高中数学必修五新课程导学答案-高中数学立体几何讲课稿

解三角形的必备知识和典型例题及详解
一、知识必备:
1.直角三角形中各元素间的关系:
在△
ABC
中,
C
=90°,
AB
=
c
,
AC
=b
,
BC
=
a
。
(1)三边之间的关系:
a
+
b
=
c
。(勾股定理)
(2)锐角之间的关系:
A
+
B
=90°;
(3)边角之间的关系:(锐角三角函数定义)
sin
A
=cos
B
=
222
aba<
br>,cos
A
=sin
B
=,tan
A
=。
ccb
2.斜三角形中各元素间的关系:
在△
ABC
中,
A
、
B
、
C
为其内角,
a
、
b
、
c
分别表示
A
、
B
、
C
的对边。
(1)三角形内角和:
A
+
B
+
C
=π。
(2)正弦定理:在一个三角形中,各边和它所对角的正弦的比相等
abc
???2R
(
R
为外接圆半径)
sinAsinB
sinC
(3)余弦定理:三角形任何一边的平方等于其他两边平方的和减去这两边与它们夹角的余弦的
积
的两倍
a
2
=
b
2
+
c<
br>2
-2
bc
cos
A
;
b
2
=
c
2
+
a
2
-2
ca
cos
B
;
c
2
=
a
2
+
b
2
-2
ab
cos
C
。
3.三角形的面积公式:
111
ah
a
=
bh
b
=
ch
c
(
h
a
、
h
b
、
h
c
分
别表示
a
、
b
、
c
上的高);
222
1
11
(2)
S
?
=
ab
sin
C
=
bc
sin
A
=
ac
sin
B
;
22
2
(1)
S
?
=
4.解三角形:由三角形的六个元素(即三条边和三
个内角)中的三个元素(其中至少有一个是边)
求其他未知元素的问题叫做解三角形.广义地,这里所说
的元素还可以包括三角形的高、中线、角平
分线以及内切圆半径、外接圆半径、面积等等.主要类型:
(1)两类正弦定理解三角形的问题:
第1、已知两角和任意一边,求其他的两边及一角.
第2、已知两角和其中一边的对角,求其他边角.
(2)两类余弦定理解三角形的问题:
第1、已知三边求三角.
第2、已知两边和他们的夹角,求第三边和其他两角.
5.三角形中的三角变换
三角形中的三角变换,除了应用上述公式和上述变换方法外,还要注意三角形自身的特点。
(1)角的变换
因为在△ABC中,A+B+C=π,所以sin(A+B)=sinC;c
os(A+B)=-cosC;tan(A+B)=-tanC。
sin
A?BCA?BC
?cos,cos?sin
;
2222<
br>(2)判定三角形形状时,可利用正余弦定理实现边角转化,统一成边的形式或角的形式.
6.求解三角形应用题的一般步骤:
(1)分析:分析题意,弄清已知和所求;
(2)建模:将实际问题转化为数学问题,写出已知与所求,并画出示意图;
(3)求解:正确运用正、余弦定理求解;
(4)检验:检验上述所求是否符合实际意义。
二、典例解析
题型1:正、余弦定理
例1.(1)在
?ABC
中
,已知
A?32.0
0
,
B?81.8
0
,
a?4
2.9
cm,解三角形;
0
(2)在
?ABC
中,已知
a?20
cm,
b?28
cm,
A?40
0
,解三角形(角
度精确到
1
,边长精确到
1cm)。
解:(1)根据三角形内角和定理,
C?180
0
?(A?B)
?180
0
?(32.0
0
?81.8
0
)
?66.2
0
;
asinB42.9sin81.8
0
??80.1(cm)
;
根据正弦定理,
b?
sinA
sin32.0
0
asinC42.
9sin66.2
0
??74.1(cm).
根据正弦定理,
c?
sinA
sin32.0
0
bsinA28sin40
0
??0.8999.
(2)根据正弦定理,
sinB?
a20
因为
0
<
B
<
180<
br>,所以
B?64
,或
B?116.
0
0
0
0
①当
B?64
时,
C?1
80
0
0
?(A?B)?180
0
?(40
0
?6
4
0
)?76
0
,
2
asinC20sin76
0
c???30(cm).
sinA
sin40
0
②当
B?116
0
时,
asinC20sin24
0
??13(cm).
C?18
0?(A?B)?180?(40?116)?24
,
c?
sinA
sin4
0
0
00000
点评:应用正弦定理时(1)应注意已知两边和其中一边的对角解三角
形时,可能有两解的情形;(2)
对于解三角形中的复杂运算可使用计算器
题型2:三角形面积
例2.在
?ABC
中,
sinA?cosA?
2
,
AC?2
,
AB?3
,求
tanA
的
值和
?ABC
的面积。
2
解法一:先解三角方程,求出角A的值。
?
sinA?cosA?2cos(A?45
?
)?
1
?cos(A?45
?
)?.
2
??
2
,2
又
0?A?180
,
?A?45?60,A?105.
?tanA?tan(45?60)?
1?3
??2?3
,
1?3
?????
sinA?sin105?sin(45?60)
?sin45cos60?cos45sin60?
??
2?6
.
4
S
?ABC
?
112?63
AC?AB
sinA??2?3??(2?6)
。
2244
解法二:由
sin
A?cosA
计算它的对偶关系式
sinA?cosA
的值。
2
①
2
?sinA?cosA?
?(sinA?cosA)
2
?
?2sinAcosA??
1
2
1
2
0?A?180,?sinA?0,cosA?0.
1
另解(sin2A??)
2
3
2
?(sinA?cosA)?1?2sinAcosA?
3
,
2
?sinA?cosA?
6
②
2
①+②得
sinA?
2?6
。
4
2?6
。
4
①-②得
cosA?
从而
tanA?
sinA2
?64
????2?3
。
cosA4
2?6
以下解法略去。 点评:本小题主要考查三角恒等变形、三角形面积公式等基本知识,着重数学考查运算能力,是
一道
三角的基础试题。两种解法比较起来,你认为哪一种解法比较简单呢?
题型3:三角形中的三角恒等变换问题
例3.在△
ABC
中,
a<
br>、
b
、
c
分别是∠
A
、∠
B
、∠<
br>C
的对边长,已知
a
、
b
、
c
成等比数列,
且
a
-
2
bsinB
c
=
ac
-
bc
,求∠
A
的大小及
c
2
的值。
分析:因给出
的是
a
、
b
、
c
之间的等量关系,要求∠
A
,需找∠
A
与三边的关系,故可用余弦定理。
2
b
bsinB2
由
b
=
ac
可变形为=
a
,再用正弦定理可
求的值。
c
c
解法一:∵
a
、
b
、
c<
br>成等比数列,∴
b
=
ac
。
又
a
-
c
=
ac
-
bc
,∴
b
+
c
-
a
=
bc
。
22222
2
b
2
?c
2
?a
2
bc
1
在△
ABC
中,由余
弦定理得:cos
A
===,
2bc
2bc
2
∴∠
A
=60°。
在△
ABC
中,由正弦定理得sin
B
=
∠
A
=60°,
bsinA
2
,∵
b
=
ac
,
a
bsinBb
2
sin60?
3
?
∴=sin60°=。
cac
2
解法二:在△
ABC
中,
4
由面积公式得
2
11
bc
sin
A
=ac
sin
B
。
22
2
∵
b
=ac
,∠
A
=60°,∴
bc
sin
A
=b
sin
B
。
∴
bsinB
=sin
A
=
3
。
c2
评述:解三角形时,找三边一角之间的关系常用余弦定理,找两边两角之间的关系常用正弦定理。
题型4:正、余弦定理判断三角形形状
例4.在△
ABC
中,若2cos<
br>B
sin
A
=sinC,则△
ABC
的形状一定是(
)
A.等腰直角三角形
C.等腰三角形
答案:C
解析:2sin
A
cos
B
=sin
C
=sin(
A
+
B
)=sinAcosB+cosAsinB
∴s
in(
A
-
B
)=0,∴
A
=
B
另解:角化边
点评:本题考查了三角形的基本性质,要求通过观察、分析、判断明确解题思路
和变形方向,通
畅解题途径
题型5:三角形中求值问题
例5.
?ABC<
br>的三个内角为
A、B、C
,求当A为何值时,
cosA?2cos
出这
个最大值。
B+CπAB+CA
解析:由A+B+C=π,得= -,所以有cos
=sin。
22222
B+CAAA1
2
3
2
A
cosA+2cos =cosA+2sin =1-2sin + 2sin=-2(sin - )+ ;
2222222
A1πB+C3
当sin = ,即A= 时,
cosA+2cos取得最大值为。
22322
点评:运用三角恒等式简化三角因式最终转化
为关于一个角的三角函数的形式,通过三角函数的
性质求得结果。
题型6:正余弦定理的实际应用
例6.(2009辽宁卷文,理)如图,A,B,C,D都在
同一个与水平面垂直的平面内,B,D为两岛上的两座
灯塔的塔顶。测量船于水面A处测得B点和D点的
仰角分别为
B.直角三角形
D.等边三角形
B?C
取得最大值
,并求
2
75
0
,
30
0
,于水面C处测得B点和
D点的仰角均为
60
0
,
AC=0.1km。试探究图中B,D间距离与另外
哪两点间距离相等,然后求
5
B,D的距离(计算结果精确到0.01km,
2
?
1.414,
6
?
2.449)
解:在△ABC中,∠DAC=30°, ∠ADC=60°-∠DAC=30,
所以CD=AC=0.1 又∠BCD=180°-60°-60°=60°,
故CB是△CAD底边AD的中垂线,所以BD=BA, 在△ABC中,
ACsin60
?
32?6
ABAC
?,
?,
?
即
AB=
sin1520
sin?BCAsin?ABC
32?6
?0.33
km。
因此,BD=
20
故B,D的距离约为0.33km。
点评:解三角形等内容提到高中来学习,又近年加强数形结合思想的考查和对三角变换要求的降低,对三角的综合考查将向三角形中问题伸展,但也不可太难,只要掌握基本知识、概念,深刻理解其中
基本的数量关系即可过关。
三、思维总结
1.解斜三角形的常规思维方法是:
(
1)已知两角和一边(如
A
、
B
、
C
),由
A+
B
+
C
=
π求
C
,由正弦定理求
a
、
b
;
(2)已知两边
和夹角(如
a
、
b
、
c
),应用余弦定理求
c边;再应用正弦定理先求较短边所对的角,
然后利用
A
+
B
+<
br>C
= π,求另一角;
(3)已知两边和其中一边的对角(如
a
、
b
、
A
),应用正弦定理求
B
,由
A
+<
br>B
+
C
= π求
C
,再由正
弦定理或余弦定理求<
br>c
边,要注意解可能有多种情况;
(4)已知三边
a
、
b<
br>、
c
,应余弦定理求
A
、
B
,再由
A
+
B
+
C
= π,求角
C
。
2.三角学中的射影定理:在△ABC 中,
b
3.两内角与其正弦值:在△ABC
中,
?a?cosC?c?cosA
,…
A?B?sinA?sinB
,…
4.解三角形问题可能出现一解、两解或无解的情况,这时应结合“三角形中大边对大角定理及几
何作图来帮助理解”。
三、课后跟踪训练
1.(2010上海文数18.)若△
ABC
的三个内角满足
sinA:sinB:sinC?5:11:13
,则△
ABC
(
)
6
(A)一定是锐角三角形.
(B)一定是直角三角形.
(C)一定是钝角三角形.
(D)可能是锐角三角形,也可能是钝角三角形.
解析:由
sinA:sinB:sinC?
5:11:13
及正弦定理得a:b:c=5:11:13
5
2
?11
2
?13
2
由余弦定理得
cosc??0
,所以角C为钝角
2?5?11
2.(201
0天津理数7)在△ABC中,内角A,B,C的对边分别是a,b,c,若
a
2
?b
2
?3bc
,
sinC?23sinB
,则A=( )
(A)
30
0
(B)
60
0
(C)
120
0
(D)
150
0
【答案】A
【解析】本题主要考查正弦定理与余弦定理的基本应用,属于中等题。
由正弦定理得
c23b
??c?23b
,
2R2R
b<
br>2
+c
2
-a
2
?3bc?c
2
?3bc?
23bc3
0
?
所以cosA==,所以A=30
?
2bc2bc
2bc2
【温馨提示】解三角形的基本思路是利用正弦、余弦定理将边化为角运算或将角化为边
运算。
3.(2010湖北理数)3.在
?ABC
中,a=15,b=10,A=6
0°,则
cosB
=
A -
22
22
B C
-
6
D
6
3
3
33
【答案】D <
br>ab
1510
?
?
【解析】根据正弦定理可得解得
sinB?
sinAsinB
sin60sinB
2
故B为锐角,所以
cosB
?1?sinB?
3
,又因为
b?a
,则
B?A
,
3
6
,故D正确.
3
4.(2010广东理数)11.已知a,b,c分别
是△ABC的三个内角A,B,C所对的边,若a=1,b=
3
,
A+C=2B,
则sinC= .
13
1
?
解:由
A
+
C
=2
B
及
A
+
B+
C
=180°知,
B
=60°.由正弦定理知,,即
sinA?
.
由
2
sinAsin60
a?b
知,
A?B?60
,则A?30
,
C?180?A?B?180?30?60?90
,
sin
C?sin90?1
7
5(2009湖南卷文)在锐角
?ABC
中,
BC?1,B?2A,
则
围为
.
解析
设
?A?
?
,?B?2
?
.
由正弦定理得
AC
的值等于 ,
AC
的取值范
cosA
ACBCACAC
?,??1??2.
sin2
?
sin
?
2cos
?
cos
?
由锐角
?ABC
得
0?2
?
?90?0?
?
?45
,
又
0?180?3
?
?90?30?
?
?60
,
23
,
?cos
?
?
22
故
30??
?45?
?AC?2cos
?
?(2,3).
6.
(2009全国卷Ⅰ理)在
?ABC
中,内角A、B、C的对边长分别为
a
、
b
、,已知
a
且
sin
c
2
?c
2
?2b
,
AcosC?3cosAsinC,
求b
2
分析::此题事实上比较简单,但考生反应不知从何入手.对已知条件(1)
a次的右侧是一次的,学生总感觉用余弦定理不好处理,而对已知条件(2)
?c
2
?2b
左侧是二
sinAcosC?3cosAsinC,
过多的关注两角和与差的
正弦公式,甚至有的学生还想用现在已经
不再考的积化和差,导致找不到突破口而失分.
解法
:在
?ABC
中则
sinAcosC?3cosAsinC,
由正弦定理及余
弦定理
a
2
?b
2
?c
2
b
2
?
c
2
?a
2
?3c,
有:
a
2ab2bc
(角化边) 化简并整理得:
2(a?c)?b
.又由已知
a
222
2
?c
2
?2b
?4b?b
2
.
解得
b?4或b?0(舍)
.
7.在△
ABC
中,已知
A
、
B
、
C
成等差数列,求
ta
n
A
?tan
C
?3tan
A
tan
C
的
值。
2222
解析:因为
A
、
B
、
C
成
等差数列,又
A
+
B
+C=180°,所以
A
+C=120
°,
AC
A?C
A?C
tan?tan
?3
.由两角和的
正切公式,得从而=60°,故tan
22
?3
。
2
2
AC
1?tan
2
tan
2
8
所以
tan
A
?tan
C
?3?
3tan
A
tan
C
,
2222
tan
ACAC
?tan?3tantan?3
。
2222
点评:在三角函数求值问题中的解题思路,一般是运用基本公式,将未知角变换为已知角求解
,
同时结合三角变换公式的逆用。
8.(2009四川卷文)在
?ABC
中
,
A、B
为锐角,角
A、B、C
所对的边分别为
a、b、c
,且
sinA?
510
,sinB?
510
(I)求A?B
的值;(II)若
a?b?2?1
,求
a、b、c
的值。
解(I)∵
A、B
为锐角,
sinA?
510
,sinB?
510
∴
cosA?1?sin
2
A?
25310
,cosB?1
?sin
2
B?
510
cos(A?B)?cosAcosB?sinAsi
nB?
∵
0?
253105102
????.
5105102
A?B?
?
,
∴
A?B?
?
4
(II)由(I)知
C?
3
?
,∴
sinC?
2
4
2
由
abc
得
??
sinAsinBsinC
5a?10b?2c
,即
a?2b,c?5
b
又∵
a?b?2?1
∴
2b?b?2?1
∴
b?1
∴
a?2,c?5
9.(2010陕西文数17)(本小题满分12分)
在△ABC中,已知B=45°,D是BC边上的一点,
AD=10,AC=14,DC=6,求AB的长.
解
在△ADC中,AD=10,AC=14,DC=6,
由余弦定理得
222
co
s
?
AD?DC?AC
=
100?36?196
??
1,
2?10?62
2ADDC
?
?
ADC=120°,
?
ADB=60°
在△ABD中,AD=10,
?
B=45°,
?
ADB=60°,
9
由正弦定理得
ABAD
,
?
sin?ADBsinB
3
∴AB=
ADsin?ADB10sin60?
10?
2
???5
6
sinBsin45?
2
2
10.(2010辽宁文数17)(本小题满分
12分)
在
?ABC
中,
a、b、c
分别为内角
A、B、
C
的对边,
且
2asinA?(2b?c)sinB?(2c?b)sinC
(Ⅰ)求
A
的大小;
(Ⅱ)若
sinB?sinC?1
,试判断
?ABC
的形状. 2
解:(Ⅰ)由已知,根据正弦定理得
2a?(2b?c)b?(2c?b)c
即
a
2
?b
2
?c
2
?bc
<
br>由余弦定理得
a
2
?b
2
?c
2
?2bcc
osA
1
故
cosA??,A?120?
2
2
(Ⅱ)由(Ⅰ)得
sin
又
sinB?sinC
因为
0??
A?sin
2
B?sin
2
C?sinBsinC.
2
?1
,得
sinB?sinC?
1
B?90?,0??C?90?
,
故
B?C
所以
?ABC
是等腰的钝角三角形。
11.(2010辽宁理数)(17)(本小题满分12分)
在△ABC中,a, b,
c分别为内角A, B, C的对边,且
2asinA?(2a?c)sinB?(2c?b)sinC.
(Ⅰ)求A的大小;
(Ⅱ)求
sinB?sinC
的最大值.
解:(Ⅰ)由已知,根据正弦定理得
2a
即
a?b?c?bc
由余弦定理得
a
故
cosA??
2
222
2
?(2b?c)b?(2c?b)c
?b
2
?c
2
?2bccosA
1
,A=120° ……6分
2
(Ⅱ)由(Ⅰ)得:
sinB?sinC?sinB?sin(60??B)
10
宁夏高中数学几本书-高中数学集合的引入
李永乐高中数学双曲线-高中数学 轨迹
山东菏泽高中数学教材-高中数学题贴吧
郑州市高中数学竞赛班-高中数学教师学期反思
以实际的教学案例分析说明高中数学新课程的教学观-高中数学怎么提高到130
高中数学考零分图片-高中数学命题专题
高中数学知识点总结必修五-学海争锋高中数学答案
精华学校司马红丽高中数学选修2-1视屏-高中数学条件定义
-
上一篇:(word完整版)高中数学解三角形练习题
下一篇:高二数学解三角形试题及答案