是
A?B
,最小值为
B?A,周期



T?
2
?
?
,频率是
f?
?
,相位是
?
x?
?
,初相是
?
;其 图象的对称轴是直线
2
?
?
x?
?
?k
?
?
?
2

(k?Z)
,对称中心为(
x
0
,0),其中横坐标满足
?
x
0
?
?
?k
?
(k?Z)

6. 三角函数的单调区间:
y?sinx
的递增区间是?
2k
?
?
?
?
?
2
,2k
?
?
?
?
(k?Z)
递减区间是
?
2
?< br>?
3
?
??
2k
?
?,2k
?
?< br>2k
?
?
(k?Z)
,递减区间
(k?Z)

y?cosx
的递增区间是
?
2k
?
?
?
??
22
??
2k
?
?
?
?
(k?Z )

y?tanx
的递增区间是
?
k
?
?

?
2k
?

7.y=Asin(ωx+ψ)五点法作图:依次取ω x+ψ=
0,
?
?
?
2
,k
?
?
?
?
?

2
?
?
2
,
?
,
3
?
,2
?
.

2
8.三角变换: (A>0,ω>0) ①先平移变换,再伸缩变化
②先伸缩变化,再平移变化。(注:平移多少个单位,一定要把解析式中x的系数提出)
如将 函数
y?2sin(3x?
?
3
)?3
的图象按
a
平移后得函数
y?2sin3x
的图象,则
a

9.两角和与差公式:
sin(
?
?
?
)?sin
?
cos
?
?cos
?
sin
?

< br>cos(
?
?
?
)?cos
?
cos
??sin
?
sin
?

tan(
??
?
)?
tan
?
?tan
?

1< br>?
tan
?
?tan
?
10、二倍角公式是:sin2
?
=
2sin
?
?cos
?

cos2
?
=
cos
?
?sin
?
=
2cos
?< br>?1
=
1?2sin
?

2222
ta n
2
?
=
2tan
?
?
1?cos
?sin
?
。 tan==。
2
sin
?
1?c os
?
2
1?tan
?
2
11、升幂公式是:
1? cos
?
?2cos
12、降幂公式是:
sin
?
?
2
?
2

1?cos
?
?2sin
2
?
2

1?cos2
?
1?cos2
?
2

cos
?
?

2
2


2tan13、万能公式:sin
?
=
?
2
cos
?=
1?tan
2
1?tan
2
?
?
2
tan
?
=
2
2tan
?
2

1?tan
2
?
2
1?tan
2
?
2
14、特殊角的 三角函数值:(自己总结)
15、正弦定理:(其中R表示三角形的外接圆半径):
abc
???2R

sinAsinBsinC
a
2
?c
2
?b
216、余弦定理第一形式:
b
=
a?c?2accosB
;第二形式:c osB=
2ac
2
22
17、△ABC的面积用S表示,外接圆半径用R表 示,内切圆半径用r表示,则:
1
1
a?h
a
??
; ②
S?bcsinA??
;④
S?2R
2
sinAsinBsinC

2
2
1
abc

S?
; ⑤
S?pr

p
为△ABC的周长)
2
4R

S?
18、在△ABC 中,①
b?a?cosC ?c?cosA
,…②
A?B?sinA?sinB
(充要条件)

sin(A+B)=sinC

sin
cos(A+B) ?-cosCtan(A+B) ?-tanC

A?BCA?BCA?BC
?cos

cos?sin

tan?cot

222222

tanA?tanB?tanC?tanA?tanB?tanC

19.解斜三角形的常规思维方法是:
(1)已知两角和一边,由正弦定理求; (2)已知两边和夹角,应用余弦定理求c边;
(3)已知两边和其中一边的对角(如a、b、A),应用正弦定理求B,
(4)已知三边a、b、c,应用余弦定理求A、B,再由A+B+C = π,求角C.
20.弧度制:
|
?
|?
l11
2
,弧长公式:
l?r
?
; 扇形面积公式:
s?lr?
?
r

r
22
b
)这一公式应用广泛。
a
21.几个重要的三角变换:sin α cos α可凑倍角公式; 1±cos α可用升幂公式;
asin
?
?bcos
?
?a
2
?b
2
sin
?
?
?
?
?
(其中
tan
?
?
22.函数y = sin (ωx+φ):奇函数
?< br>?
?k
?
?
k?Z
?
.偶函数
?
?
?k
?
?
函数y =cos (ωx+φ):奇函数
?
?< br>?k
?
?
?
2
?
k?Z
?

?
2
?
k?Z
?
.偶函数
?
?
?k?
?
k?Z
?

第五章 平面向量


1.向量的概念
(1)定义:既有大小又有方向的量叫做向量。向量的大小也就是向量的长度,叫做向量的模。
(2)几种向量:零向量,单位向量,共线向量(平行向量),相等向量,相反向量。
向量的 坐标表示:
AB
=(x
2
-x
1
,y
2
- y
1
),其中A(x
1
,y
1
),B(x
2
,y
2
)
(3)向量的运算 ①向量的加法与减法:定义与法则(如图5-1):

②坐标运算:
a+b=(x< br>1
+x
2
,y
1
+y
2
),a-b=(x< br>1
-x
2
,y
1
-y
2
)。其中a=(x< br>1
,y
1
),b=(x
2
,y
2
)。
2.平面向量的数量积定义与法则(如图5-3):
①向量的夹角: (
0?
?
?180
) ②两个向量的数量积:
a
·
b
=︱
a
︱·︱
b
︱cos
?

其中︱
b
︱cos
?
称为向量
b

a
方 向上的投影.
③向量的数量积的性质: 若
a
=(
x
1
,y
1
),
b
=(
x
2
,y
2


a
·
b
=
x
1
x
2
?y
1
y
2

a

b
?a
·
b
=0
?
x
1
x
2
?y
1
y
2
?0

00
?
x
1
x
2
?y
1
y
2
?0
?
x
1< br>x
2
?y
1
y
2
?0
a

b
夹角为锐角
?
?
;
a

b
夹角为钝角< br>?
?

(x,y)?
?
(x,y)(x,y)?
?< br>(x,y)
2222
?
12
?
12
3.定理与公式
① 共线定理:向量
b
与非零向量
a
共线的充要条件是有且只有一个 实数λ,使得
b

a


?
??
结论:
a

b
(
b
?< br>0
)的充要条件是
x
1
y
2
-x
2
y
1
=0

②平面向量基本定理:如果
e
1
e
2
是同一平面内的两个不共线向量,那么对于这一平面内的
任一向量
a
,有且只有一对实数λ
1

2
使
a

1
e
1

2
e
2

③两向量垂直的充要条件(i)

a

b
?
a
·
b
=0 (ii)

a

b
?
x
1
·x
2
+y
1
·y
2
=0
④三点共线定理: 平面上三点A、B、C共线的充要条件是:存在实数α、β,
使
OA

O B

OC
,其中α+β=1,O为平面内异于A、B、C的任一点。
⑤两 点间的距离公式:|
P
1
P
2
|=
(x
2
?x
1
)?(y
2
?y
1
)
,其中[P
1
(x
1
,y
1
),P
2
(x
2
, y
2
)]
22


?
x'?x?h,
⑥点的平 移公式:若点P
0
(x,y)按向量
a
=(h,k)平移至P(x′,y′) ,则
?

y'?y?k.
?
⑦定比分点公式:若
P

1
,P,P
2
的坐标分别为(
x
1
,y
1
),(
x,y
),(
x
2
,y
2
1
P
=
?
PP
2

P
x
1< br>?x
2
?x
3
x
1
?x
2
x
1
?λx
2
?
?
?
x?
x?
x?
?
?
?
??
?
3
2
1?λ
则:
?
中点坐标公式:
?
重心公式:
?

y?yy?y? y
y?λy
223
2
?
y?
1
?
y?1
?
y?
1
?
?
?
2
?
3< br>?
1?λ
?
第六章 不等式
一、不等式的性质
(3)a>b?a+c>b+c(加法单调性)(5)a+b>c?a>c-b(移项法则)

(6)
a>b
?
?
?a+c>b+d(同向不等式可加)
c >d
?
a>b>0
?
(8)
?
?ac>bd(同向正数不等 式可乘)
c>d>0
?

11
(12)a>b>0?<(正数不等式两边取倒数)
ab

二、常用的基本不等式和重要的不等式:
?”
(1)
a,b?R,则a?b ?2ab
,当且仅当
a?b时取“
号;
?
?”
(2)a,b?R
,则
a?b?2ab
;当且仅当
a?b时取“
号;
22
注:
a?b
??算术平均数,ab??几何平均数

2
a
2
?b
2
a?b
2
2ab
?()
;(3)
?
22
a?b
三、最值定理(均值不等式)
a?ba< br>2
?b
2
ab??(a,b?R
?
)

2 2
a?mab?mb
+
(4)若a、b、m∈R,且a?

?

b?mba?ma
(1)如积
xy?P(定值),则和x?y有最小值2P

2
(2)如和
x?y?S(定值),则积

xy有最大值()
S
2
即;积定和最小,和定积最大。注;运用最值定理求最值的三要素:“一正、二定、三相 等”


四、恒成立问题
如:关于x的不等式
(a?2)x?2(a? 2)x?4?0

x?R
恒成立,则
a
的取值范围 。
五、不等式的同解性
(1)当a>1时,a
f(x)
>a
g(x )
与f(x)>g(x)同解,当0<a<1时,a
f(x)
>a
g(x)< br>与f(x)<g(x)同解.
2
?
g(x)
?
f(x)(2)当a
?
1时,log
a
f(x)
?
log
a
g(x)与
?
同解.

g(x)
?
0
?
?
f(x)<g(x)
?
当0<a<1时,log
a
f( x)>log
a
g(x)与
?
f(x)>0同解.
?
?
g(x)>0

第七章 直线和圆的方程
一、
解析几何中的基本公式
1、 两点间距离:若
A(x
1
,y
1
),B(x
2
,y
2
)
,则
AB?(x
2
?x
1
)
2
?(y
2< br>?y
1
)
2

C
1
?C
2
A?B
22
2、 平行线间距离: 若
l
1
:Ax?By?C
1
?0,l
2
:Ax?By ?C
2
?0

d?

3、 点到直 线的距离:若
P(x
?
,y
?
),l:Ax?By?C?0
, 则
d?
Ax
?
?By
?
?C
A?B
2 2

4、 直线与圆锥曲线相交的弦长公式:
?
若A
(x
1
,y
1
),B(x
2
,y
2
)
则:
AB?
?
y?kx?m
2
消y:
ax?bx?c?0
,注意
??0.

?
F(x,y )?0
(1?k
2
)(x
2
?x
1
)
2< br>?x?x
?
?
1?k
?
?
?
?
2< br>12
2
?4x
1
x
2
?

?
5、 若直线l
1
的斜率为k
1
,直线l
2的斜率为k
2
,k
1
,k
2
都存在且k
1k
2
?
-1
则l
1
到l
2
的角为< br>?,??(0,?)

tan??
k
2
?k
1

1?k
1
k
2
若l
1
与l
2
的夹角为
?
,则
tan??
k
1
?k
2
?

??(0,]

1?k
1
k
2
2
?

2
注意: (1)l
1
?
l
2
时,夹角、到角=
(2)当l
1
与l
2
中有一条斜率不存在时,画图求到角或夹角。


6、直线的倾斜角的取值范围:
?
?
?
0,
?
)

① 每一条直线都有倾斜角
?
,但不一定有斜率。
(斜率k=tanα,
?
?90?
时,无斜率)
② 若直线存在斜率k,而倾斜角为
?
,则k=tan
?
。(如图)
二. 线方程的五种形式
①斜截式:y=kx+b 斜率不存在的直线不能用斜截式表示
②点斜式:
y?y
?
?k(x?x
?
)
斜率存在时为
y?y
?
?k(x?x
?
)

③两点式:
y?y
1
x?x
1
?
(x
1
≠x
2

y
2
?y
1
x
2
?x
1
xy
??1
其中l交x轴于
(a,0 )
,交y轴于
(0,b)
,a
≠0,b≠0,
ab
xy
当直线l坐标轴上的截距相等时应分:(1)截距=
a?0

??1
即x+y=
a

aa
④截距式:
(2)截距=0 设y=kx
⑤一般式:
Ax?By?C?0
(其中A、B不同时为零)
三、简单的线性规划 线性规划问题一般用图解法.
四、.圆的方程 (1)标准方程:
(x?a)?(y?b)?r

(a,b)??圆心,r??半径

(2)一般方程:
x?y?Dx?Ey ?F?0
,(
D?E?4F?0)

2222
222
DE
(?,?)??圆心,

r?
22
D
2
?E
2
?4F

2
(3)参数方程 ①以(a,b)为圆心,以r为半径的圆的参数方程为
?x?rcos
?
?
x?a?rcos
?
(x?a)
2< br>?(y?b)
2
?r
2
?

?

x
2
?y
2
?r
2
?
?
(
?
为参数)
?
y?b?rsin
?
?
y?r sin
?
2、直线
Ax?By?C?0
与圆
(x?a)?(y?b) ?r
的位置关系有三种:
222
d?r?相离???0

d?r? 相切???0

d?r?相交???0

3.

x
2
?y
2
?D
1
x?E
1
y?F
1
?0
与圆
x
2
?y
2
?D
2
x?E
2
y?F
2
?0
的公共弦所在 < br>直线方程
(D
1
?D
2
)x?(E
1
?E< br>2
)?(F
1
?F
2
)?0


第八章 圆锥曲线定义、标准方程及性质
一、椭圆
1.定义Ⅰ: 若F
1
,F
2
是两定点,P为动点,且
PF
1
?P F
2
?2a?F
1
F
2

a
为常数)则P
点的轨迹是椭圆。
定义Ⅱ:若F
1
为定 点,l为定直线,动点P到F
1
的距离与到定直线l的距离之比为常数e
(0x
2
y
2
2.标准方程:
2< br>?
2
?1

(a?b?0)

ab
长轴长=
2a
,短轴长=2b 焦距:2c
a
2
准线方程:
x??
焦半径:
c
a
2
a
2
)?a?ex
1

PF
2
?e(?x
1
)?a?ex
1
( 左加右减) 设P(x
1,y
1
),
PF
1
?e(x
1
?
c< br>c
?
x?acos?
2b
2
注意:(1)通径为 (2)椭圆上的点可设为
?

a
?
y?bsin?
(3)请自己补充当焦点在y轴上时,其相应的性质。
二、双曲线
(1)Ⅰ.若F
1
,F
2
是两定点,
PF
1
?PF
2
?2a?F
1
F
2
a
为常数),则动点P的轨迹是双曲线。
Ⅱ.若动点P到定点F与定直线l的距离之比是常数e(e>1),则动点P的轨迹是双曲线。
x
2
y
2
x
2
y
2
b
(2)若 双曲线方程为
2
?
2
?1
?
渐近线方程:
2
?
2
?0?
y??x

ab
ab
a
< br>x
2
y
2
xy
b
若渐近线方程为
y??x< br>?
??0
?
双曲线可设为
2
?
2
??

ab
ab
a
x
2
y
2
x
2< br>y
2
若双曲线与
2
?
2
?1
有公共渐近 线,可设为
2
?
2
??

ab
ab
??0
,焦点在x轴上,
??0
,焦点在y轴上)
(3)特别地当a?b时?
离心率
e?2
?
两渐近线互相垂直,分别为y=
?x

22
此时双曲线为等轴双曲线,可设为
x?y??


三、抛物线
1.定义:到定点F的距离与到定直线l的距离之比是常数e(e=1)。
2.性质:
y?2px,(p?0),p??焦参数
(焦点到准线的距离);
2
pp
,0)

通径
AB?2p
; 准线:
x??


22
ppp

焦半径 :
CF?x
?
?,
过焦点弦长
CD?x
1
??x< br>2
??x
1
?x
2
?p

222
焦点:
(
3.焦点弦长公式:
设过抛物线y
2
=2px(p> O)的焦点F的弦为AB,A(x
1
,y
1
),B(x
2
, y
2
),
直线AB的倾斜角为α,则有①|AB|=x
1
+x
2
+p
y
2
③抛物线
y?2px
上的动点可设为P
(
?
,y
?
)

P(2pt,2pt)

2p
2
2


曲线和方程
1.交点:求两曲线的交点,就是解这两条曲线方程组成的方程组.
2.过两曲线f(x,y )=0和f(x,y)=0的交点的曲线系方程是f(x,y)+λf(x,y)=0(λ∈R).
1212
第七章 直线、平面、简单几何体
一、知识结构


二、经纬度及球面距离:
⑴根据经线和纬线的意义可知,某地的经度是一个二面角的度数,
某地的纬度是一个线面角的度数。
⑵求球面上两点A、B间的距离求法:①计算线段AB的长,
②计算球心角∠AOB的弧度数;③用弧长公式计算劣弧AB的长;
三、三角形的心1、内心:内切圆的圆心,角平分线的交点
2、外心:外接圆的圆心,垂直平分线的交点3、重心:中线的交点4、垂心:高的交点
四、其他结论:
1、 三余弦公式:(如图)其中
?
为斜线与平面内直线所成的角,
?
为线面角,(竖直平面内)
?
为射影与平面内直线所成的角,
(水平平面内) 有
cos
?
?cos
?
?cos
?

2 、正(长)方体的外接球的直径等于其体对角线长;即:
2R?a
2
?b
2< br>?c
2

五、高考立体几何解答题空间向量解法
1.建立空间直角坐 标系(1分):
x
轴是横轴(对应为横坐标),
y
轴是纵轴(对应为纵坐标) ,
z
轴是竖轴(对应为竖坐标).(解题时先找出三条两两垂直的直线)
例如:点A 的坐标为(
x
1
,y
1
,z
1
),
点B的 坐标为(x
2
,y
2
,z
2
)
,(1分)则 AB?(x
2
?x
1
,y
2
?y
1
, z
2
?z
1
)
, (终点坐标减去起点坐标)
线段AB的 中点坐标(
x
1
?x
2
y?y
2
z?z
2

1

1

222
2.令
a?(a1
,a
2
,a
3
)
,
b?(b
1,b
2
,b
3
)
,则
a?b?a
1
b
1
?a
2
b
2
?a
3
b
3

夹角公式
cos?a,b??
a
1
b
1
? a
2
b
2
?a
3
b
3
a?b
< br>?
222222
|a|?|b|
a
1
?a
2
?a
3
?b
1
?b
2
?b
3
3.求法向量 的常用方法:
①例如:求平面AEF的法向量,若求出
AE?(1,0,1)
AF?(0,2,?1)

则设
n?(x,y,z)
是平面AEF的一个法向量,


?< br>?
x?z?0
?
n?AE?0

?
(1分) 得
?

y?1
,则
z?2,x??2

2y?z?0
?
?
?
n?AF?0
?n?(?2,1,2)

②若所求平面由两个坐标轴确定,则选第三个坐标轴的一个向量作为法向量。
4.几个常用的公式:
①点B到平面
?
的距离公式为
d?
|AB?n|
|n|
.(1分)(
A?
?
,n
是平面
?
的一个法向量)
②.直线
AB
与平面
?
所成角,先设 直线
AB
与平面
?
所成角为
?


sin
?
?
AB?n
|AB||n|
(1分) (
n
为平面
?
的法向量).再求出
?
=
?arcs in
AB?n

|AB||n|
③.求二面角的大小:设
m

n
为平面
?

?
的法向量
先求
co s?m,n??
m?nm?n
,(1分)就得二面角的大小为
arccos

|m|?|n||m||n|
(夹角是锐角还是钝角由图象可知)(其中要证面面垂直,则证< br>m?n?0

④.异面直线所成的角
例如:求异面直线AB和CD所成的角。

cos?AB,CD??
AB? CD
,(1分)(其中要证线线垂直,则证
AB?CD?0

|AB|?| CD|
⑤.证直线AB与平面CDE垂直,则证
AB?CD?0,AB?CE?0
(1 分)
⑥.证直线AB与直线CD平行,则证
AB?
?
CD
,(1分 )(
?
为常数)
⑦.证直线AB与平面
?
平行,则证
AB ?n?0
,(1分)(
n
为平面
?
的法向量)。
⑧.证平 面
?
与平面
?
平行,先设
m

n
分别为平 面
?

?
的法向量,
则证
m

n
平行,即证
m?
?
n
。(1分)(
?
为常数)
第十章 排列组合、二项式定理


1.分类计数原理(加法原理)
N ?m
1
?m
2
?
分步计数原理(乘法原理)
N?m
1
?m
2
?
m
?m
n
.(加法分类,类类独立

?m
n
.(乘法分步,步步相关

2、排列数公 式是:
A
n
=
n(n?1)?(n?m?1)
=
n!

(n?m)!
3、 组合数公式是:
C
n
=
组 合数性质:
C
n
=
C
n
n
m
m
n !
n(n?1)
?
(n?m?1)
=;
m!?(n?m)!
1?2?
?
?m
m
m?1
m

C
n
+
C
n
=
C
n?1

n?m
组合恒等式(1)
?
C
r?0
r
n
rrr rr?1
n
=
2
;(2)
C
r
?C
r?1
?C
r?2
???C
n
?C
n?1

4、排列组合应用问题的处理方法:
(1)要分清是先分步还是先分类,(2) 混合应用题要注意先组合再排列.
(3)解排列组合问题的依据是:分类相加,分步相乘,有序排列,无序组合.
(4)解排列组合问题的规律是:①相邻问题捆绑法;②不邻问题插空法;③多排问题单排法;
④定位问题优先法;⑤定序问题倍缩法;⑥多元问题分类法;⑦选取问题先选后排法;
⑧至多至少问题间接法.⑨分配名额隔板法
注意:要区别平均分组与不平均分组的处理方法。
n0n1n?12n?22rn?rrnn
6、二项式定理
(a?b)?C
n
a?C
n
ab?C
n
ab?
?
?C
nab?
?
?C
n
b

rn?rr
(1)二 项展开式的通项:
T
r?1
?C
n
ab(r?0,1,2,..., n);

012nn0213n?1
(2)
C
n
?C
n
?C
n
?????C
n
?2;C
n
?C
n
?????C
n
?C
n
?????2;

(3 )F(x)=(ax+b)
n
展开式的各项系数和为f(1);奇数项系数和为
[f( 1)?f(?1)]

偶数项的系数和为
[f(1)?f(?1)]
;(赋值法)
1
2
1
2
第十一章 概率统计

理 科

一、概率:1.①等可能事件的概率:P(A)=
m
理解这里m、n的意义。
n


②互斥事件(A、B互斥,即事件A、B不可能同时发生,P(A+B)=P(A)+ P(B)
③对立事件:即事件A、B不可能同时发生,但A、B中必然有一个发生。P(A)+ P(B)=1
④相互独立事件:(事件A、B的发生相互独立,互不影响)P(A?B)=P(A) ? P(B)
⑤独立重复事件 如果在1次实验中某事件发生的概率是p,那么在n次独立重复实验中这个
事件发 生k次的概率P
n
=C
n
p(1-p)
2.三种抽样:(1)简单随机抽样:常用抽签法和随机数表法。 (2)分层抽样;(3)系统抽样:
3.频率分布直方图:画图时,应以横轴表示 总体 ,纵轴表示 频率与组距的比值,以每个组< br>距为底,以各频率除以组距的商为高分别画成矩形,这样得到的直方图就是频率分布直方
图.图中 每个矩形的面积等于相应组的频率 。
二、随机变量.
1、分布列、数学期望与方差.
(1) 数学期望:一般地,若离散型随机变量ξ的概率分布为
(K)kkk
?

P
x
1

x
2

p
2



x
i



p
1

p
i

性质①
p
1
?0,i?1,2,?
; ②
p
1
?p
2
???p
i
???1
则称
E
?
?x
1
p
1
?x
2
p
2
???x
n
p
n
??
为ξ的数学期望
方差、标准差:
D
?
?
(x
1
?
E
?< br>)
2
p
1
?
(x
2
?
E
?
)
2
p
2
???
(x
n
?
E?
)
2
p
n
??
为ξ的方差. 显然
D
?
?0


??
?D
?
.
??
为ξ的根方差或标准差.
D
?
越小,稳定性越高,波动越小.
..............
(2)①随机变量
?
?a
?
?b
的数学期望:
E
?
?E(a
?
?b)?aE
?
?b

方差
D(
?
)?D(a
?
?b )?a
2
D
?
.
②二项分布: 分布列为
?
~< br>B(n,p)
.(P为发生
?
的概率)
E
?
?np< br>,
D
?
?npq

③几何分布:分布列为
?

q(k,p)
.(P为发生
?
的概率)
E
?
?< br>三、正态分布

1、 ⑴标准正态分布:

1
2
?< br>?
x
2
2
q
1

D
?
?< br>2

p
p
如果随机变量ξ的概率函数为
?
(
x
)?
e
(??
?x?
??)
,则称ξ服从标准正态分布. 即
?

而P(a<
ξ
≤b)的计算则是
P(a?
?
?b)?
?
(b)?
?
(a)
.
N(0,1)< br>有
?
(x)?P(
?
?x)

?
(x)?1 ?
?
(?x)
求出,
注意:当标准正态分布的
?(x)
的X 取0时,有
?(x)?0.5


y
S
x
a标准正态分布曲线
S

=0.5
Sa=0.5+S


⑵正态分布与标准正态分布间的关系:

?

N(
?
,
?
2
)
则有
P(ξ?x)?F(x)?
?
(
x
?
μ
)
.
σ
P(a?
?
?b)?
?
(
b?
?
?
)?
?
(
a??
?
)

第十二章 极 限(理 科)
一、数学归纳法
证明一个与正整数
n
有关的命题,可按下列步骤:
1.(归纳奠基)证明当
n
取 第一个值
n
0
时命题成立;
2.(归纳递推)假设n=k(k≥
n
0
,k∈N*)时命题成立,证明当< br>n?k?1
时命题也成立.
只要完成这两个步骤,就可以断定命题对从
n
0
开始的所有正整数n都成立.
二、数列极限 (1)如果lima
n
=A,limb
n
=B,C为常数,那么:①lim (a
n
±b
n
)=
A?B

n→∞n→∞n→∞
a
n
A
②lim (a
n
·b
n
)=
A?B
; ③lim =(B≠0); ④lim (C·a
n
)=
C?A

n→∞n→∞
b
n
n→∞
B
(2)常用的几个极限 ①若C为常数,则
n
limC= C ;
→∞
C
②若C为常数,则
n
lim = 0 ; ③若|a|<1,则
n
lima
n
= 0 ;
→∞
n→∞
④如果等比数列{a
n
}的首项为a
1
,公比满足|q|< 1且q≠0,S
n
为其前n项和,则limS
n

n
→∞< br>二、函数极限 :
1.当x0
且x→x
0
时,f(x) →a,记作limf(x)=a,称a为f(x)在x
0
点处的左极限;
x→x0
2.当x>x
0
且x→x
0
时,f(x)→a,记作limf (x)=a,称a为f(x)在x
0
点处的右极限.
x→x
0
3.当且仅当 左极限=右极限=
a
时,limf(x)=a.
x→x
0
0
4.对于“”型的极限,一般对分子 、分母进行因式分解(若含根号,则需进行分母或分子有理
0
化),找出公共的零因子并约去, 使化简后的式子的分母的极限存在且不为零,从而求出极限值.
三、函数的连续性 (①有定义,②极限存在,③极限值=函数值)
函数f(x)在点x=x
0
处连续, 如果函数y=f(x)在点x=x
0
处及其附近有定义,
a
1
.
1?q


且limf(x)=
f(x
0
)
,就说f(x)在点x
0
处连续.
x→x
0
第十三章 导 数(理 科)
一、导数的背景:①瞬时速度; ②切线斜率。
二、导数的定义
1.y=f(x)在点x
0
处的导数记作
y
?
x?x< br>0
?f
?
(x
0
)?lim
?x?0
f(x
0
??x)?f(x
0
)

?x
2.导数的几何意义:曲线y=f(x) 在点P(x
0
,f(x
0
))处的切线的斜率是
f
?
(x
0
).
相应地 ,
切线方程是
y?y
0
?f
?
(x
0
)( x?x
0
);

3.常见函数的导数公式:①
C
?
?0(C为常数)
;②
(x)
?
?nx(n?Q);

1< br>③
(sinx)

?cosx
;④
(cosx)
,< br>??sinx
;⑤
(e
x
)

?e
x
;⑥
(lnx)

?

x
1

(ax
)

?a
x
lna
,⑧
(log
a
x)

?

xlna
4.导数的运算法则: ①(f(x)?g(x))

?f
'
(x)?g
'
(x)

nn-1
f(x)

f
'
(x)g(x)?f( x)g
'
(x)

(f(x)?g(x))?f(x)g(x)?f(x)g (x)
;③
(

)?
2
g(x)
?
g(x )
?

''
5复合函数的导数:(注意继续对子函数进行求导)
6.导数的应用:(1)求函数的单调区间: 令
f
?
(x)?0
,或
f
?
(x)?0

(2)求可导函数极值的步骤:①求导数
f
?
(x)
;②求方程f
?
(x)?0
的根;③检验
f
?
(x)
在方 程
f
?
(x)?0
根的左右的符号,如果左正右负,那么函数y=f(x)在 这个根处取得极大值;
如果左负右正,那么函数y=f(x)在这个根处取得极小值;
(3) 求可导函数最大值与最小值的步骤:①求y=f(x)在[a,b]内的极值;②将y=f(x)在各极值
点的极值与f(a)、f(b)比较,其中最大的一个为最大值,最小的一个是最小值。
第十四章 导 数(理 科)
① 复数的形式:
Z?a?bi(a,b?R),
共轭复数
Z?a?bi
;复数的模
Z?
223422

i??1,
i?i?i?i?
0

(1?i)?2i,(1?i)??2i,< br>
a
2
?b
2

④复数的运算与多项式的运算(注意除法,分子、分母同乘以分母的共轭复数)



初高中数学知识衔接点-高中数学大题目答题格式


高中数学总是错-人教版高中数学必修五-三


高中数学教材pdf人教版-高中数学必修四电子版百度文库


高中数学什么是算法-高中数学思维视频下载


你喜欢高中数学吗-简单学习网高中数学名师


高中数学书选修2-1人教版答案-高中数学放缩法公式以及概念


高中数学刘畅基本资料-高中数学选修2-2导数的几何意义


高中数学三角函数公式大全-高中数学必修二知识第三章答案



本文更新与2020-10-06 02:47,由作者提供,不代表本网站立场,转载请注明出处:https://www.bjmy2z.cn/gaokao/410279.html

高中数学基础知识手册(理科)的相关文章

  • 爱心与尊严的高中作文题库

    1.关于爱心和尊严的作文八百字 我们不必怀疑富翁的捐助,毕竟普施爱心,善莫大焉,它是一 种美;我们也不必指责苛求受捐者的冷漠的拒绝,因为人总是有尊 严的,这也是一种美。

    小学作文
  • 爱心与尊严高中作文题库

    1.关于爱心和尊严的作文八百字 我们不必怀疑富翁的捐助,毕竟普施爱心,善莫大焉,它是一 种美;我们也不必指责苛求受捐者的冷漠的拒绝,因为人总是有尊 严的,这也是一种美。

    小学作文
  • 爱心与尊重的作文题库

    1.作文关爱与尊重议论文 如果说没有爱就没有教育的话,那么离开了尊重同样也谈不上教育。 因为每一位孩子都渴望得到他人的尊重,尤其是教师的尊重。可是在现实生活中,不时会有

    小学作文
  • 爱心责任100字作文题库

    1.有关爱心,坚持,责任的作文题库各三个 一则150字左右 (要事例) “胜不骄,败不馁”这句话我常听外婆说起。 这句名言的意思是说胜利了抄不骄傲,失败了不气馁。我真正体会到它

    小学作文
  • 爱心责任心的作文题库

    1.有关爱心,坚持,责任的作文题库各三个 一则150字左右 (要事例) “胜不骄,败不馁”这句话我常听外婆说起。 这句名言的意思是说胜利了抄不骄傲,失败了不气馁。我真正体会到它

    小学作文
  • 爱心责任作文题库

    1.有关爱心,坚持,责任的作文题库各三个 一则150字左右 (要事例) “胜不骄,败不馁”这句话我常听外婆说起。 这句名言的意思是说胜利了抄不骄傲,失败了不气馁。我真正体会到它

    小学作文