关键词不能为空

当前您在: 主页 > 数学 >

高中数学数列知识点总结复习课程

作者:高考题库网
来源:https://www.bjmy2z.cn/gaokao
2020-10-06 15:31
tags:高中数学考纲

高中数学物理符号搞笑读音-高中数学必须五试题及解析

2020年10月6日发(作者:倪雅伦)



数列基础知识点
《考纲》要求:
1、理解数列的概念,了解数 列通项公式的意义,了解递推公式是给出数列的一种方法,并能根据
递推公式写出数列的前几项;
2、理解等差数列的概念,掌握等差数列的通项公式与前n项和公式,并能解决简单的实际问题;
3、理解等比数列的概念,掌握等比数列的通项公式与前n项和公式,并能解决简单的实际问题。
数列的概念

基础过关
*
1.数列的概念:数列是按一定的顺 序排列的一列数,在函数意义下,数列是定义域为正整数N或
其子集{1,2,3,……n}的函数f( n).数列的一般形式为a
1
,a
2
,…,a
n
…,简记为 {a
n
},其中a
n
是数列{a
n
}的第 项.
2.数列的通项公式
一个数列{a
n
}的 与 之间的函数关系,如果可用一个公式a
n
=f(n)来表示,我们
就把这个公式叫做这 个数列的通项公式.
3.在数列{a
n
}中,前n项和S
n
与通项 a
n
的关系为:
?
?
?

a
a
?
?
n
n
?
?
n?1
n?2

4.求数列的通项公式的其它方法
⑴ 公式法:等差数列与等比数列采用首项与公差(公比)确定的方法.
⑵ 观察归纳法:先观察哪些因素 随项数n的变化而变化,哪些因素不变;初步归纳出公式,再取
n的特珠值进行检验,最后用数学归纳法 对归纳出的结果加以证明.
⑶ 递推关系法:先观察数列相邻项间的递推关系,将它们一般化,得到的 数列普遍的递推关系,
再通过代数方法由递推关系求出通项公式.

典型例题

例1. 根据下面各数列的前n项的值,写出数列的一个通项公式.
⑴ -
2
4816
,,-,…;
3?55?77?9
1?3
⑵ 1,2,6,13,23,36,…;
⑶ 1,1,2,2,3,3,
解: ⑴ a
n
=(-1)
1
2
n
2n?1

(2n?1)(2n?1)
⑵ a
n

(3n
2
?7n?6)

(提示:a
2
-a
1
=1,a
3
-a
2
=4,a
4
-a
3
=7,a
5
-a
4
=10,…,a
n
-a
n-1
=1+3(n-2)=3n-5.各式相
加得
1



a
n
?1?[1?4?7?10???(3n?5)]?1?
?
1
(n?1)(3n?4)
2

1
( 3n
2
?7n?6)
2
1?12?03?1
,,,

222
⑶ 将1,1,2,2,3,3,…变形为
4?05?16?0
,,,?,

22 2
1?(?1)
n?1
n?
2

a
n
?< br>2
2n?1?(?1)
n?1

?
4
变式训练1.某 数列{a
n
}的前四项为0,
2
,0,
2
,则以下各式:
① a
n

2
n
[1+(-1)] ② a
n

1?(?1)
n

2
?
0(n为奇数)
?
2(n为偶数)
③ a
n

?
其中可作为{a
n
}的通项公式的是 ( )
A.① B.①②
C.②③ D.①②③
解:D
例2. 已知数列{a
n
}的前n项和S
n
,求通项.
n
⑴ S
n
=3-2
2
⑵ S
n
=n+3n+1
解 ⑴ a
n
=S
n
-S
n-1
(n≥2) a
1
=S
1

解得:a
n

?< br>2?3
?
1
?
n?1
(n?2)

(n?1)
⑵ a
n

?
(n?1)
?
5

?
2 n?2(n?2)
*
变式训练2:已知数列{a
n
}的前n项的和S
n
满足关系式lg(S
n
-1)=n,(n∈N),则数列{a
n
} 的通项
公式为 .
解:
lg(S
n
?1) ?n?S
n
?1?10
n
?S
n
?10
n
?1,
当n=1时,a
1
=S
1
=11;当n≥2时,a
n
=S
n
-S
n-1
=10-10
-1
nn
=9·10
n-1
.故a
n

?
?
?
1 1(n?1)
n?1
?
(n?2)
?
9?10

例3. 根据下面数列{a
n
}的首项和递推关系,探求其通项公式.
⑴ a
1
=1,a
n
=2a
n-1
+1 (n≥2)
⑵ a
1
=1,a
n

a
n?1?3
n?1
(n≥2)
⑶ a
1
=1,a
n

n?1
a
n?1
(n≥2)
n
nn
解:⑴ a
n
=2a
n-1
+ 1
?
(a
n
+1)=2(a
n-1
+1)(n≥2),a< br>1
+1=2.故:a
1
+1=2,∴a
n
=2-1.
n-1n-23
⑵a
n
=(a
n
-a
n-1
)+ (a
n-1
-a
n-2
)+…+(a
3
-a
2)+(a
2
-a
1
)+a
1
=3+3+…+3+3+1

(3
n
?1)

1
2
2



(3)∵
∴a
n

a
n
n?1
?

a
n?1
n
a
n
a
n?1
a
n? 2
a
n?1n?2
?????
2
?a
1
???
a
n?1
a
n?2
a
n?3
a
1< br>nn?1
n?311
????1?

n?22n
变式训练3. 已知数列{a
n
}中,a
1
=1,a
n+1

解: 方法一:由a
n+1

1
a
n?1
?
2a
n
*
(n∈N),求该数列的通项公式.
a
n
?2
2a
n

a
n
?2< br>111
1
1
?
,∴{}是以
?1
为首项,为公差的等 差数列.
a
n
2a
1
a
n
2

1
1
2
=1+(n-1)·,即a
n

a
nn?1
2
方法二:求出前5项,归纳猜想出a
n

x-x
2
,然后用数学归纳证明.
n?1
例4. 已知函数
f(x)
= 2-2,数列{a
n
}满足
f(log
2
a
n
)< br>=-2n,求数列{a
n
}通项公式.
解:
f(log
2< br>a
n
)?2
log
2
a
n
?2
?l og
2
a
n
??2n

a
n
?
1
??2n

a
n
?n
2
?1?n

a
n
*
变式训练4.知数列{a
n
}的首项a
1
=5.前n项和为S
n
且S
n+1
=2S
n
+n+5(n∈ N).
(1) 证明数列{a
n
+1}是等比数列;
2n1
(2) 令f (x)=a
1
x+a
2
x+…+a
n
x,求函数f (x)在点x=1处导数f (1).
解:(1) 由已知S
n+1
=2S
n
+n+5,∴ n≥2时,S
n
=2S
n-1
+n+4,两式相减,得:
S
n+1
-S
n
=2(S
n
-S
n-1
)+1,即 a
n+1
=2a
n
+1
从而a
n+1
+1=2(a
n
+1)
当n=1时,S
2
=2S
1
+1+5,∴ a
1
+a
2
=2a
1
+6,
又a
1
=5,∴ a
2
=11

a
n ?1
?1
=2,即{a
n
+1}是以a
1
+1=6为首项, 2为公比的等比数列.
a
n
?1
n
(2) 由(1)知a
n
=3×2-1
2n

f(x)
=a
1
x+a
2
x+…+a
n
x
n-1

f'(x)
=a
1
+2a
2
x +…+na
n
x
从而
f'(1)
=a
1
+2a< br>2
+…+na
n

=(3×2-1)+2(3×2-1)+…+n(3×2-1)
2n
=3(2+2×2+…+n×2)-(1+2+…+n)
=3[n×2
n+1
2n
-(2+…+2)]-
n+1
n
n(n?1)

2
=3(n-1)·2-
n(n?1)
+6
2

归纳小结

1.根据数列的前几项,写出它的一个通项公式,关键在于找出这些项与 项数之间的关系,常用的
方法有观察法、通项法,转化为特殊数列法等.
3



2.由S
n
求a
n
时,用公式a
n
=S
n
-S
n-1
要注意n≥2这个条件,a
1
应由a
1
=S
1
来确定,最后看二者能
否统一.
3.由递 推公式求通项公式的常见形式有:a
n+1
-a
n
=f(n),
a< br>n?1
=f(n),a
n+1
=pa
n
+q,分别用累
a
n
加法、累乘法、迭代法(或换元法).
数列的概念与简单表示法
●三维目标
知识与技能:了解数列的递推公式,明确递推公式与通项公式的异同;会根据数列 的递推公式写
出数列的前几项;理解数列的前n项和与
a
n
的关系
过程与方法:经历数列知识的感受及理解运用的过程。
情感态度与价值观:通过本节课的学习,体会数学来源于生活,提高数学学习的兴趣。
●教学重点
根据数列的递推公式写出数列的前几项
●教学难点
理解递推公式与通项公式的关系
1、 通项公式法
如果数列
?
a
n
?
的第n项与序号之间的关系可以用一个公式来表示,那么这个公式就叫做这个数列
的通项公式。
如数列

的通项公式为

的通项公式为





的通项公式为


2、 图象法
启发学生仿照函数图象的画法画数列的图形.具体方法是以项数

为横坐标,相应的项


纵坐标,即以

为坐标在平面直角坐标系中做出点(以前面提到的数列

为例,
做出一个数列 的图象),所得的数列的图形是一群孤立的点,因为横坐标为正整数,所以这些点都


轴的右侧,而点的个数取决于数列的项数.从图象中可以直观地看到数列的项随项数由小到
大变化而变 化的趋势.
3、 递推公式法
知识都来源于实践,最后还要应用于生活用其来解决一些实际问题.
观察钢管堆放示意图,寻其规律,建立数学模型.
模型一:自上而下:
第1层钢管数为4;即:1
?
4=1+3
第2层钢管数为5;即:2
?
5=2+3
4



第3层钢管数为6;即:3
?
6=3+3
第4层钢管数为7;即:4
?
7=4+3
第5层钢管数为8;即:5
?
8=5+3
第6层钢管数为9;即:6
?
9=6+3
第7层钢管数为10;即:7
?
10=7+3
若用
a
n
表 示钢管数,n表示层数,则可得出每一层的钢管数为一数列,且
a
n
?n?3(1≤n≤7)
运用每一层的钢筋数与其层数之间的对应规律建立了数列模型,运用这一关系,会很快 捷
地求出每一层的钢管数这会给我们的统计与计算带来很多方便。
让同学们继续看此图片,是否还有其他规律可循?(启发学生寻找规律)
模型二:上下层之间的关系
自上而下每一层的钢管数都比上一层钢管数多1。
即< br>a
1
?4

a
2
?5?4?1?a
1
?1

a
3
?6?5?1?a
2
?1

依此类推:
a
n
?a
n?1
?1
(2≤n≤7)
对于上述所求关系,若知其第1项,即可求出其他项,看来,这一关系也较为重要。
定义:
递推公式:如果已知数列
?
a
n
?
的第1项(或前几项), 且任一项
a
n
与它的前一项
a
n?1
(或前n项)
间的关系可以用一个公式来表示,那么这个公式就叫做这个数列的递推公式
递推公式也是给出数列的一种方法。
如下数字排列的一个数列:3,5,8,13,21,34,55,89
递推公式为:
a
1
?3,a
2
?5,a
n
?a
n?1
?a
n?2
(3?n?8)

数列可看作特殊的函数,其表示也应与函数的表 示法有联系,首先请学生回忆函数的表示法:列表
法,图象法,解析式法.相对于列表法表示一个函数, 数列有这样的表示法:用



表示第一项,……,用

表示第

项,依次写出成为
表示第一项,
4、列表法
.简记为

[范例讲解]

a
1
?1
?
?
例3 设数列
?
a
n
?
满足
?
写出这个数列的前五项。
1
a?1?(n?1).
?
n
a
n?1
?
解:分析:题中已给出
?
a
n
?
的第1项即
a
1< br>?1
,递推公式:
a
n
?1?
1
a
n?1< br>
解:据题意可知:
a
1
?1,a
2
?1?
112158
?2,a
3
?1??

a
4
?1?? ,a
5
?

a
1
a
2
3a
3
35
5



[补充例题]
例4已知
a
1
?2

a
n?1
?2a
n
写出前5项,并猜想
a
n

23n
2
法一:
a
1
?2

a
2
?2?2?2

a
3
?2?2?2
,观察可得
a
n
?2

法二:由
a
n?1
?2a
n

a
n
?2a
n?1

a
n
?2

a
n?1

a< br>n
aa
a
?
n?1
?
n?2
????
2
?2
n?1

a
n?1
a
n?2
a< br>n?3
a
1
n?1n

a
n
?a
1
?2?2

[补充练习]
1.根据各个数列的首项和递推公式,写出它的前五项,并归纳出通项公式
(1)
a
1
=0,
a
n?1

a
n
+(2n-1) (n∈N);
(2)
a
1
=1,
a
n?1

2a
n
(n∈N);
a
n
?2
(3)
a
1
=3,
a
n?1
=3
a
n
-2 (n∈N).
解:(1)
a
1
=0,
a
2
=1,
a
3
=4,
a
4
=9,
a
5
=16, ∴
a
n
=(n-1)
2
;
(2)
a
1< br>=1,
a
2

1212
222
,
a
3

?
,
a
4
=,
a
5

?
, ∴
a
n
=;
35n?1
2436
012
(3)
a
1
=3=1+2
?3
,
a
2
=7=1+2
?3
,
a
3
=19=1+2
?3
,
a
4
=55=1+2
?3
3
,
a
5
=163=1+2
?3
4
, ∴
a
n
=1+2·3
n?1
;
Ⅳ.课时小结
本节课学习了以下内容:
1.递推公式及其用法;
2.通项公式反映的是项与项数 之间的关系,而递推公式反映的是相邻两项(或
n
项)之间
的关系。
等差数列的定义与性质
定义:
a
n?1
?a
n
? d

d
为常数),
a
n
?a
1
?
?
n?1
?
d

等差中项:
x,A,y
成等差数列
?2A?x?y

n
项和
S
n
?
?
a
1
?a
n
?
n
?na
2
1
?
n
?
n?1< br>?
d

2
6



性质:
?
a
n
?
是等差数列
(1)若
m ?n?p?q
,则
a
m
?a
n
?a
p
?a
q


(2)数列
?
a
2n?1
?
,
?
a
2n
?
,
?
a
2n?1
?
仍为等差数列,
S
n
,S
2n
?S
n
, S
3n
?S
2n
……
仍为等差数列,
公差为
nd< br>;
(3)若三个成等差数列,可设为
a?d,a,a?d

(4)若
a
n
,b
n
是等差数列,且前
n
项和分别为
S
n
,T
n
,则
2
a
m
S
2m ?1
?

b
m
T
2m?1
2
(5)
?
a
n
?
为等差数列
?S
n
?an?bn

a,b
为常数,是关于
n
的常数项为0的二次函数)
S
n
的最值可求二次函数
S
n
?an
2
?bn
的最 值;或者求出
?
a
n
?
中的正、负分界项,
?
a
n
?0
a?0,d?0
即:当
1
,解不等式组
?< br>可得
S
n
达到最大值时的
n
值.
?
a< br>n?1
?0

a
1
?0,d?0
,由
??
a
n
?0
可得
S
n
达到最小值时的
n
值.
?
a
n?1
?0

有 (6)项数为偶 数
2n
的等差数列
?
a
n
?
S
2n
?n(a
1
?a
2n
)?n(a
2
?a
2n?1
)???n(a
n
?a
n?1
)(a
n
,a
n?1
为中间两项)

S

?S

?nd

S

S

?
a
n
.
a
n?1

有 (7)项数为奇数
2n?1
的等差数列?
a
n
?
S
2n?1
?(2n?1)a
n(a
n
为中间项)


S

?S
?a
n

S

S

?
n< br>.
n?1
等比数列的定义与性质
定义:
a
n?1
?q

q
为常数,
q?0
),
a
n
?a< br>1
q
n?1

.
a
n
2
等比中项:
x、G、y
成等比数列
?G?xy
,或
G??xy

.
7



?
na
1
(q?1)< br>?

n
项和:
S
n
?
?
a
1
?
1?q
n
?
(要注意!)
(q?1)
??
1?q
性质:
?
a
n
?
是等比数列
·a
n
?a
p
·a
q
(1)若
m?n? p?q
,则
a
m
(2)
S
n
,S
2n?S
n
,S
3n
?S
2n
……
仍为等比数列, 公比为
q
.
注意:由
S
n

a
n
时应注意什么?
n
n?1
时,
a
1
?S
1

n ?2
时,
a
n
?S
n
?S
n?1
.

求数列通项公式的常用方法
(1)求差(商)法
如:数列
?
a
n
?


n?1
时,
111
a
1
?
2
a
2
?……?
n
a
n
?2n?5
,求
a
n

222< br>1
a
1
?2?1?5
,∴
a
1
?14

2
111
n?2
时,
a
1
?
2
a
2
?……?
n?1
a
n?1
?2n?1?5

222
①—②得:
?
14(n?1)
1
n?1
a?2
a?2
a?
,∴,∴
?
n?1
n
n
n
n
2
?
2(n?2)
5
a
n?1
,a
1
?4
,求
a
n

3
S
n?1< br>?4
S
n

S
1
?4
,∴
?
S
n
?
是等比数列,
S
n
?4
n

[练习]数列
?
a
n
?
满足
S
n< br>?S
n?1
?
注意到
a
n?1
?S
n?1< br>?S
n
,代入得
·4
n?1

n?2
时,< br>a
n
?S
n
?S
n?1
?……?3
(2)叠 乘法
如:数列
?
a
n
?
中,
a
1?3,
n?1
?
a
a
n
n
,求
an

n?1

a
a
2
a
3
12n?1
3
a
1
·……
n
?·……
,∴
n
?

a
1
?3
,∴
a
n
?a
1
a
2
a
n?1
23n
n
.
a
1
n
(3)等差型递推公式
8


< br>由
a
n
?a
n?1
?f(n),a
1
?a< br>0
,求
a
n
,用迭加法
?
a
3
? a
2
?f(3)
?
?
n?2
时,
?
两边相 加得
a
n
?a
1
?f(2)?f(3)?……?f(n)

…………
?
a
n
?a
n?1
?f(n)
?
?

a
n
?a
0
?f(2)?f(3)?……?f (n)

[练习]数列
?
a
n
?
中,
a< br>1
?1,a
n
?3
n?1
?a
n?1
?n?2
?
,求
a
n

a
2
?a
1
?f(2)
答案 :
a
n
?
1
n
3?1
??
2

(4)等比型递推公式
a
n
?ca
n?1
?d

c、d
为常数,
c?0,c?1,d?0

可转化为等比数列,设
a
n
?x?c
?
a
n?1
?x
?
?a
n
?ca
n?1
?
?
c?1
?
x

(c?1)x?d
,∴
x?
d
?
dd?
a?,c
为公比的等比数列 ,∴
?
a
n
?
是首项为
?
1
c?1
c?1c?1
??

a
n
?
dd
?
n?1
d
?
n?1
d
??
?
?
a
1
?·ca?a?c?
,∴
n??
1
?
c?1
?
c?1
?
c?1c?1??
(5)倒数法
如:
a
1
?1,a
n?1
?
2a
n
,求
a
n

a
n
?2< br>由已知得:
a?2
111111
?
n
??
,∴
??

a
n?1
2a
n
2a
n
a
n?1
a
n
2

?
?
1
?
11 1
1
1
?1?n?1·?
?
n?1
?
, 为等差数 列,,公差为,∴
?1
??
?
a22
2
a
1
n
?
a
n
?
2
n?1


a
n
?
(附:
公式法、利用
a
n?
?
S
1
(n?1)
S
n
?S
n?1
(n?2)
、累加法、累乘法.构造等差或等比
a
n?1
?pan
?q


a
n?1
?pa
n
?f( n)
、待定系数法、对数变换法、迭代法、数学归纳法、换元法)
9



4. 求数列前n项和的常用方法
(1) 裂项法
把数列各项拆成两项或多项之和,使之出现成对互为相反数的项.
如:
?
a
n
?
是公差为
d
的等差数列,求
1

?
k?1
a
k
a
k?1
n
解:由
111?
11
?
??
?
?
?
?
d?0
?

a
k
·a
k?1
a
k
?
a
k
?d
?
d
?
a
k
a
k?1?
n
?
111
?
11
?
1
?
?
11
?
?
11
?
1
?
?
?
?
?
?
??????……??
?
?
????
?

?
?
a
k?1
?
d
?
?
a
1
a
2
?
?
a
2
a
3
?
k?1
a
k
a
k?1
k?1
d?
a
k
?
a
n
a
n?1
?
?
n
?
1
?
11
?
?
??

d
?
a
1
a
n?1
?
[练习]求和:
1 ?
111

??……?
1?21?2?31?2?3?……?n
1

a
n
?……?……,S
n
?2?
n?1
(2)错位相减法

?
a
n
?
为等差数列,
?
b
n
?
为等比数列,求数列
?
a
n
b
n
?
(差比 数列)前
n
项和,可由
S
n
?qS
n


S
n
,其中
q

?
b
n
?
的公比.
23n?1
如:
S
n
?1?2x?3x?4x?……?nx


x·S
n
?x?2x
2
?3x
3
?4x
4
?……?
?
n?1
?< br>x
n?1
?nx
n

①—②
?
1?x
?
S
n
?1?x?x?……?x
2n?1
?nx
n

n
?
n?1
?

2
x?1
时,
S
n
1?x
?
nx
?
??
n
n
?
1?x
?
2
1?x

x?1
时,
Sn
?1?2?3?……?n?
(3)倒序相加法
把数列的各项顺序倒写,再与原来顺序的数列相加.
S
n
?a
1
?a
2
?……?a
n?1
?a
n
?
?相加
2S
n
?
?
a
1
?a
n
?
?
?
a
2
?a
n?1
?
?…?
?
a
1
?a
n
?


S
n
?a
n
?a
n?1
?……?a
2
?a
1
?
x
2
[练习]已知
f(x)?
,则
2
1?x
10



?
1
?
f(1)?f(2)?f
??
?f(3)?
?
2
?
?1
?
f
??
?f(4)?
?
3
?
2< br>?
1
?
f
??
?

?
4
?
?
1
?
??
x
2
x
2
1
x
?
?
1
?
?

f(x)?f
??
?????1
2
222
?
x
?
1?x
?
1
?
1?x1?x
1?
??
?
x
?< br>
∴原式
?f(1)?
?
f(2)?f
??
?
?
?
f(3)?f
??
?
?
?
f(4)?f??
?
?
?
?
?
1
?
??
?
2
?
??
?
1
?
??
?
3
?
??
?
1
?
?
?
4
?
?11
?1?1?1?3

22
(附:
a.用倒序相加法求数列的前n项和
如果一个数列{a
n
},与首末项等距 的两项之和等于首末两项之和,可采用把正着写与倒着写的
两个和式相加,就得到一个常数列的和,这一 求和方法称为倒序相加法。我们在学知识时,不但要
知其果,更要索其因,知识的得出过程是知识的源头 ,也是研究同一类知识的工具,例如:等差数
列前n项和公式的推导,用的就是“倒序相加法”。
b.用公式法求数列的前n项和
对等差数列、等比数列,求前n项和S
n
可 直接用等差、等比数列的前n项和公式进行求解。运
用公式求解的注意事项:首先要注意公式的应用范围 ,确定公式适用于这个数列之后,再计算。
c.用裂项相消法求数列的前n项和
裂项相消法 是将数列的一项拆成两项或多项,使得前后项相抵消,留下有限项,从而求出数列
的前n项和。
d.用错位相减法求数列的前n项和
错位相减法是一种常用的数列求和方法,应用于等比数列 与等差数列相乘的形式。即若在数列
{a
n
·b
n
}中,{a
n
}成等差数列,{b
n
}成等比数列,在和式的两边同乘以公比,再与原式错位相 减整
理后即可以求出前n项和。
e.用迭加法求数列的前n项和
迭加法主要应用于 数列{a
n
}满足a
n+1
=a
n
+f(n),其中f(n )是等差数列或等比数列的条件下,可
把这个式子变成a
n+1
-a
n
=f(n),代入各项,得到一系列式子,把所有的式子加到一起,经过整理,
可求出a
n< br> ,从而求出S
n

f.用分组求和法求数列的前n项和
所谓分组 求和法就是对一类既不是等差数列,也不是等比数列的数列,若将这类数列适当拆开,
可分为几个等差、 等比或常见的数列,然后分别求和,再将其合并。
g.用构造法求数列的前n项和
所谓构造 法就是先根据数列的结构及特征进行分析,找出数列的通项的特征,构造出我们熟知
的基本数列的通项的 特征形式,从而求出数列的前n项和。)
数列的综合应用
高考要求
(1)理解 数列的概念,了解数列通项公式的意义了解递推公式是给出数列的一种方法,并能根据
11



递推公式写出数列的前几项
(2)理解等差数列的概念,掌握等差数列的通项公式与前n项和公式,并能解决简单的实际问题
(3)理解等比数列的概念,掌握等比数列的通项公式与前n项和公式,井能解决简单的实际问题
知识点归纳
1.通项与前n项和的关系:
S
n
?a
n?
?
2.迭加累加法:
?
a
1
,(n?1)
?
S
n
?S
n?1
,(n?2)

若a
n
?a
n?1
?f(n),(n?2)

则a
2
?a
1
?f(2)

a
3
?a
2
?f(3)
,………,
a
n
?a
n?1
?f(n)


?a
n
?a
1
?f(2)?f(3)??f(n)

3.迭乘累乘法:

a
n
aa
a
?g(n)

2
?g(2)

3
?g(3)
,………,
n
?g(n)

a
n?1
a
1
a
2
a
n?1
a
n
?g(2)?g(n)

a
1
?
4.裂项相消法:
a
n
?
5.错位相减法:
1111
?(?)

(An?B)(An?C)C?BAn?BAn?Ca
n
?b
n
?c
n
,
?
b
n
?
是公差d≠0等差数列,
?
c
n
?
是公比q ≠1等比数列
S
n
?b
1
c
1
?b
2< br>c
2
???b
n?1
c
n?1
?b
n
c
n

则qS
n
?b
1
c
2
? ???b
n?1
c
n
?b
n
c
n?1
< br>所以有
(1?q)S
n
?b
1
c
1
?(c< br>2
?c
3
???c
n
)d?b
n
c
n?1

6.通项分解法:
a
n
?b
n
?c
n

7.等差与等比的互变关系:
?
a
n
?
成等差数列??
b
a
?
(b>0,b?1)成等比数列

n
?
a
n
?
成等差数列?
?
ca
n
?d?
(c?0)成等差数列

?
a
n
?
成等比数 列
?
?
log
b
a
n
?
成等差数列

12
a
n
?0



?
an
?
成等比数列?
?
a
n
k
?
成等比 数列

8.等比、等差数列和的形式:
?
a
n
?
成等差数列?a
n
?An?B?S
n
?An
2
?Bn

?
a
n
?
(q?1)成等比数列?S
n
?A( q
n
?1)(A?0)

9.无穷递缩等比数列的所有项和:
S< br>n
?
?
a
n
?
(|q|<1)成等比数列?S?li m
n??
题型讲解
a
1

1?q
例1 等差数 列{a
n
}的首项a
1
>0,前n项和为S
n
,若S
m
=S
k
(m≠k),问n为何值时,S
n
最大?
解: 根据
?
a
n
?
成等差数列?a
n
?An?B?S< br>n
?An
2
?Bn
,首项a
1
>0,若m+k为偶数 ,则当
n=(m+k)2时,S
n
最大;
若m+k为奇数,当n=(m+k─1)2或n=(m+k+1)2时,S
n
最大
例2 已知关于n的不等式1(n+1)+1(n+2)+…+1(2n)>
数n都成立,求a的取值范围
解:把 1(n+1)+1(n+2)+…+1(2n)看成一个函数f(n),将问题转化为函数f( n)的最小值大于右式
∵f(n)=1(n+1)+1(n+2)+…+1(2n)
∴f(n+1)- f(n)=〔1(n+2)+1(n+3)+…+1(2n+2) 〕
-〔1(n+1)+1(n+2)+…+1(2n)〕
=1(2n+2) +1(2n+1) -1(n+1)
=1(2n+1) -1(2n+2) >0
∴f(n+1)> f(n)
∴函数f(n)是增函数,故其最小值为f(2)=712,
∴ 712>
12log
a
(a?1)?
对于一切大于1的自然
123
12
log
a
(a?1)?
,
123
解得:15
+1)2
例3 已知数列{a
n
},{b
n
}都是由正数组成的等比数列,公比分别为p,q,其中p>q且q≠1 , p≠1, 设
C
n
=a
n
+b
n
,S
n
为数列{C
n
}的前n项和,求
lim
S
n
< br>n??
S
n?1
S
n
a
1
(q?1)(p< br>n
?1)?b
1
(p?1)(q
n
?1)
解:,以下 分两种情况讨论:
?
n?1n?1
S
n?1
a
1
(q?1)(p?1)?b
1
(p?1)(q?1)
(1)当p>1时,
13



∵ p>q>0,∴ 0lim()
=0,
lim()
=0,
n??n??
q
p
n
1
p
n
两边同除以p,得:
lim
(2)当p<1时,
n
S
n
=p;
n??
S
n?1
∵ p>q>o,∴ 0limp
=0,
limq
=0, ∴
lim
n??n??
2
nn
S
n
=1
n??
S
n?1
例4 如图所示:已知抛物线y=x,点A
n的坐标为(1,0),将OA
n
分为n等分,分点为A
1
,A
2
,…A
n─1
, 过
A
1
,A
2
,…A< br>n─1
,A
n
分别作y轴的平行线,分别交抛物线于B
1
,B
2
,B
3
, …B
n─1
,B
n
,再分别以OA
1
,
A
1
A
2
,A
2
A
3
, …A< br>n─1
A
n
为宽作n个小矩形求n个小矩形的面积之和;求
面积)
解:S
n
=
limS
n
(即曲边梯形OA
nB
n

n??
1112
2
13
2
1n
?
2
??()??()????()
2

nnnnnnnn
2
=(n+1)(2n+1)(6n);
limS
n
=13
n??
本题用极限的思想求曲边梯形的面积,正是高等数学中的思想
例5 等差数 列{a
n
}中,已知公差d≠0,a
n
≠0,设方程a
r
x +2a
r+1
x+a
r+2
=0 (r∈N)是关于x的一组方程
①证明这些方程中有公共根,并求这个公共根;
②设方程a
r
x+2ar+1
x+a
r+2
=0的另一根记为m
r
,证明:数列{1( m
r
+1)}是等差数列
解:①依题意,由{a
n
}是等差数列, 有a
r
+a
r+2
=2a
r+1
(r∈N),即x=─1时,方程成立,因此方程恒有
实数根x=─1;
②设公差为d(化归 思想),先解出方程的另一根m
r
=─a
r+2
a
r
,
∴ 1(m
r
+1)=a
r
(a
r
─a
r +2
)=─a
r
(2d),
∴ 1(m
r+1
+1)─1(m
r
+1)= 〔─a
r+1
(2d)〕─〔─a
r
(2d)〕=─12,
∴ {1(m
r
+1)}是等差数列
例6 数列{a
n
}的前n项和S
n
=na+(n─1)nb,(n=1,2,…),a,b是常数,且b≠0,
①求证{a
n
}是等差数列;
②求证以(a
n
,S
n
n─1)为坐标的点P
n
都落在同一直线上,并求出直线方程;
③设a =1,b=12,C是以(r,r)为圆心,r为半径的圆(r>0),求使得点P
1
,P2
,P
3
都落在圆外的r 的取
值范围
2
2
?
a
1
,(n?1)
证明:①根据
S
n
?a
n
?
?
得a
n
=a+(n─1)? 2b,
S?S,(n?2)
n?1
?
n
14



∴{a
n
}是等差数列,首项为a,公比为2b
②由x=a
n
=a+(n─1)?2b, y=S
n
n─1=a+(n─1)b
两式中消去n,得:x─2y+a─2=0,
(另外算斜率也是一种办法)
(3)P
1
(1,0),P
2
(2,12),P
3
(3,1),它们都落在圆外的条件是:
(r─1)+r>r; (r─2)+(r─12)>r; (r─3)+(r─1)>r
∴ r的取值范围是(1,52─
2
)∪(0,1)∪(4+
6
,+∞)
例7 已知数列{a
n
}满足条件a
1
=1,a
2
=r(r>0),且{a
n
a
n+1
}是公比为q (q>0)的等比数列,设b
n
=a
2n─1
+a
2n

(n=1,2,3,…)
①求出使不等式a
n
a
n+1
+ a
n+1
a
n+2
>a
n+2
a
n+3
(n∈N) 成立的q 的取值范围;
②求b
n

lim
2222 22222
1
,其中S
n
为数列b
n
的前n项的和; n??
S
n
③设r=2─1,q=05,求数列{
192
log
2
b
n?1
}的最大项和最小项的值
log
2
b
n
解:①rq

n─1nn+1
+rq>rq, q>0 ?05
)2;
ba?a
2n?2
a
2n?1
q?a
2n
q
a
n?1
a
n?2
a
n?2
?
=q≠0
??q
?
n?1
?
2n?1
b
n
a
2n?1
?a
2n
a
2n?1?a
2n
a
n
a
n?1
a
n
n─1< br>∴ {b
n
}是首项为1+r,公比为q的等比数列,从而b
n
=(1 +r)q
当q=1时,S
n
=n(1+r),
lim
,
1
=0;
n??
S
n
当0lim< br>1
=(1─q)(1+r);
n??
S
n
当q>1时,
lim
1
=0;
n??
S
n

log
2
b
n?1
19. 2?n
=f(n)==1+1(n─202),
20.2?n
log
2b
n
当n?21时,f(n)递减,∴ f(n)?f(21)?1当n?20时,f(n)递减,∴ f(n)?f(20)?1>f(n)?─4;
∴ 当n =21时,
log
2
b
n?1
log
2
b
n?1
有最大值225;当n=20时,有最小值─4
log
2
b
n
log
2
b
n
例8 一个水池有若干出水相同的水龙头,如果所有的水龙头同时放水,那么24分钟可注满水池,
15



如果开始时全部开放以后隔相等时间关闭一个水龙头,到最后一个水龙头关闭 时,恰好注满水池,
而且关闭最后一个水龙头放水的时间恰好是关闭前一个水龙头放水时间的5倍,问最 后关闭的这个
水龙头放水多少时间?
解:设每个水龙头放水时间依次为x
1
,x
2
,…x
n
,
由已知x
2
─x
1< br>=x
3
─x
2
=x
4
─x
3
=…= x
n
─x
n─1
,
∴ {x
n
}为等差数列,又每个水龙头每分钟放水时间是1(24n),

1
(x
1
?x
2
???x
n
)?1
?x< br>1
+x
2
+…+x
n
=24n;
24n
即n(x
1
+x
n
)2=24n ?x
1
+x
n
=48, 又x
n
=5x
1
,
∴ x
n
=40即最后一个水龙头放水时间是40分钟
例9 某林场原 有森林木材量为a,木材以每年25%的增长速度增长,而每年要砍伐的木材量为r,
为使经过20年木 材存量翻两番,求每年的最大砍伐量x(取lg2=0.3)
解:用归纳法求解,
第一年存量:1.25a─x;
第二年存量:1.25(1.25a─x)─x=a?1.25─x(1+1.25);
第三 年存量:1.25?[a?1.25─x(1+1.25)]─x=a?1.25─x(1+1.25+1.25 );
……
第20年末存量:a?1.25─x(1+1.25+1.25+…+1.25) =a?1.25─4x(1─1.25)
依题意:a?1.25─4x(1─1.25)=4a,
又设y=1.25?lgy=20lg1.25=20(1─3lg2)=2
∴ y=100,即1.25=100?x=8a33
答:每年的最大砍伐量为8a33
例10 某地区现有耕地面积10000公顷,规划10年后粮食单产比现在提高22%,人均粮食占有量比
现在 提高10%,如果人口年增长率为1%,那么耕地平均每年至多只能减少多少公顷?(精确到1公顷)
解法一:以粮食单产比现在提高22%为目标建立数学模型,设现有的人口为A人,人均粮食占有量
为b 吨,平均每年减少耕地x公顷,由题意可知:
20
20
2020
20219 2020
232
2
A(1?0.01)
10
b(1?0.1)
Ab
?
4
(1?0.22)

4
10?10x
1 0
10
4
(1?0.22)?10
4
(1?0.01)
10
(1?0.1)
解得:
x?
,
10?1.22
再用二项式定理进行计算可得:x?4
解法二:以10年后人均粮食占有量比现在提高10%为目标建立数学模型,粮食单产为a吨公顷,
可得:
16



a(1?0.22)(10
4< br>?10x)
a?10
4
(1?10%)
?x?4 (公顷) ?
10
A
A(1?0.01)
例10 某城市2001年末汽车保有量为 30万辆,预计此后每年报废上一年末汽车保有量的6%,并
且每年新增汽车数量相同.为了保护城市环 境,要求该城市汽车保有量不超过60万辆,那么每年新
增汽车数量不应超过多少辆?
解:设 2001年末的汽车保有量为
a
1
,以后每年末的汽车保有量依次为
a
2
,a
3
....
,每年新增汽车
x

由题意得
a
n
?1
?0.94a
n
?x即a
n ?1
?
xx
?0.94(a
n
?)

0.060. 06
xx
)0.94
n?1
?
0.060.06
30
令a?60,解得x?(30?)?0.06
n

1?0.94
n ?1
上式右端是关于n的减函数,且当n??时,上式趋于3.6
a
n
?(3 0?
故要对一切自然数n满足a
n
?60,应有x?3.6,即每年新增汽车不应超过 3.6万辆








17

高中数学教育教学经验-高中数学各题型解题方法


高中数学求点的轨迹的方法-高中数学必修1集合例题


高中数学错题反思研究-全国高中数学联赛 陕西


高中数学那个版本难-巧用 变式教学 解高中数学疑惑


高中数学文韬-高中数学研学方案


高中数学教育教学实践改革-高中数学老教师的教育故事


高中数学发展规划学生目标-河南高中数学教课视频


高中数学求导教学-高中数学帮扶生计划



本文更新与2020-10-06 15:31,由作者提供,不代表本网站立场,转载请注明出处:https://www.bjmy2z.cn/gaokao/411117.html

高中数学数列知识点总结复习课程的相关文章

  • 爱心与尊严的高中作文题库

    1.关于爱心和尊严的作文八百字 我们不必怀疑富翁的捐助,毕竟普施爱心,善莫大焉,它是一 种美;我们也不必指责苛求受捐者的冷漠的拒绝,因为人总是有尊 严的,这也是一种美。

    小学作文
  • 爱心与尊严高中作文题库

    1.关于爱心和尊严的作文八百字 我们不必怀疑富翁的捐助,毕竟普施爱心,善莫大焉,它是一 种美;我们也不必指责苛求受捐者的冷漠的拒绝,因为人总是有尊 严的,这也是一种美。

    小学作文
  • 爱心与尊重的作文题库

    1.作文关爱与尊重议论文 如果说没有爱就没有教育的话,那么离开了尊重同样也谈不上教育。 因为每一位孩子都渴望得到他人的尊重,尤其是教师的尊重。可是在现实生活中,不时会有

    小学作文
  • 爱心责任100字作文题库

    1.有关爱心,坚持,责任的作文题库各三个 一则150字左右 (要事例) “胜不骄,败不馁”这句话我常听外婆说起。 这句名言的意思是说胜利了抄不骄傲,失败了不气馁。我真正体会到它

    小学作文
  • 爱心责任心的作文题库

    1.有关爱心,坚持,责任的作文题库各三个 一则150字左右 (要事例) “胜不骄,败不馁”这句话我常听外婆说起。 这句名言的意思是说胜利了抄不骄傲,失败了不气馁。我真正体会到它

    小学作文
  • 爱心责任作文题库

    1.有关爱心,坚持,责任的作文题库各三个 一则150字左右 (要事例) “胜不骄,败不馁”这句话我常听外婆说起。 这句名言的意思是说胜利了抄不骄傲,失败了不气馁。我真正体会到它

    小学作文