关键词不能为空

当前您在: 主页 > 数学 >

最新人教版高中数学选修4-5测试题全套及答案

作者:高考题库网
来源:https://www.bjmy2z.cn/gaokao
2020-10-07 07:00
tags:高中数学选修4-5

高中数学学科素养下的教学策略-高中数学选修2-2好难

2020年10月7日发(作者:缪镔)


最新人教版高中数学选修4-5测试题全套及答案
第一讲 不等式和绝对值不等式 < br>一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合< br>题目要求的)
1.设集合A={x|y=log
2
A.{x|-1B.{x|-3C.{x|-1D.{x|-1-5解析: 不等式4-2x-x
2
>0可转化为
x
2
+2x-4<0,解得-1-5∵A={x|-1-5x-2
3
不等式
≥1可转化为≤0,
x+1x+1
解得-1∴A∩B={x|-1答案: A
2.不等式
?
(4-2x-x
2
)},B=
?
x
?
?
?
??
?
3
≥1
?
?
,则A∩B等于( )
?
x+1
?
?

?
x+1
?
<1的解集为( )
?
?
x-1
?
B.{x|0D.{x|x<0}
A.{x|01}
C.{x|-1解析: 方法一:特值法:显然x=-1是不等式的解,故选D.
方法二:不等式等价于|x+1|<|x-1|,
即(x+1)
2
<(x-1)
2
,解得x<0,故选D.
答案: D
3.设a,b是正实数,以下不等式
2ab
①ab>,②a>|a-b|-b,
a+b
③a
2
+b
2
>4ab-3b
2
,④ab+
恒成立的序号为( )
A.①③ B.①④
2
>2
ab


C.②③
解析:
D.②④
2ab2ab2ab2

=ab,即ab≥,故 ①不正确,排除A、B;∵ab+
≥22>2,即④正确.
ab
a+b
2ab
a+b
答案: D
11
4.已知a>0,b>0,则++2ab的最小值是( )
ab
A.2
C.4
B.22
D.5
112
解析: ∵a>b,b>0,∴


,当且仅当a=b时取等号,
ab
ab
112
∴++2ab≥+2ab≥2
ab
ab
当且仅当a=b=1且
答案: C
5.设|a|<1,|b|<1,则|a+b|+|a-b|与2的大小关系是( )
A.|a+b|+|a-b|>2
B.|a+b|+|a-b|<2
C.|a+b|+|a-b|=2
D.不可能比较大小
解析: 当(a+b)(a-b)≥0时,
|a+b|+|a-b|=|(a+b)+(a-b)|=2|a|<2,
当(a+b)(a-b)<0时,
|a+b|+|a-b|=|(a+b)-(a-b)|=2|b|<2.
答案: B 11
6.设x,y∈R,a>1,b>1.若a
x
=b
y
=3, a+b=23,则+的最大值为( )
xy
A.2
C.1
3
B.
2
1
D.
2
2
·2ab=4.
ab
211
=2ab时成立,能取等号,故++2ab的最小值为4,故选C.
ab
ab
解析: ∵a
x
=b
y
=3,∴x=lo g
a
3,y=log
b
3,
1111
∴+=+=log
3
a+log
3
b
x ylog
a
3log
b
3
?a+b?
2
=log< br>3
ab≤log
3
=log
3
3=1,故选C.
4
答案: C


7.0A.|log
1

a
(1-a)|+|log
(1

a)
(1+a)|>2
B.|log
1

a
( 1-a)|<|log
(1

a)
(1+a)|
C.|log(1

a)
(1-a)+log
(1

a)
( 1+a)|<|log
(1

a)
(1-a)|+|log
(1
a)
(1+a)|
D.|log
(1

a)
(1-a)-log
(1

a)
(1+a)|>|log
(1
a)
(1-a)|-|log
(1

a)
(1+a) |
1
解析: 令a=
,代入可排除B、C、D.
2
答案: A
8.若实数a,b满足a+b=2,则3
a
+3
b
的最小值是( )
A.18
C.23
解析: 3
a
+3
b≥23
a
·3
b
=2
答案: B
9.已知|a|≠|b|,m=
A.m>n
C.m=n
解析: ∵|a|-|b|≤|a±b|≤|a|+|b|,
|a|-|b||a|-|b|
∴m=

=1,
|a-b||a| -|b|
|a|+|b||a|+|b|
n=≥
=1,∴m≤1≤n.
|a+b||a|+|b|
答案: D
10.某工厂年产值第二年比第一年增长的百 分率为p
1
,第三年比第二年增长的百分率为p
2
,第四年比
第三年 增长的百分率为p
3
,则年平均增长率p的最大值为( )
3
A.p
1
p
2
p
3

p
1
p
2
p
3
C.
3
解析: ∵(1+p)
3
=(1+p
1
)(1+p
2
)(1+p3
),
∴1+p=
3
1+p
1
+1+p
2< br>+1+p
3
?1+p
1
??1+p
2
??1+p3
?≤

3
p
1
+p
2
+p
3
B.
3< br>?1+p
1
??1+p
2
??1+p
3
?
D .2
3
|a|-|b||a|+|b|
,n=,则m,n之间的大小关系是( )
|a-b||a+b|
B.m<n
D.m≤n
B.6
4
D.3
3
a

b
=23
2
=6.
p
1
+p
2
+p
3
∴p≤
.
3
答案: B


11.若a,b,c>0,且a
2
+ 2ab+2ac+4bc=12,则a+b+c的最小值是( )
A.23
C.2
解析: a
2
+2ab+2ac+4bc
=a(a+2c)+2b(a+2c)
=(a+2c)(a+2b)

?
B.3
D.3
?
?a+2c?+?a+2b?
?
2
?

2
??
∴(a+b+c)
2
≥12,又a,b,c>0,
∴a+b+c≥23.
答案: A
1+cos 2x+8sin
2
x
π
12.当02sin 2x
A.2
C.4
B.23
D.43
2cos
2
x+8 sin
2
x1+4tan
2
x
解析: 方法一:f(x)=


2sin xcos xtan x
1
=4tan x+
≥4.
tan x
1
这里tan x>0,且tan x=时取等号.
2
1+cos 2x+8sin
2
x5-3cos 2x
方法二:f(x)=

(0<2x<π).
sin 2xsin 2x
5-3cos 2x
令μ=,有μsin 2x+3cos 2x=5.
sin 2x
μ
2
+9sin(2x+φ)=5,
∴sin(2x+φ)=
5
μ
2
+9
.
?
5
?

??
≤1,得μ
2
≥16.
2
?
μ
+9
?
∴μ≥4或μ≤-4.又μ>0.
答案: C
二、填空题(本大题共4小题,每小题4分,共16分.请把正确答案填在题中横线上)


α-β
ππ
13.已知-≤α<β≤,则的取值范围是________.
222
ππ
解析: 利用不等式的性质进行求解.由-≤α<β≤
可得.
22
π
α-β
答案: -≤<0.
22
14.设集合S= {x||x-2|>3},T={x|a解析: ∵|x-2|>3,
∴x-2>3或x-2<-3,
∴x>5或x<-1,
即S={x|x>5或x<-1}.
又∵T={x|a?
?
a<-1
∴画数轴可知a需满足
?

?
?
a+8>5
∴-3
答案: -3?x+5??x+2?
15.设x>-1,求函数y=的最小值为________.
x+1
解析: ∵x>-1,∴x+1>0,
?x+5??x+2?[?x+1?+4][?x+1?+1]
y=

x+1x+1
=(x+1)+5+
4
≥2·
x+1
4
? x+1?·
+5=9.
x+1

4
当且仅当x+1=,即x=1时,等号成立.
x+1
∴y的最小值是9.
答案: 9
16.某商品进货价每件50元,据市场调查,当销售价格(每件x元)在50< x≤80时,每天售出的件数P
10
5
=,若想每天获得的利润最多,销售价格每件应 定为____________元.
?x-40?
2
解析: 设销售价格定为每件x元(50


10
5
?x-50?
y=(x-50)·P=

?x-40?
2
设x-50=t,则010
5
t10
5
t
∴y==
2

2
?t+10?t
+20t+100
10
5
10
5


=2 500.
100
t+
+20
20+20
t
当且仅当t=10,即x=60时,y
max
=2 500.
答案: 60
三、解答题(本大题共6小题,共74分.解答时应写出必要的文字说明、证明过程或演算步骤)
x
17.(12分)已知30<x<42,16<y<24,求x+y,x-2y,的取值范围 .
y
解析: ∵30<x<42,16<y<24,
∴46<x+y<66.
∵16<y<24,
∴-48<-2y<-32,
∴-18<x-2y<10.
∵30<x<42,
111
∴<<
.
24y16
5x21
∴<<
.
4y8
ab
18. (12分)已知a,b,x,y∈R

,x,y为变量,a,b为常数,且a+b=10,+= 1,x+y的最小
xy
值为18,求a,b.
ab
?
解析: ∵x+y=(x+y)
?
?
x

y
?

bxay
=a+b++
≥a+b+2ab
yx
=(a+b)
2

bxay
当且仅当=时取等号.
yx
又(x+y)
min
=(a+b)
2
=18,
即a+b+2ab=18 ①


又a+b=10 ②
??< br>?
a=2
?
a=8
由①②可得
?

?
.
??
?
b=8
?
b=2
19.(12分)解不等式| x+1|+|x|<2.
解析: 方法一:利用分类讨论的思想方法.
3
当x≤-1时,-x-1-x<2,解得-
2
当-11
当x≥0时,x+1+x<2,解得0≤x<
.
2
31
??
因此,原不等式的解集为
?
x|-
2
2
?
.
??

方法二:利用方程和函数的思想方法.

令f(x)=|x+1|+|x|-2
2x-1?x≥0?,
?
?

?
-1?-1≤x<0?,
?
?
-2x-3?x<-1?.


作函数f(x)的图象(如图),

31
知当f(x)<0时,-
22
故原不等式的解集为
31
??
?
x|-?
.
22
??
方法三:利用数形结合的思想方法.
由绝对值的几何意义知,|x +1|表示数轴上点P(x)到点A(-1)的距离,|x|表示数轴上点P(x)到点O(0)
的距离 .
由条件知,这两个距离之和小于2.
作数轴(如图),知原不等式的解集为
31
??
?
x|-?
.
22
??



方法四:利用等价转化的思想方法.
原不等式? 0≤|x+1|<2-|x|,
∴(x+1)
2
<(2-|x|)
2
,且|x|<2,
即0≤4|x|<3-2x,且|x|<2.
∴16x
2
<(3-2x)
2
,且-2<x<2.
31
解得-<x<
.故原不等式的解集为
22
?
?
31
?
?
x
-<x<
?
.
2
??
?
2

4
20.(12分)求函数y=3x+
2
(x>0)的最值.
x
解析: 由已知x>0,
43x3x4
∴y=3x+
2
=++
2

x22x
3
3x3x4
3
≥3··
2
=3
9,
2 2x
3
3x3x429
当且仅当==
2
,即x=时,取等号. 22x3
3
294
3
∴当x=时,函数y=3x+
2
的 最小值为3
9.
3x
21.(12分)在某交通拥挤地段,交通部门规定,在此地段 内的车距d(m)正比于车速v(kmh)的平方与
车身长s(m)的积,且最小车距不得少于半个车身 长,假定车身长均为s(m),且车速为50 kmh时车距恰为
车身长s,问交通繁忙时,应规定怎样的车速,才能使此地段的车流量Q最大?
解析: 由题意,知车身长s为常量,车距d为变量.且
11
d=kv
2< br>s,把v=50,d=s代入,得k=
,把d=
s代入
2 5002
1
d= v
2
s,得v=252.所以
2 500
?
2
s?0d=
?
1
?
2 500
v
s?v>252?.
2
1

则车流量


?
1 000v
?
Q=

d+s
?
1 000v
?v>25
v
?
?
s?1+
2 500
?
2
1 000v
?03
s
2
2?.


当01 000v
50 0002
Q
1


.
33s
s
2
当v>252时,
Q
2

1 000v
1 000

2
v
?

v
?
?
1
?
s
1+
2 500
s
v

2 500
??
??

1 00025 000

.
s
1
v
s·2
v
·
2 500
v
125 000
当且仅当
v
=,即v=50时,等号成立. 即当v=50时,Q取得最大值Q
2
=.因为Q
2
>Q
1

2 500s
所以车速规定为50kmh时,该地段的车流量Q最大.
22.(14 分)已知函数f(x)=ax
2
-4(a
?
?
f?x? ?x>0?
为非零实数),设函数F(x)=
?
.
?
-f?x? ?x<0?
?

(1)若f(-2)=0,求F(x)的表达式;
(2)在(1)的条件下,解不等式1≤|F(x)|≤2;
(3)设mn<0,m+n>0,试判断F(m)+F(n)能否大于0?
解析: (1)∵f(-2)=0,∴4a+4=0,
得a=-1,∴f(x)=-x
2
+4,
2
?
?
-x+4 ?x>0?
F(x)=
?
.
2
?
x
-4 ?x<0?
?

(2)∵|F(-x)|=|F(x)|,
∴|F(x)|是偶函数,
故可以先求x>0的情况.
当x>0时,由|F(2)|=0,
故当0解不等式1≤-x
2
+4≤2,得2≤x≤3;


x>2时,解不等式1≤x
2
-4≤2,得5≤x≤6;
综合上述可知原不等式的解集为
{x|2≤x≤3或5≤x≤6或-3≤x≤-2或-6≤x≤-5}.
(3)∵f(x)=ax
2
+4,
2
?
?
ax
+4 ?x>0?
∴F(x)=
?

2
?
-ax-4 ?x<0?
?

∵mn<0,不妨设m>0,则n<0.
又m+n>0,∴m>-n>0,∴m
2
>n
2

∴F(m)+F(n)=am
2
+4-an
2
-4
=a(m
2
-n
2
),
所以:当a>0时,F(m)+F(n)能大于0,
当a<0时,F(m)+F(n)不能大于0.
第二讲 证明不等式的基本方法
一 、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合
题 目要求的)
ab
1.已知
2
>
2
,则下列不等式一定成立的是( )
cc
A.a
2
>b
2

11
C.>
bc
B.lg a>lg b
1
?b
?
1
?
a
D.
?
?
3
?< br>>
?
3
?

ab
解析: 从已知不等式入手:
2
>
2
?a>b(c≠0),其中a,b可异号或其中一个为0,由此否定A、B、
cc
C,应选D.
答案: D
11
2.若<<0,则下列结论不正确的是( )
ab
A.a
2
2

ba
C.+>2
ab
B.ab2

D.|a|+|b|>|a+b|
11
b-a
?
?

<0
?
<0
11
ab
ab
解析: 因为<<0?
?
?
?
ab
?< br>?
a<0且b<0
?
a<0,b<0


?b


由此判定A、B、C正确,应选D.
答案: D
3.用反证法证明命题“设a,b为实数,则方程x
3
+ax+b=0至少有一个实根 ”时,要做的假设是( )
A.方程x
3
+ax+b=0没有实根
B.方程x
3
+ax+b=0至多有一个实根
C.方程x
3
+ax+b=0至多有两个实根
D.方程x
3
+ax+b=0恰好有两个实根
解析: 反证法证明问题时, 反设实际是命题的否定,∴用反证法证明命题“设a,b为实数,则方程
x
2
+ax+ b=0至少有一个实根”时,要做的假设是:方程x
2
+ax+b=0没有实根.故应选A.
答案: A
4.用反证法证明命题:“三角形的内角中至少有一个不大于60°”时,反设正确的是( )
A.假设三内角都不大于60°
B.假设三内角都大于60°
C.假设三内角至多有一个大于60°
D.假设三内角至多有两个大于60°
解析: 至少有一个不大于60度是指三个内角有一个或者两个或者三个小于或等于60°.所以,反设
应该是它的对立情况,即假设三内角都大于60度.
答案: B
5.设x>0,y>0,x+y=1,x+y的最大值是( )
A.1
C.
2

2
B.2
D.
3

2
解析: ∵x>0,y>0,∴1=x+y≥2xy,
1

≥xy,
2
∴x+y≤
答案: B
6.用分析法证明:欲使①A>B,只需②CA.充分条件
C.充要条件
B.必要条件
D.既不充分也不必要条件
1
2?x+y?=2(当且仅当x=y=时取“=”).
2
解析: 分析法证明的本质是证明结论的充分条件成立,即②?①,所以①是②的必要条件.
答案: B
7.已知0


A.log
2
a>0
C.log
2
a+log
2
b<-2
1

B.2
ab
<
2
1

D.2
ba
<
2
ab
12
解析: 方法一:特值法令a=
,b=代入可得.
33
方法二:因为0所以02
a<0.
1
-1<2
a

b
<1, 2
ba
ba
又因为+
>2所以2
a

b
>4,
ab
而ab<
?
?
a+b
?
2
1
?
=,
?
2
?
4
所以log
2
a+log
2
b<-2成立.
答案: C
11
8.a>0,b>0,则“a>b”是“a->b-”成立的( )
ab
A.充分不必要条件
B.必要不充分条件
C.充要条件
D.即不充分也不必要条件
a-b
1
11
1+
?
. 解析: a-
-b+=a -b+=(a-b)
?
?
ab
?
abab
∵a>0,b>0 ,
1
11
1+
?
>0?a->b-.
∴a>b?(a- b)
?
?
ab
?
ab
11
可得“a>b”是“a-
>b-”成立的充要条件.
ab
答案: C
9.设a>0,b>0,则以下不等式中不恒成立的是( )
11
?
A. (a+b)
?
?
a

b
?
≥4
C.a
2
+b
2
+2≥2a+2b
11
?
解析: 因为(a+b)
?
2
?
a

b
?
≥2ab·
B.a
3
+b
3
≥2a b
2

D.|a-b|≥a-b
1
=4,所以A正确.
ab
a
3
+b
3
≥2ab
2
?(a-b)(a2
+ab-b
2
)≥0,但a,b大小不确定,所以B错误.

< br>(a
2
+b
2
+2)-(2a+2b)=(a-1)
2
+(b-1)
2
≥0,所以C正确.
|a-b|≥a-b?
答案: B
a
2
b
2
10.设a,b∈R

,且a≠b,P= +,Q=a+b,则( )
ba
A.P>Q
C.PB.P≥Q
D.P≤Q
|a-b|+b≥a?b?a-b?≥0,所以D正确.
a
3
+b
3
-ab?a+b?
?a+b??a
2< br>+b
2
-2ab?
?a+b??a-b?
2
a
2b
2
解析: P-Q=
+-(a+b)===
.
baababab
∵a,b都是正实数,且 a≠b,
?a+b??a-b?
2

>0,∴P>Q.
ab
答案: A
11.若函数f(x),g(x)分别是R上的奇函数、偶函数,且满足f(x)-g(x)=e< br>x
,则有( )
A.f(2)C.f(2)B.g(0)D.g(0)解析: 因为函数f(x),g(x)分别是R上的奇函数、偶函数.
所以f(-x)-g(-x)=-f(x)-g(x)=e

x

f(x)-g(x)=e
x

①②联立,解之得
e
x< br>-e

x
e
x
+e

x
f(x)=
,g(x)=-代入数值比较可得.
22
答案: D
1a
12.“a=”是“对任意的正数x,2x+≥1”的( )
8x
A.充分不必要条件
C.充要条件
a
解析: 因为2x+≥2
x
1
当a=时22a=1.
8
a
但当a=2时,22a=4,当然有2x+
≥1所以是充分不必要条件.
x
答案: A
二、填空题(本大题共4小题,每小题4分,共16分.请把正确答案填在题中横线上)
B.必要不充分条件
D.既不充分也不必要条件
a
2x·
=22a,
x





13.设a=3-2,b=6-5,c=7-6,则a,b,c的大小顺序 是__________.
解析: 用分析法比较,a>b?3+5>2+6?8+215>8+212,同理可比较得b>c.
答案: a>b>c
14.已知三个不等式:
cd
(1)ab>0;(2)-<-;(3)bc>ad.
ab
以其中两个作为条件,余下一个作为结论,为________.
解析: 运用不等式性质进行推理,从较复杂的分式不等式(2)切入,去寻觅它与(1)的联系.
cdcdcd

<-
?
>
?

>0
ababab
?
bc-ad
>0?ab·(bc-ad)>0.
ab
答案: (1)、(3)?(2);(1)、(2)?(3);(2)、(3)?(1)
1
15.若f(n)=n
2
+1-n,g(n)=n-n
2
-1,φ(n)=,则f(n),g(n),φ(n)的大小顺序为________.
2n
解析: 因为f(n)=n
2
+1-n=
1
n
2
-1+n
1
n
2
+1+n

g(n)=n-n
2
-1=
.
又因为n
2
-1+n<2n2
+1+n,
所以f(n)<φ(n)答案: g(n)>φ(n)>f(n)
16.完成反证法整体的全过程.
题目:设a
1
,a
2
, …,a
7
是1,2,3,……,7的一个排列,
求证:乘积p=(a
1-1)(a
2
-2)…(a
7
-7)为偶数.
证明:反设p为奇数,则________均为奇数.
因奇数个奇数的和还是奇数,所以有
奇数=________.
=________.
=0.
但奇数≠偶数,这一矛盾说明p为偶数.
解析: 反设p为奇数,则(a
1
-1),(a
2
-2),…,(a
7
-7)均为奇数.
因为数个奇数的和还是奇数,所以有
奇数=(a
1
-1)+(a
2
-2)+…+(a
7
-7)







=(a
1
+a
2
+…+ a
7
)-(1+2+3+…+7)=0.
但奇数≠偶数,这一矛盾说明p为偶数.
答案: (a
1
-1),(a
2
-2),…,(a
7
-7)
(a
1
-1)+(a
2
-2)+…+(a
7
-7)
(a
1
+a
2
+…+a
7
)-(1+2+3+…+ 7)
三、解答题(本大题共6个小题,共74分,解答时应写出必要的文字说明、证明过程或演算步骤) < br>17.(12分)若a2
b+b
2
c+c
2
a2
c+b
2
a+c
2
b.
证明: ∵a∴a-b<0,b-c<0,a-c<0,
于是:a2
b+b
2
c+c
2
a-(a
2
c+b
2
a+c
2
b)
=(a
2
b-a
2
c )+(b
2
c-b
2
a)+(c
2
a-c
2
b)
=a
2
(b-c)+b
2
(c-a)+c
2
(a-b)
=a
2
(b-c)-b
2
(b-c)+c
2
(a-b)-b
2
(a-b)
=(b-c)(a
2
-b< br>2
)+(a-b)(c
2
-b
2
)
=(b-c)(a-b)(a+b)+(a-b)(c-b)(c+b)
=(b-c)(a-b)[a+b-(c+b)]
=(b-c)(a-b)(a-c)<0,
∴a
2
b+b
2
c+c
2
a2+bc
2
+ca
2
.
18.(12分)已知a,b,c∈R

,且a+b+c=1.
1
??
1
??
1
?
求证:
?
?
a
- 1
??
b
-1
??
c
-1
?
≥8.
证明: ∵a,b,c∈R

,a+b+c=1,
1-ab+c
bc2bc1
∴-1===+


aaaaaa
12ac12ab
同理-1≥,-1≥
.
bbcc
由于上述三个不等式两边均为正,分别相乘,
1
??
1< br>??
1
?
2bc2ac2ab

?
?
a-1
??
b
-1
??
c
-1
?
a
·
b
·
c
=8.
1
当且仅当a=b=c=时取等号.
3
19.(12分)求证:3+8>1+10.


证明: 用分析法证明
8+3>1+10
?8+3+224>1+10+210
?224>210
?24>10.
最后一个不等式是成立的,故原不等式成立.
1+y1+x
20.(12分)若x,y>0,且x+y>2,则和中至少有一个小于2.
xy
1+y1+x
证明: 反设≥2且≥2,
xy
∵x,y>0,
∴1+y≥2x,1+x≥2y两边相加,则
2+(x+y)≥2(x+y),可得x+y≤2,与x+y>2矛盾,
1+y1+x
∴和中至少有一个小于2.
xy
21.(12分)已知a,b ,c,d都是实数,且a
2
+b
2
=1,c
2
+d
2
=1,求证|ac+bd|≤1.
证明: 证法一(综合法) 因为a,b,c,d都是实数,所以
a
2
+c
2
b
2+d
2
|ac+bd|≤|ac|+|bd|≤


22
a
2
+b
2
+c
2
+d
2

.
2
又因为a
2
+b
2
=1,c
2
+d2
=1.
所以|ac+bd|≤1.
证法二(比较法) 显然有
|ac+bd|≤1?-1≤ac+bd≤1.
先证明ac+bd≥-1.
∵ac+bd-(-1)
11
=ac+bd++

22
a
2
+b
2
c
2
+d
2
=ac+bd++< br>
22


?a+c?
2
+?b+d?
2

≥0.
2
∴ac+bd≥-1.
再证明ac+bd≤1.
11
∵1-(ac+bd)=+-(ac+bd)
22
a
2
+b
2
c
2
+d
2
=+-ac-bd
22
?a-c?
2
+?b-d?
2

≥0,
2
∴ac+bd≤1.
综上得|ac+bd|≤1.
证法三(分析法) 要证|ac+bd|≤1.
只需证明(ac+bd)
2
≤1.
即只需证明 a
2
c
2
+2abcd+b
2
d
2
≤1. ①
由于a
2
+b
2
=1,c
2
+d
2< br>=1,因此①式等价于
a
2
c
2
+2abcd+b
2
d
2
≤(a
2
+b
2
)(c
2
+d
2
)
将②式展开、化简,得(ad-bc)
2
≥0.






因为a,b,c,d都是实数,所以③式成立,即①式成立,原命题得证.
22.(14分) 数列{a
n
}为等差数列,a
n
为正整数,其前n项和为S
n
,数列{b
n
}为等比数列,且a
1
=3,b
1
=1,数 列{ba
n
}是公比为64的等比数列,b
2
S
2
=64.
(1)求a
n
,b
n

1113
(2)求证:++…+<.
S
1
S
2
S
n
4
解析: (1)设{a
n
}的公差为d,{b
n
}的公比为q,则d为正整数, a
n
=3+(n-1)d,b
n
=q
n

1< br>,
?
?
依题意有
?
?
?
Sb=?6+d? q=64,
22
ba
n
+1q
3

nd

3?
n
1?
d
=q
d
=64=2
6

ba
n
q




由(6+d)q=64知q为正有理数,故d为6的因子1,2,3,6之一,
解①得d=2,q=8.


故a
n
=3+2(n-1)=2n +1,b
n
=8
n

1
.
(2)证明:∵S
n
=3+5+…+(2n+1)=n(n+2).
1111111
∴++…+=+++…+

S
1
S
2
S
n
1×32×43×5
n?n+2?
1
?
1-
1

1

1

1

1
+ …+
1

1
?

?
32435n
n+2< br>?

2
??
1
?
1+
1

1

1
?
3

?
2
n+1n+2
?
<
4
.
2
??


第三讲 柯西不等式与排序不等式

一、选择题(本大题共12小题,每小题5分,共60分.在每小题 给出的四个选项中,只有一项是符合题目
要求的)
1.若a,b∈R,且a
2
+b
2
=10,则a+b的取值范围是( )
A.[-25,25]
C.[-10,10]
解析: 由(a
2
+b
2
)(1+1)≥(a+b)
2

所以a+b∈[-25,25],故选A.
答案: A
2
+x
2
+…+x
2
=1,y
2
+y
2
+…+y
2
=1,则xy+xy+…+xy的最大值是( ) 2.若x
12n12n1122nn
B.[-210,210]
D.[-5,5]
A.2
C.3
B.1
3
D.
3
3
2
+x
2
+…+x
2
)(y
2
+y
2
+…+y
2
)=1,故选B. 解析: 由(x
1
y1
+x
2
y
2
+…+x
n
y
n
)
2
≤(x
12n12n
答案: B
3.学校要开运动会,需要 买价格不同的奖品40件、50件、20件,现在选择商店中单价为5元、3元、
2元的奖品,则至少要 花( )
A.300元
C.320元
B.360元
D.340元
解析: 由排序原理知,反序和最小为320,故选C.
答案: C


111
4.已知a,b,c为非零实数,则(a
2
+b
2
+c
2
)
?
?
a
2

b2

c
2
?
?
的最小值为( )
A.7 B.9
C.12 D.18
解析: 由(a
2
+b
2
+c
2
)
?
111
?
a
2

b< br>2

c
2
?
?


?
?< br>a·
1
a
+b·
11
b
+c·
c
?
?
2

=(1+1+1)
2
=9,
∴所求最小值为9,故选B.
答案: B
5.设a,b,c≥0,a
2< br>+b
2
+c
2
=3,则ab+bc+ca的最大值为( )
A.0 B.1
3
C.3 D.
3
3

解析: 由排序不等式a
2
+b
2
+c
2
≥ab+bc+ac,
所以ab+bc+ca≤3.故应选C.
答案: C
6.表达式x1-y
2
+y1-x
2
的最大值是( )
A.2 B.1
C.2 D.
3
2

解析: 因为x1-y
2
+y1-x
2

?x
2
+1-x
2
??1-y
2
+y
2
?=1,故选B.
答案: B
7.已知不等式(x+y)
?
11
?
x

y< br>?
?
≥a对任意正实数x,y恒成立,则实数a的最大值为(
A.2 B.4
C.2 D.16
解析: 由(x+y)
?
11
?
x< br>+
y
?
?
≥(1+1)
2
=4,
因此不等 式(x+y)(x+y)
?
11
?
x

y
?
?
≥a对任意正实数x,y恒成立,
即a≤4,故应选B.
答案: B
)


8.设a,b,c为正数,a+b+4c=1,则a+b+2c的最大值是( )
A.5
C.23
B.3
D.
3

2
解析: 1=a+b+4c=(a)
2
+(b)
2
+(2c)
2
< br>1

[(a)
2
+(b)
2
+(2c)
2< br>]·(1
2
+1
2
+1
2
)
3
1
≥(a+b+2c)
2
·

3
∴(a+b+2c)
2
≤3,即所求为3.
答案: B
9.若a>b>c>d,x=(a+b)(c+d),y=(a+c)(b+d),
z=(a+d)(b+c),则x,y,z的大小顺序为( )
A.xC.x解析: 因a>d且b>c,
则(a+b)(c+d)<(a+c)(b+d),
得xb且c>d,
则(a+c)(b+d)<(a+d)(b+c),
得y答案: C
10.若0<a
1
<a
2,
0<b
1
<b2
且a
1
+a
2
=b
1
+b
2
=1,则下列代数式中值最大的是( )
A.a
1
b
1
+a
2
b
2

C.a
1
b
2
+a
2
b
1

B.a
1
a
2
+b
1
b
2

1
D.
2
B.yD.z解析: 利 用特值法,令a
1
=0.4,a
2
=0.6,b
1
=0.3 ,b
2
=0.7计算后作答;或根据排序原理,顺序和
最大.
答案: A
16
11.已知a,b,c,d均为实数,且a+b+c+d=4,a
2
+b
2
+c
2
+d
2
=,则a的最大值为( )
3
A.16
C.4
B.10
D.2
解析: 构造平面π:x+y+z+(a-4)=0,
16
球O:x
2
+y
2
+z
2
=-a
2

3


则点(b,c,d)必为平面π与球O的公共点,
|a-4|
从而

3
16
-a
2

3
即a
2
-2a≤0,解得0≤a≤2,
故实数a的最大值是2.
答案: D
12.x,y,z是非负实数,9x
2
+12y
2+5z
2
=9,则函数u=3x+6y+5z的最大值是( )
A.9
C.14
解析: u
2
=(3x+6y+5z)
2
< br>≤[(3x)
2
+(23y)
2
+(5z)
2
]·[ 1
2
+(3)
2
+(5)
2
]
=9×9=81,∴u≤9.
答案: A
二、填空题(本大题共4小题,每小题4分,共16分.请把正确答案填在题中横线上)
11 1
13.已知a,b,c都是正数,且4a+9b+c=3,则++的最小值是________.
abc
4ac
解析: 由4a+9b+c=3,∴
+3b+=1,
33
111
∴++

abc
4c4c4c
a+3b +a+3b+a+3b+
333333
=++

abc
43bc4ac14a3b
=+++3+++++

3a3a 3b3b33cc
5
3b4a
??
c4a
??
c3b
?






=3++
?
3
?
a3b
??
3a3c
??
3bc
?
54
≥3+
+4++2=12.
33
答案: 12
a
2b
2
14.已知a,b是给定的正数,则
2

2
的最小 值是________.
sin
α
cos
α
a
2
b
2
解析:


sin
2
α
cos2
α
=(sin
2
α+cos
2
α)
B.10
D.15
?
a
2

b
2
?
≥( a+b)
2
.
?
sin
α
cos
α
?
22
答案: (a+b)
2


15.已知点P是边长为23的等边三角形内一点,它 到三边的距离分别为x,y,z,则x,y,z所满足
的关系式为________,x
2+y
2
+z
2
的最小值是________.
解析: 利用三角形面积相等,得
13
×23(x+y+z)=×(23)
2

24
即x+y+z=3;
由(1+1+1)(x
2
+y
2
+z
2
)≥(x+y+z)
2
=9,
则x
2
+y
2
+z
2
≥3.
答案: x+y+z=3 3
16.若不等式|a-1|≥x+2y+2z,对满足x
2
+y
2
+z
2
=1的一切实数x,y,z恒成立,则实数a的取值
范围是 ________.
解析: 由柯西不等式可得(1
2
+2
2
+2
2
)(x
2
+y
2
+z
2
)≥(x+2y +2z)
2
,所以x+2y+2z的最大值为3,故
有|a-1|≥3,
∴a≥4或a≤-2.
答案: a≥4或a≤-2
三、解答题(本大题共6小题,共74分.解答时应写出必要的文字说明、证明过程或演算步骤) 17.(12分)已知a
2
+b
2
=1,x
2
+y2
=1.求证:ax+by≤1.
证明: ∵a
2
+b
2
=1,x
2
+y
2
=1.
又由柯西不等式知
∴1=(a
2
+b
2
)(x
2
+y
2
)≥(ax+by)
2

∴1≥(ax+by)
2

∴1≥|ax+by|≥ax+by,
∴所以不等式得证.
18.(12分)设x
2
+2y
2
=1,求μ=x+2y的最值.
解析: 由|x+2y|=|1·x+2·2y|≤1+2·x
2
+2y
2
=3.
x2y3
当且仅当=,即x=y=±时取等号.
13
2
所以,当x =y=
当x=y=-
3
时,μ
max
=3.
3
3
时,μ
min
=-3.
3
19.(12分) 设a≥b>0,求证:3a
3
+2b
3
≥3a
2
b+2ab
2
.


证明: ∵a≥b>0,
∴a≥a≥a≥b≥b>0 ,a
2
≥a
2
≥a
2
≥b
2
≥b
2
>0,
由顺序和≥乱序和,得
a
3
+a
3
+ a
3
+b
3
+b
3
≥a
2
b+a
2
b+a
2
a+ab
2
+ab
2
.
又a
2
b+a
2
b+a
2
a+ab
2
+ab< br>2
≥3a
2
b+2ab
2
.
则3a
3+2b
3
≥3a
2
b+2ab
2
.
20.( 12分)已知x,y,z∈R,且x+y+z=3,求x
2
+y
2
+z
2
的最小值.
解析: 方法一:注意到x,y,z∈R,且x+y+z=3为定值,
利用柯西不等式得到(x
2
+y
2
+z
2
)(1
2
+1
2
+1
2
)≥(x·1+y·1+z·1)
2
=9,
从而x
2
+y
2
+z
2
≥3,当且仅当 x=y=z=1时取“=”号,
所以x
2
+y
2
+z
2
的最小值为3.
方法二:可考虑利用基本不等式“a
2
+b
2
≥2ab”进行求解,
由x
2
+y
2
+z
2
=(x+y+z)
2
-(2xy+2xz+2yz)
≥9-(x
2
+y
2
+x
2
+z
2
+y
2
+z
2
),
从 而求得x
2
+y
2
+z
2
≥3,当且仅当x=y=z=1时 取“=”号,
所以x
2
+y
2
+z
2
的最小值为3.
21.(12分)设a,b,c为正数,且不全相等,求证:
2229
a+b

b+c

c+a

a+b+c
.
证明: 构造两组数a+b,b+c,c+a;
1
a+b

11
b+c
c+a
,则由柯西不等式得
(a+b+b+c+c+a)
?
?
1
?
a+b

1
b+c

1
?
c+a
?
?
≥(1+1+1)
2

即2(a+ b+c)
?
?
1
?
a+b

1
b+c
1
?
c+a
?
?
≥9.
于是
22 29
a+b

b+c

c+a

a+b+c
.
于是
2
a+b

2
b+c

29< br>c+a

a+b+c
.


由柯西不等式知,
①中有等号成立?
a+b

1< br>a+b
?a+b=b+c=c+a
?a=b=c.
因题设a,b,c不全相等,故①中等号不成立,于是
2229
++>
. < br>a+bb+cc+aa+b+c
b+c

1
b+c
c+a
1
c+a
x
2
x
2
x
2
1
12n
22.(14分)设x
1
,x
2
,…,x
n
∈R

,且x
1
+x
2
+…+x
n
=1,求证:++…+≥.
1+x
1
1+x
2
1+x
n
n+1
证明: 因为x
1
+x
2
+…+x
n
=1,
所以n+1= (1+x
1
)+(1+x
2
)+…+(1+x
n
). ?
x
1

x
2
+……+
x
n
?

?
1+x1+x
(n+1)
1+x
n
?12
??
?
x
1

x
2
+…+
x
n
?

?
[(1+x
1
)+(1+x
2
)+…+(1+x
n
)]
1+x
n
?
?
1+x
1
1+x
2
?
≥(x
1
+x
2< br>+…+x
n
)
2
=1,
2
x
2
x
2
x
n
1
12
所以++…+
≥.
1+x
1
1+x
2
1+x
n
n+1
222
222


第四讲 数学归纳法证明不等式
一、选择题(本大题共12小题,每小 题5分,共60分.在每小题给出的四个选项中,只有一项是符合
题目要求的)
111
1.用数学归纳法证明1+++…+
n
*
,n>1)时,第一 步应验证不等式( )
23
2-1
1
A.1+<2
2
11
C.1++<3
23
11
B.1++<2
23
111
D.1+++<3
234
11
=,故选B.
2
2
-1
3
解析: n∈N
*
,n>1,∴n取的第一个自然数为2,左端分母最大的项为
答案: B < br>1
2.用数学归纳法证明1
2
+3
2
+5
2
+…+(2n-1)
2
=n(4n
2
-1)的过程中,由n=k递推到n=k +1时,
3


等式左边增加的项为( )
A.(2k)
2

C.(2k+1)
2

B.(2k+3)
2

D.(2k+2)
2

解析: 把k+1代入(2n-1)
2
得(2k+2-1)
2

即(2k+1)
2
,选C.
答案: C
3.设凸n边形有f(n )条对角线,则凸n+1边形的对角线的条数,加上多的哪个点向其他点引的对角
线的条数f(n+1) 为( )
A.f(n)+n+1
C.f(n)+n-1
B.f(n)+n
D.f(n)+n-2
解析: 凸n+1边形的对角线的条数等于凸n边形的对角线的条数, 加上多的那个点向其他点引的
对角线的条数(n-2)条,再加上原来有一边成为对角线,共有f(n) +n-1条对角线,故选C.
答案: C
-2
26537110
4.观察 下列各等式:+=2,+=2,+=2,+=2,依照以
2-46-45-43-47-41-410- 4-2-4
上各式成立的规律,得一般性的等式为( )
8-n
n
A.+=2
n-4?8-n?-4
n+1?n+1?+5
B.+=2
?n+1?-4?n+1?-4
n+4
n
C.+=2
n-4?n+4?-4
n+1n+5
D.+=2
?n+1?-4?n+5?-4
解析: 观察归纳知选A.
答案: A
5 .欲用数学归纳法证明:对于足够大的自然数n,总有2
n
>n
3
,那么验证 不等式成立所取的第一个n
的最小值应该是( )
A.1
C.10
B.9
D.n>10,且n∈N


解析: 由2
10
=1 024>10
3
知,故应选C.
答案: C 1111
6.用数学归纳法证明:+++…+<1(n∈N
*
,n≥2)时,由“ k到k+1”,不等式左端的
n
n+1n+2
2n
变化是( )


1
A.增加一项
2?k+1?
11
B.增加和两项
2k+12?k+1?
111
C.增加和两项,同时减少一项
k
2k+12?k+1?
D.以上都不对
1111
解析: 因f(k)=
+++…+,
k
k+1k+2k+k
而f(k+1)=
11111
++…+++,
k+1k+2k+kk+k+1k+k+2
111
故f(k+1)-f(k)=+-, 故选C.
2k+12k+2
k
答案: C
7.用数学归纳法证明3
4
n
1
+5
2
n
1
(n∈N

)能被8整除时,若n=k时,命题成立,欲证当n=k+1时
命题成立,对于3
4(
k


1)

1
++
+5
2(
k


1)

1

可变形为( )
A. 56×3
4
k
1
+25(3
4
k
1
+5< br>2
k
1
)
B.3
4
×3
4
k1
+5
2
×5
2
k

C.3
4
k
1
+5
2
k
1
D.25(3
4
k
1
+5
2
k
1
)
解析: 由3
4(
k

1)

1
+52(
k

1)

1

=81×3
4< br>k

1
+25×5
2
k

1
+25 ×3
4
k

1
-25×3
4
k

1

=56×3
4
k

1
+25(3
4< br>k

1
+5
2
k

1
),故选A.
答案: A
8.用数学归纳法证明“(n+1)(n+2)……(n+n)=2
n< br>·1·3·5·(2n-1)(n∈N
*
)”时,从n=k到n=k+1等
式的 左边需增乘代数式为( )
A.2k+1
?2k+1??2k+2?
C.
k+1
解析: 左边当n=k时最后一项为2k.
左边当n=k+1时最后一项为2k+2,又第一项变为k+2,
?2k+1??2k+2?
∴需乘
.
k+1
答案: C
2k+1
B.
k+1
2k+3
D.
k+1
++
++


9.数列a
n
中,已知a
1
=1,当n≥2时,a
n
-a
n

1
=2n-1,依次计算 a
2
,a
3
,a
4
后,猜想a
n
的表达式
是( )
A.3n-2
C.3
n
1


B.n
2

D.4n-3
解析: 计算出a
1
=1,a
2
=4,a
3
=9,a
4
=16.
可猜a
n
=n
2
故应选B.
答案: B
10.用数学归纳法证明
A.k
2

B.(k+1)
2

?k+1?
4
+?k+1?
2
C.
2
D.(k< br>2
+1)+(k
2
+2)+…+(k+1)
2

解析: ∵当n=k时,左端=1+1+2+3+…+k
2

当n=k+1 时,左端=1+2+3+…+k
2
+(k
2
+1)+(k
2
+2)+…+(k+1)
2
.
故当n=k+1时,左端应在n=k的基础上加上(k
2
+1)+(k
2
+2)+…+(k+1)
2
,故应选D.
答案: D
11.用数学归纳法证明“n
2
+n *
)”的第二步证n=k+1时(n=1已验证,n=k已假设成
立)这样证明:?k+1?< br>2
+?k+1?=k
2
+3k+22
+4k+4=(k+ 1)+1,则当n=k+1时,命题成立,此种
证法( )
A.是正确的
B.归纳假设写法不正确
C.从k到k+1推理不严密
D.从k到k+1的推理过程未使用归纳假设
解析: 经过观察显然选D.
答案: D
12.把正整数按下图所示的规律排序,则从2 006到2 008的箭头方向依次为( )

A.↓→
C.↑→
B.→↓
D.→↑
1+2 +3+…+n
2

n
4
+n
2
,则当n=k+1时 左端应在n=k的基础上加上( )
2
解析: 由2 006=4×501+2,而an
=4n是每一个下边不封闭的正方形左、上顶点的数,故应选D.
答案: D
二、填空题(本大题共4小题,每小题4分,共16分.请把正确答案填在题中横线上)


13.用数学归纳法证明:1+2+3+…+n+…+3+2+1=n
2
(n∈N< br>*
)时,从n=k到n=k+1时,该式
左边应添加的代数式是___________ _____.
解析: 当n=k时,左边=1+2+3+…+k+…+3+2+1.当n=k+1时, 左边=1+2+3+…+k+
k+1+k+…+3+2+1.所以左边应添加的代数式为k+1+k=2 k+1.
答案: 2k+1
14.数列{a
n
}中,a
1
=1,且S
n
,S
n

1,
2S
1
成等 差数列,则S
2
,S
3
,S
4
分别为________,猜 想 S
n
=________.
解析: 由题意得,a
1
=1
2S
n+1
=S
n
+2S
1

3
当n=1时,2S
2
=S
1
+2S
1
∴S
2

2
7
当n=2时,2S
3
=S
2
+2S
1
∴S
3

4
15
当n=3 时,2S
4
=S
3
+2S
1
∴S
4

8
2
n
-1
归纳猜想:S
n

n
1

2

3715
2
n
-1
答案:
n

1

248
2
15.如下图所示,第n个图形 是由正n+2边形“扩展”而来(n=1,2,3,…),则第n-2个图形中共有
________个 顶点.

解析: 第一个图形是由正三角形扩展得到,三边扩展得3个顶点,加上三角形的三 个顶点共6个;
第二个图形是由正方形扩展得到,四边扩展得4个顶点,每个顶点变为两个,故增加8个 顶点,因此共有
12个顶点;第三个图形是由正五边形扩展得到,五边扩展得5个顶点,每个顶点变为3 个,故增加15个
顶点,因此共有20个顶点;…第n-2个图形是由正n边形扩展得到,n边扩展得n 个顶点,每个顶点变
为n-2个,故增加(n-2)n个顶点,因此共有n+n(n-2)=n
2
-n个顶点.
答案: n
2
-n
16.有以下四个命题:
(1)2
n
>2n+1(n≥3);
(2)2+4+6+…+2n=n
2
+n+2(n≥1);
(3)凸n边形内角和为f(n)=(n-1)π(n≥3);
(4)凸n边形对角线条数f(n)=
n?n-2?
(n≥4).
2
其中满足“假设n=k(k∈N

,k≥n
0
)时命题成立,则当n=k+ 1时命题也成立.”但不满足“当n=


n
0
(n
0
是 题中给定的n的初始值)时命题成立”的命题序号是________.
解析: 当n取第一个值时经 验证(2)(3)(4)均不成立,(1)不符合题意,对于(4)假设n=k(k∈N

,k ≥n
0
)
时命题成立,则当n=k+1时命题不成立.所以(2)(3)正确.
答案: (2)(3)
三、解答题(本大题共6小题,共74分.解答时应写出必要的文字说明、证明过程或演算步骤)
17.(12分)用数学法归纳证明:
111111
++…+=++…+.
1×23×4?2n-1?·2nn+1n+2n+n
11
证明: (1)当n=1时,左边=
=,
1×2
2
1
右边=,等式成立.
2
(2)假设当n=k时,等式成立,即
111
++…+

1×23×4
?2k-1?·2k

111
++…+,
2k
k+1k+2
则当n=k+1时,
1111
++…++

1×23×4
?2k-1?·2k?2k+1 ??2k+2?

1111
++…++

2k
?2k+1? ?2k+2?k+1k+2
1
?
111
?
1
1
++ …++
?
2k+1

2k+2
?


2k
??
k+1k+2k+3
11111
++…+++

2k
2k+12k+2k+2k+3
11
++…
?k+1?+1?k+1?+2
11
+,
?k+1?+k?k+1?+?k +1?




即当n=k+1时,等式成立.
根据(1)(2)可知,对一切n∈N

等式成立.
18.(12分)用数学归纳法证明:n(n+1)(2n+1)能被6整除.
证明: (1)当n=1时,1×2×3显然能被6整除.


(2)假设n=k(k≥1,k∈N

)时,命题成立.
即k(k+1)(2k+1)=2k
3
+3k
2
+k能被6整除.
当n=k+1时,(k+1)(k+2)(2k+3)
=2k
3
+3k
2
+k+6(k
2
+2k+1),
结合假设可知,2k
3
+3k
2
+k,6(k
2
+ 2k+1)都能被6整除,所以2k
3
+3k
2
+k+6(k
2+2k+1)能被6整除,
即当n=k+1时命题成立.
由(1)(2)知,对任意n∈N

原命题成立.
19.(12分)证明凸n边形的对角线条数:
1
f(n)=n(n-3)(n≥4).
2
1
证明: ①当n=4时,f(4)=×4×(4-3)=2.四边形有两条对角线,命题成立.
2
1< br>②假设当n=k(k≥1)时,命题成立,即凸k边形的对角线的条数f(k)=
k(k-3)( k≥4).当n=k+1时,
2
凸k+1边形是在k边形的基础上增加了一边,增加了一个顶点 A
k+1
,增加的对角线条数是顶点A
k+1
与不
相邻顶点连线再加 上原k边形的一边A
1
A
k
,增加的对角线条数为[(k+1)-3+1]= k-1,
11
f(k+1)=k(k-3)+k-1=(k
2
-k-2)
22
1

(k+1)(k-2)
2
1

(k+1)[(k+1)-3].
2
故n=k+1时,命题也成立.
故①②可知,对任何n∈N

,n≥4命题成立.
1
?
1 1
1+
??
1+
?

?
1+
20.(12 分)求证:(1+1)
?
2n-1
>2n+1.
?
3
??
5
?
??
?
1+
1
?
2
证明: 利用贝努利不等式(1+x)>1+nx(n∈N

,n≥2,x>-1,x≠0)的一个特例
??
>1+
?
2k-1
?
n
1
?
此处n=2,x=
1
?
1

,得1+
>
??2k-1
?
2k-1
?
2k-1
1
?
?
1+
1
?
?
相乘,得(1+1)
?
1+
3
?

?
2n-1
?
>
??
2k+1
,k 分别取1,2,3,…,n时,n个不等式左右两边
2k-1
35
2n+1
· ….
13
2n-1
1
??
1
?
?
1+< br>1
?
?
即(1+1)
?
1+
3
??
1+
5
?

?
2n-1
?
>2n+1成立. ??


21.(12分)是否存在常数a,b,c使等式(n
2
-1
2
)+2(n
2
-2
2
)+…+n(n
2
-n
2
)=an
4
+bn
2
+c对一切正整
数n成 立?证明你的结论.
解析: 存在.分别有用n=1,2,3代入,解方程组
a+b+c= 0,
?
?
?
16a+4b+c=3,
?
?
81a+ 9b+c=18

?
?
?
b=-
1

4< br>?
c=0
1
a=

4


下面用数学归纳法证明.
(1)当n=1时,由上式可知等式成立;
(2)假设当n=k时等式成立,则当n=k+1时,
左边=[(k+1)
2
-1
2
]+2[(k+1)
2
-2
2
]+…+k[(k+ 1)
2
-k
2
]+(k+1)·[(k+1)
2
-(k+1 )
2
]=(k
2
-1
2
)+2(k
2
-< br>k?k+1?
1
1
11
4

(k+

?
k
2
+(2k+1)·
2
2
)+…+k(k
2
-k
2
)+(2k-1)+2(2k+1)+…+k(2k+1)=k
4
?

(k+1)
?
4
?
4244
1 )
2
.
由(1)(2)得等式对一切的n∈N

均成立.
11
22.(14分)对于数列{a
n
},若a
1
=a+(a>0 ,且a≠1),a
n

1
=a
1
-.
aa
n
(1)求a
2
,a
3
,a
4
,并猜想{an
}的表达式;
(2)用数学归纳法证明你的猜想.
11
解析: ( 1)∵a
1
=a+
,a
n+1
=a
1


aa
n
111
∴a
2
=a
1

= a+-

a
1
a1
a+
a
a
2
+ 1
a
4
+a
2
+1
a
=-
2
=,
a
a
+1
a?a
2
+1?
1
a
3
=a
1

a
2
a
2
+1
a?a
2
+1?
=-
42

a
a
+a+1
a
6
+a
4
+a
2
+1
=,
a?a< br>4
+a
2
+1?
a
8
+a
6
+a< br>4
+a
2
+1
同理可得a
4

a?a6
+a
4
+a
2
+1?


猜想a
n

2
n
2

a?a

+a
2< br>n

4
+…+1?
a
2
n

2-1

a
2
-1
a
2
n

1

2
a
-1

2
n
.
a?a
-1?
a
2
n

2
-1
a
2n
+a
2
n

2
+…+a
2
+1a
2
+1-1
(2)①当n=1时,右边=
2
==a
1
,等式成立.
a
a?a
-1?
②假设当n=k时(k∈N
*
),等式成立,即
a
k

2
k
,则当n=k+1时,
a?a
-1?
22
k
1
a
+1
a?a
-1?
a
k+1
=a
1

=-
2
k
2
< br>a
k
a
a

-1
a
4
-1
a
2
k

2
-1
?a
2
+1??a
2
k

2
-1?-a
2
?a
2
k
-1?


a?a
2
k

2
-1?
=,
a?a2?
k

1?
-1?
a
2?
k
2?
-1
这就是说,当n=k+1时,等式也成立,
根据①②可知,对于一切n∈N
*

a
n

2
n
成立.
a?a
-1?


a
2
n

2
-1


全册质量检测
一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个 选项中,只有一项是符合
题目要求的)
1.已知:a+b>0,b<0,那么( )
A.a>b>-a>-b
C.a>-b>b>-a
解析: ∵a+b>0∴a>-b,b>-a
B.a>-a>b>-b
D.-a>-b>a>b


∵b<0∴-b>0>b
∴a>-b>b>-a
答案: C
2.“a+c>b+d”是“a>b且c>d”的( )
A.必要不充分条件
C.充分必要条件
B.充分不必要条件
D.既不充分也不必要条件
解析: 易得a>b且c>d时必有a+c>b+d.若a+c>b+d时,则可能有a>d且c>d,选A.
答案: A
3.a≥0,b≥0,且a+b=2,则( )
A.ab≤
1
2
B.ab≥
1
2

C.a
2
+b
2
≥2 D.a
2
+b
2
≤3
解析: 由a≥0,b≥0,且a+b=2,
∵4=(a+b)
2
=a
2
+b
2
+2ab≤2( a
2
+b
2
),
∴a
2
+b
2
≥2.选C.
答案: C
4.若 不等式|2x-3|>4与不等式x
2
+px+q>0的解集相同,则p∶q等于(
A .12∶7 B.7∶12
C.(-12)∶7 D.(-3)∶4
解析: |2x-3|>4?2x-3>4或2x-3<-4?x>
7
2

x<-< br>1
2
,∴
7
2

1
2
=-p,p= -3,
7
2
×
?
1
?

?
?< br>=q,q=-
7
2
4

∴p∶q=12∶7.
答案: A
5.若不等式x
2
+ax+1≥0对一切x∈
?
?
0,
1
2
?
?
恒成立,则a的最小值为(
A.0 B.-2
C.-
5
2
D.-3
解析: ∵x
2
+ax+1≥0
∴a≥-
?
?
x+
1x
?
?
,x∈
?
?
0,
1
2
?
?

)
)


1
5
x+
?
的最大值为-, 又∵-
??
x
?
2
5
∴a
min
=-.
2
答案: C
6.如果P=17,Q=1+15,R=5+7,那么有( )
A.P>Q>R
C.Q>R>P
解析: P
2
=17,Q
2
=16+215,
R
2
=12+235,
∴Q
2
-P
2
=215-1>0,
R
2
-P
2
=235-5>0,
∴P最小.
Q
2
-R
2
=215+4-235,
又(215+4)
2
=16+60+1615
=76+1615<76+1616=140,
(235)
2
=4×35=140,
∴235>215+4,
∴Q
2
2
,∴Q∴选D.
答案: D
111
--
7.用数学归纳法证明“对于任意x>0和正整数n,都有x
n
+x
n
2
+x
n
4
+…+
n

4

n

2

n
≥n+1”
x< br>xx
时,需验证的使命题成立的最小正整数值n
0
应为( )
A.n
0
=1
C.n
0
=1,2
B.n
0
=2
D.以上答案均不正确
B.R>P>Q
D.R>Q>P
1
解析: n
0
=1时,x+≥1+1成立,再用数学归纳法证明.
x
答案: A < br>1
8.函数y=log
2
?
x+
x-1
+5
?
(x>1)的最小值为( )
??
A.-3
C.4
B.3
D.-4


解析: ∵x>1,∴x-1>0,
?
?
x-1+
1
+6
?
∴y=log
2
?< br>≥log
?
2
?
2
x-1
??
?
= log
2
8=3,
1
?
?x-1?·
+6
?

x-1
?
1
当且仅当x-1=时等号成立,又x>0,
x-1
∴x=2时,y有最小值3,选B.
答案: B
9.“|x-1|<2”是x<3的( )
A.充分不必要条件
C.充分必要条件
B.必要不充分条件
D.既不充分也不必要条件
解析: ∵|x-1|<2?-2∵-1从而得出“|x-1|<2”是“x<3”的充分不必要条件.
答案: A
10. 设实数x
1
,x
2
,…,x
n
的算术平均值是x,a≠x( a∈R),并记p=(x
1
-x)
2
+…+(x
n
-x)< br>2
,q
=(x
1
-a)
2
+…+(x
n-a)
2
,则p与q的大小关系是( )
A.p>q
C.p=q
B.pD.不确定
222
解析: ∵p=(x
2
1
+x
2
+…+x
n
)-2(x
1
+x
2< br>+…+x
n
)·x+n·x
2
+x
2
+…+x
2
)-nx
2
, =( x
12n
222
q=(x
2
1
+x
2
+… +x
n
)-2a(x
1
+x
2
+…+x
n
)+na

∴q-p=-2a·n·x+na
2
+nx
2

=(x-a)
2
·n>0,∴q>p.
答案: B
11.已知实 数x,y满足x
2
+y
2
=1,则(1-xy)(1+xy)有( )
1
A.最小值和最大值1
2
13
C.最小值和最大值
24
解析: 1=x
2
+y
2
≥|2xy|,
3
B.最小值和最大值1
4
D.最小值1


1
∴|xy|≤,
2
(1-xy)·(1+xy)=1-(xy)
2

3
∴ 1-x
2
y
2

且1-x
2
y
2
≤1.
4
答案: B
1
12.在数列{a
n
}中,a< br>1
=,且S
n
=n(2n-1)a
n
,通过求a
2< br>,a
3
,a
4
,猜想a
n
的表达式为( )
3
1
A.
?n-1??n+1?
1
C.
?2n-1??2n+1?
1
B.
2n?2n+1?
1
D.
?2n+1??2n+2?
111
解析: 经过a
1

可算 出a
2

,a
3

,所以选C.
3
3×55×7
答案: C
二、填空题(本大题共4小题,每小题4分,共16分.请把正确答案填在题中横线上)
13 .若不等式|x-1|解析: |x-1|?
?
1-a≤0.

?
.
?
?
1+a≥4
故a≥3.
答案: [3,+∞)
14.如果x>0,y>0,x+y+xy=2,则x+y的最小值为________.
解析: 由x+y+xy=2得2-(x+y)=xy,
∴2-(x+y)≤
?

?
x+y
?
2
?

?
2
?
即(x+y)
2
+4(x+y)-8≥0,
∴x+y≤-2-23或x+y≥23-2,
又∵x>0,y>0,
∴(x+y)
min
=23-2
答案: 23-2
1
1 5.若f(n)=n
2
+1-n,g(n)=,n∈N

,则f(n)与g( n)的大小关系为________.
2n
解析: f(n)=n
2
+1-n=
11
<
==g(n).
2n
n
2
+1+n
n+n
1


答案: g(n)>f(n)
111n

16.已知f(n)=1+++…+(n∈N
*
),用数学归纳法证明f(2
n
)>时,f(2
k
1
) -f(2
k
)=________.
23n2
111
解析: ∵f(n)=1+
++…+

23n
111
∴f(2
k)=1+
++…+
k

232
111111
f(2k

1
)=1+
++…+
k

k
+< br>k
+…+
k
1

232
2
+1
2< br>+2
2

111
∴f(2
k

1
) -f(2
k
)=
k

k
+…+
k
1

2
+1
2
+2
2

答案:
111

k
+…+
k

1

2+ 12+22
k
三、解答题(本大题共6个小题,共74分,解答时应写出必要的文字说明、证明 过程或演算步骤)
17.(12分)设函数f(x)=|x-4|+|x-1|.
(1)求f(x)的最小值;
(2)若f(x)≤5,求x的取值范围.
解析: f(x)=|x-4|+|x-1|
2x-5 ?x≥4?
?
?

?
3 ?1?
?
5-2x ?x≤1?


作出y=f(x)的图象,如图所示.

则(1)f(x)的最小值为3.
(2)若f(x)≤5,则2x-5≤5,∴4≤x≤5
∴3≤5,∴1由5-2x≤5,∴0≤x≤1
∴x的取值范围为[0,5].
14
18.(12分)已知0a
1-a
证明: ∵(3a-1)
2
≥0,
∴9a
2
-6a+1≥0,
∴1+3a≥9a(1-a).


∵01+3a

≥9,
a?1-a?
1-a+4a
14

≥9,即

≥9.
a
1-aa?1-a?
19.(12分)若0证明: 假设三数能同时大于1,
即(2-a)b>1,(2-b)c>1,(2-c)a>1,
?2-a?+b
那么

2
?2-a?b>1, ①
?2-b?+c
同理
>1,
2
?2-c?+a
>1.
2
由①+②+③得3>3,
上式显然是错误的,
∴该假设不成立.


∴(2-a)b,(2-b)c,(2-c)a不能同时大于1.
20.(12分)若n是不小于2的正整数,试证:
4111112
<1-+-+…+-<.
7234
2n-1
2n2
111
证明: 1-
+-+…+- =(1+++…+
)-2(
++…+
)=
++…+,
234232 n242n
n+1n+2
2n
2n-1
2n
所以求证式等价于
41112
<
++…+
<.
7
n+1n+2
2n2
由柯西不等式,有
?
1

1
+…+
1
?
2
?
n+1n+2
2n?
[(n+1)+(n+2)+…+(2n)]>n

??
111
于是++…+

2n
n+1n+2


n
2
2n
>


?n+1?+?n+2?+…+2n3n+1

24


.
117
3+3+
n2
2
又由柯西不等式,有
111
++…+
<
2n
n+1n+2
111
?1
2
+1
2
+…+1
2
?[
++…+
] < br>?2n?
2
?n+1?
2
?n+2?
2
<
1 1
?
2


. n
?
?
n2n
?
2
故不等式得证.
111
21.(12分)设n为正整数且n>1,f(n)=1+++…+.
23n
n+2
求证:f(2
n
)>.
2
证明: 用数学归纳法.
11125
2+2
①当n=2时,f(2
2
)=1 +
++=>,所以命题成立.
234122
k+2
1111
②设n =k(k≥2)时,命题成立,即f(2
k
)>
,那么当n=k+1时,f(2
k

1
)=1+
++…+
k

k
223 2
2
+1
k+2
11111

k
+…+
k
1
>+
k
1

k
1
+…+
k1

2
2
+2
2

2

2< br>+
2

k+2
2
k
k+3?k+1?+2
= +
k

1
==, 2
k

222
2
所以当n=k+1时,命题成立,根据①及②,由数学归纳法知,原命题对任何大于1的正整 数n都成
立.
1
1+
?
2
·22.(14分)已知数列{ a
n
}满足a
1
=2,a
n

1
=2?
?
n
?
a
n
(n∈N

), (1)求a
2
,a
3
,并求数列{a
n
}的通项公式;
n7
(2)设c
n
=,求证:c
1
+c
2
+c
3
+…+c
n
<.
a
n
10
解析: (1)∵a
1
=2,
1
1+
?
2
·a
n +1
=2
?
?
n
?
a
n
(n∈N

),


1
1+
?
2
·
∴a
2
=2
?
?
1
?
a
1
=16,
1
1+
?
2
·a
3
=2
?
?
2
?
a
2
=72.
a
n
又∵=2·,n∈N


n
2
?n +1?
2
?
a
n
?

?
n
2?
为等比数列.
??
a
n+1
a
n
a
1
n

1

2

2
·2
=2< br>n
,∴a
n
=n
2
·2
n
.
n1
n1
(2)c
n


n

a
n
n·2
∴c
1
+c
2
+c
3
+…+c
n


1111

2

3
+…+
n

1·22·23·2n·2
1
1111
?
11

5
+…+
n
?
<
+++
·
4
2
?
28244
?
22
1
?
1
?
n

3
][1-
?
2
?
21
2
4
=+
·
341
1-
2
1
21
2
4
2 1
<

·
=+

341332
1-
2
67670
96×7
7

<
=,
96960
96×10
10
所以结论成立.















































.

河北省高中数学联赛获奖名单-人教版高中数学所有课本


高中数学必修五检测试卷-怎样一个月学好高中数学


高中数学太差怎样逆袭-高中数学正态分布知识


柳州高中数学老师简历-高中数学听评课反思记录


高中数学凉学长-人教版高中数学必修四教材帮


哈尔滨高中数学大纲-高中数学资格证中总结


高中数学智慧课堂教学设计的-沧州市高中数学用书


2017年北京高中数学试题及答案-河北省高中数学公式与定理



本文更新与2020-10-07 07:00,由作者提供,不代表本网站立场,转载请注明出处:https://www.bjmy2z.cn/gaokao/411748.html

最新人教版高中数学选修4-5测试题全套及答案的相关文章

  • 爱心与尊严的高中作文题库

    1.关于爱心和尊严的作文八百字 我们不必怀疑富翁的捐助,毕竟普施爱心,善莫大焉,它是一 种美;我们也不必指责苛求受捐者的冷漠的拒绝,因为人总是有尊 严的,这也是一种美。

    小学作文
  • 爱心与尊严高中作文题库

    1.关于爱心和尊严的作文八百字 我们不必怀疑富翁的捐助,毕竟普施爱心,善莫大焉,它是一 种美;我们也不必指责苛求受捐者的冷漠的拒绝,因为人总是有尊 严的,这也是一种美。

    小学作文
  • 爱心与尊重的作文题库

    1.作文关爱与尊重议论文 如果说没有爱就没有教育的话,那么离开了尊重同样也谈不上教育。 因为每一位孩子都渴望得到他人的尊重,尤其是教师的尊重。可是在现实生活中,不时会有

    小学作文
  • 爱心责任100字作文题库

    1.有关爱心,坚持,责任的作文题库各三个 一则150字左右 (要事例) “胜不骄,败不馁”这句话我常听外婆说起。 这句名言的意思是说胜利了抄不骄傲,失败了不气馁。我真正体会到它

    小学作文
  • 爱心责任心的作文题库

    1.有关爱心,坚持,责任的作文题库各三个 一则150字左右 (要事例) “胜不骄,败不馁”这句话我常听外婆说起。 这句名言的意思是说胜利了抄不骄傲,失败了不气馁。我真正体会到它

    小学作文
  • 爱心责任作文题库

    1.有关爱心,坚持,责任的作文题库各三个 一则150字左右 (要事例) “胜不骄,败不馁”这句话我常听外婆说起。 这句名言的意思是说胜利了抄不骄傲,失败了不气馁。我真正体会到它

    小学作文