关键词不能为空

当前您在: 主页 > 数学 >

选修4-5 绝对值不等式教案(绝对经典)

作者:高考题库网
来源:https://www.bjmy2z.cn/gaokao
2020-10-07 07:28
tags:高中数学选修4-5

高中数学必修4类型题归纳-高中数学设影定理

2020年10月7日发(作者:乔丹)


选修4-5 不等式选讲

第1节 绝对值不等式
【最新考纲】 1.理解绝对值的几何意义,并了解下列不等式成立的几何意义及
取等号的条件:|a+b|≤|a|+ |b|(a,b∈R);|a-b|≤|a-c|+|c-b|(a,b∈R);2.会
利用绝对值的几 何意义求解以下类型的不等式:|ax+b|≤c;|ax+b|≥c;|x-c|+
|x-b|≥a.

要 点 梳 理
1.绝对值不等式的解法
(1)含绝对值的不等式|x|a的解集
不等式
|x||x|>a
a>0
(-a,a)
(-∞,-a)∪(a,+∞)
a=0
?

(-∞,0)∪(0,+∞)
a<0
?
R
(2)|ax+b|≤c (c>0)和|ax+b|≥c (c>0)型不等式的解法
①|ax+b|≤c?-c≤ax+b≤c;
②|ax+b|≥c?ax+b≥c或ax+b≤-c;
(3)|x-a|+|x-b|≥c (c>0)和|x-a|+|x-b|≤c(c>0)型不等式的解法
①利用绝对值不等式的几何意义求解,体现了数形结合的思想;
②利用“零点分段法”求解,体现了分类讨论的思想;
③通过构造函数,利用函数的图象求解,体现了函数与方程的思想.
2.含有绝对值的不等式的性质
(1)如果a,b是实数,则|a+b|≤|a|+|b|,当且仅当ab≥0时,等号成立.
(2)如果a,b,c是实数,那么|a-c|≤|a-b|+|b-c|,当且仅当(a-b)(b-c)≥ 0时,
等号成立.
基 础 自 测
1.思考辨析(在括号内打“√”或“×”)
(1)若|x|>c的解集为R,则c≤0.( )


(2)不等式|x-1|+|x+2|<2的解集为?.( )
(3)对|a+b|≥|a|-|b|当且仅当a>b>0时等号成立.( )
(4)对|a|-|b|≤|a-b|当且仅当|a|≥|b|时等号成立.( )
(5)对|a-b|≤|a|+|b|当且仅当ab≤0时等号成立.( )
答案 (1)× (2)√ (3)× (4)× (5)√
2.不等式|x-1|-|x-5|<2的解集是( )
A.(-∞,4) B.(-∞,1) C.(1,4) D.(1,5)
解析 ①当x≤1时,原不等式可化为1-x-(5-x)<2,
∴-4<2,不等式恒成立,∴x≤1.
②当1∴x<4,∴1③当x≥5时,原不等式可化为x-1-(x-5)<2,该不等式不成立.
综上,原不等式的解集为(-∞,4).
答案 A
3.若关于x的不等式|a|≥ |x+1|+|x-2|存在实数解,则实数a的取值范围是
________.
解析 由于|x+1|+|x-2|≥|(x+1)-(x-2)|=3,
∴|x+1|+|x-2|的最小值为3.
要使原不等式有解,只需|a|≥3,则a≥3或a≤-3.
答案 (-∞,-3]∪[3,+∞)
4.若不等式|kx-4|≤2的解集为{x|1≤x≤3},则实数k=________.
解析 ∵|kx-4|≤2,∴-2≤kx-4≤2,∴2≤kx≤6.
∵不等式的解集为{x|1≤x≤3},∴k=2.
答案 2
aa
5.设 a>0,|x-1|<
3
,|y-2|<
3
,求证:|2x+y-4|aa
证明 因为|x-1|<
3
,|y-2|<
3

所以|2x+y-4|=|2(x-1)+(y-2)|
2aa
≤2|x-1|+|y-2|<
3

3
=a.


故原不等式得证.
题型分类 深度解析

考点一 绝对值不等式的解法
【例1-1】 已知函数f(x)=|x+1|-|2x-3|.
(1)在图中画出y=f(x)的图象;
(2)求不等式|f(x)|>1的解集.

?
?
3x-2,-13
2

解 (1)f(x)=
?
3
?
-x+4,x>
?
2

故y=f(x)的图象如图所示.
x-4,x≤-1,

(2)由f(x)的解析式及图象知,
当f(x)=1时,可得x=1或x=3;
1
当f(x)=-1时,可得x=
3
或x=5.
故f(x)>1的 解集为{x|1?
??
1
?
的解集为< br>x|x<
3
,或x>5
?
.
??
?
??< br>1
所以|f(x)|>1的解集为
?
x|x<
3
,或15
?
.
【例1-2】 已知函数f(x)=-x
2
+ax+4,g(x)=|x+1|+|x-1|.
(1)当a=1时,求不等式f(x)≥g(x)的解集;


(2)若不等式f(x)≥g(x)的解集包含[-1,1],求a的取值范围.
解 (1)当a=1时,f(x)=-x
2
+x+4,
f(x)≥g(x)?x
2
-x+|x+1|+|x-1|-4≤0.
①当x>1时,f(x)≥g(x)?x
2
+x-4≤0,
17-1
解之得12
.
②当-1≤x≤1时,f(x)≥g(x)?(x-2)(x+1)≤0,
则-1≤x≤1.
③当x<-1时,f(x)≥g(x)?x
2
-3x-4≤0,解得-1≤x≤4,
又x<-1,∴不等式此时的解集为空集.
?
?
?
综上所述,f( x)≥g(x)的解集为
?
x
?
-1≤x≤
?
?
?
?
17-1
?
?
.
2
?
?
(2 )依题意得:-x
2
+ax+4≥2在[-1,1]上恒成立.
则x
2
-ax-2≤0在[-1,1]上恒成立.
2
1-2≤0,
?
1-a·
则只需
?

2
(-1)-a(-1)-2≤0,
?
解之得-1≤a≤1.
故a的取值范围是[-1,1].
规律方法 1.本题利用分段函数的图形的几何直观性,求解不等式,体现了数形
结合的思想.
2.解绝 对值不等式的关键是去绝对值符号,常用的零点分段法的一般步骤:求零
点;划分区间,去绝对值符号; 分段解不等式;求各段的并集.此外,还常用绝对
值的几何意义,结合数轴直观求解.
【变式练习1】 已知函数f(x)=|x-2|.
(1)求不等式f(x)+x
2
-4>0的解集;
(2)设g(x)=-| x+7|+3m,若关于x的不等式f(x)取值范围.
解 (1)不等式f(x)+x
2
-4>0,即|x-2|>4-x
2
.
当x>2时,不等式可化为x
2
+x-6>0,解得x>2;


当x<2时,不等式可化为x
2
-x-2>0,解得x<-1.
所以原不等式的解集为{x|x>2或x<-1}.
(2)依题意,|x-2|<3m-|x+7|解集非空,
∴3m>|x-2|+|x+7|在x∈R上有解,
又|x-2|+|x+7|≥|(x-2)-(x+7)|=9,
所以3m>9,解得m>3.
故实数m的取值范围是(3,+∞).
考点二 绝对值不等式性质的应用
【例2-1】 设不等式-2<|x-1|-|x+2|<0的解集为M,a,b∈M.
1
?
1?
1
(1)证明:
?
3
a+
6
b
?< br><
4

??
(2)比较|1-4ab|与2|a-b|的大小,并说明理由.
(1)证明
?
3,x≤-2,
设f(x)=|x-1|-|x+2|=
?
-2x -1,-2
?
-3,x>1.
11
由-2<-2x-1 <0,解得-
2
2
.
11
?
11
?
因此集合M=
?

2

2
?
,则|a| <
2
,|b|<
2
.
??
1
?
1111 111
?
1
a+b
??
所以
36
?
3
|a|+
6
|b|<
3
×
2

6< br>×
2

4
.
?
11
(2)解 由(1)得a
2
<
4
,b
2
<
4
.
因为|1-4ab|
2
-4|a-b|
2

=(1-8ab +16a
2
b
2
)-4(a
2
-2ab+b
2)
=16a
2
b
2
-4a
2
-4b
2
+1
=(4a
2
-1)(4b
2
-1)>0,
所以|1-4ab|
2
>4|a-b|
2

故|1-4ab|>2|a-b|.
【例2-2】 对于任意的实数a(a≠0)和b,不等 式|a+b|+|a-b|≥M·|a|恒成立,记
实数M的最大值是m.
(1)求m的值;
(2)(一题多解)解不等式|x-1|+|x-2|≤m.


解 (1)不等式|a+b|+|a-b|≥M·|a|恒成立,
即M≤
|a+b|+|a-b|
对于任意的实数a(a≠0)和b恒成立,只要左边恒小于或等于
|a|
右边的最小值 .
因为|a+b|+|a-b|≥|(a+b)+(a-b)|=2|a|,
当且仅当(a-b)(a+b)≥0时等号成立,
|a+b|+|a-b|
≥2成立,
|a|
|a+b|+|a-b|
也就是的最小值是2,所以M≤2.
|a|
即|a|≥|b|时,
因此m=2.
(2)不等式|x-1|+|x-2|≤m,
即|x-1|+|x-2|≤2.
法一 由于|x-1|+|x-2|表示数轴上的x对应点到1和2对应点的距离之和;
15
而数轴上
2

2
对应点到1和2对应点的距离之和正好等于2, < br>?
15
?
故|x-1|+|x-2|的解集为
?
x|
2
≤x≤
2
?
.
??
法二 ①当x<1时,不等式为-(x-1)-(x-2)≤2,
11
解得x≥
2
,即
2
≤x<1.
②当1≤x≤2时,不等式为(x-1)-(x-2)≤2,
即1≤x≤2.
55
③当x>2时,不等式为(x-1)+(x-2)≤2,解得x≤
2
,即22
.
?
15
?
?
综上可知,不等式的解集是
x|
2
≤x≤
2
?
.
??
规律方法 1.求含绝 对值的函数最值时,常用的方法有三种:(1)利用绝对值的几
何意义;(2)利用绝对值三角不等式, 即|a|+|b|≥|a±b|≥|a|-|b|;(3)利用零点分区
间法.
2.含绝对值不等式的证明中,要注意绝对值三角不等式的灵活应用.
【变式练习2】 对于 任意实数a,b,已知|a-b|≤1,|2a-1|≤1,且恒有|4a-3b
+2|≤m,求实数m 的取值范围.
解 因为|a-b|≤1,|2a-1|≤1,


1
?
1
?
所以|3a-3b|≤3,
?
a-
2
?

2

??
1
?
5
?
所以|4a-3 b+2|=|(3a-3b)+
?
a-
2
?

2
|
??
1515
≤|3a-3b|+|a-
2
|+
2
≤3+
2

2
=6,
则|4a-3b+2|的最大值为6,
所以m≥|4a-3b+2|
max
=6,m的取值范围是[6,+∞).
考点三 绝对值不等式的综合应用
【例3】 已知函数f(x)=|x+1|-|x-2|.
(1)求不等式f(x)≥1的解集;
(2)若不等式f(x)≥x
2
-x+m的解集非空,求m的取值范围.

?
-3,x≤-1,
(1)f(x)=|x+1|-|x-2|=
?
2x-1,-1
?
3,x≥2.
①当x≤-1时,f(x)=-3≥1无解;
②当-1解得x≥1,则1≤x<2;
③当x≥2时,f(x)=3≥1恒成立,∴x≥2.
综上知f(x)≥1的解集为{x|x≥1}.
(2)不等式f(x)≥x
2
-x+m等价于f(x)-x
2
+x≥m,
得m≤|x+1|-|x-2|-x
2
+x有解,
又|x+1|-|x-2 |-x
2
+x≤|x|+1+|x|-2-x
2
+|x|
3
?
2
55
?
=-
?
|x|-
2
?

4

4
.
??
35
当且仅当x=时,|x+1|-|x-2|-x
2
+x=.
24
5
??
故实数m的取值范围是
?
-∞,
4?
.
??
规律方法 1.例3第(1)问分段讨论,求得符合题意的x取值范围,最后取并集.
2.(1)不等式恒成立问题,解集非空(不能成立)问题,转化为最值问题解决.
(2)本题分离参数m,利用绝对值不等式的性质求解,避免分类讨论,优化了解题
过程.


【变式练习3】 已知函数f(x)=|2x-a|+a.
(1)当a=2时,求不等式f(x)≤6的解集;
(2)设函数g(x)=|2x-1|.当x∈R时,f(x)+g(x)≥3,求实数a的取值范围.
解 (1)当a=2时,f(x)=|2x-2|+2.
解不等式|2x-2|+2≤6得-1≤x≤3.
因此f(x)≤6的解集为{x|-1≤x≤3}.
(2)当x∈R时,
1
f(x)+g(x)=|2x-a|+a+|1-2x|≥|2x-a+1-2x|+a=|1-a|+a,当 x=
2
时等号成
立,
所以当x∈R时,f(x)+g(x)≥3等价于|1-a|+a≥3.①
当a≤1时,①等价于1-a+a≥3,无解.
当a>1时,①等价于a-1+a≥3,解得a≥2.
所以a的取值范围是[2,+∞).

错误!
课后练习

A组 (时间:50分钟)
1.(1)求不等式|x-1|+|x+2|≥5的解集;
?
51
?
(2)若关于x的不等式|ax-2|<3的解集为
?
x|-
3
3
?
,求a的值.
??
解 (1)当x<-2时,不等式等价于-(x-1)-(x+2)≥5,解得x≤-3;
当-2≤x<1时,不等式等价于-(x-1)+(x+2)≥5,即3≥5,无解;
当x≥1时,不等式等价于x-1+x+2≥5,解得x≥2.
综上,不等式的解集为{x|x≤-3或x≥2}.
(2)∵|ax-2|<3,∴-1151551
当a>0时,-a
a
,-
a
=-
3
,且
a
3
无解;
当a=0时,x∈R,与已知条件不符;
515511< br>当a<0时,
a
a

a
=-
3,且-
a

3
,解得a=-3.
2.已知函数f(x)=|ax-2|.
(1)当a=2时,解不等式f(x)>x+1;


1
(2)若关于x的不等式f(x)+f(-x)<
m
有实数 解,求m的取值范围.
解 (1)当a=2时,不等式为|2x-2|>x+1,当x≥1时,不等式 化为2x-2>x+1,
解得x>3.
1
当x<1时,不等式化为2-2x>x+1,解得x<
3
.
?< br>1
?
综上所述,不等式的解集为
?
x|x>3或x<
3
?
.
??
(2)因为f(x)+f(-x)=|ax-2|+|-ax-2|≥| ax-2-ax-2|=4,所以f(x)+f(-x)的
11
最小值为4,又f(x)+f( -x)<
m
有实数解,所以
m
>4.
1
??
0,
?
则m的取值范围为.
4
?
??
3.已知函数f(x)=|x+1|-2|x-a|,a>0.
(1)当a=1时,求不等式f(x)>1的解集;
(2)若f(x)的图象与x轴围成的三角形面积大于6,求a的取值范围.
解 (1)当a=1时,f(x)>1化为|x+1|-2|x-1|-1>0.
当x≤-1时,不等式化为x-4>0,无解;
2
当-10,解得
3
当x≥1时,不等式化为-x+2>0,解得1≤x<2.
所以f(x)>1
?
?
2
?
??
.
?
的解集为x
3
?
?
?
?
x-1-2 a,x<-1,
(2)由题设可得,f(x)=
?
3x+1-2a,-1≤x≤a,< br>
?
-x+1+2a,x>a.
?
2a-1
?
所以函 数f(x)的图象与x轴围成的三角形的三个顶点分别为A
?
,0
?
,B(2 a+
?
3
?
1,0),C(a,a+1),
12
△ABC 的面积S=
2
|AB|·(a+1)=
3
(a+1)
2
.
2
由题设得
3
(a+1)
2
>6,故a>2.
所以a的取值范围为(2,+∞).
4.在平面直角坐标系中,定义点P(x
1,y
1
),Q(x
2
,y
2
)之间的“直角距离”为L (P,
Q)=|x
1
-x
2
|+|y
1
-y
2
|,已知A(x,1),B(1,2),C(5,2)三点.


(1)若L(A,B)>L(A,C),求x的取值范围;
(2)当x∈R时,不等式L(A,B)≤t+L(A,C)恒成立,求t的最小值.
解 (1)由定义得|x-1|+1>|x-5|+1,
则|x-1|>|x-5|,两边平方得8x>24,解得x>3.
故x的取值范围为(3,+∞).
(2)当x∈R时,不等式|x-1|≤|x-5|+t恒 成立,也就是t≥|x-1|-|x-5|恒成立,
因为|x-1|-|x-5|≤|(x-1)-(x-5)|=4,
所以t≥4,t
min
=4.
故t的最小值为4.
?
1
?
5.设函数f(x)=
?
2
x+1
?
+|x|( x∈R)的最小值为a.
??
(1)求a;
11
(2)已知两个正数m, n满足m
2
+n
2
=a,求
m

n
的最小 值.
?
?
1
解 (1)f(x)=
?

2
x+1,-2≤x≤0,

3?
?
2
x+1,x>0.
当x∈(-∞,0)时,f(x)单调递减;
当x∈[0,+∞)时,f(x)单调递增;
∴当x=0时,f(x)的最小值a=1. < br>1
(2)由(1)知m
2
+n
2
=1,则m
2
+n
2
≥2mn,得
mn
≥2,
由于m>0,n>0,
11

m

n
≥2
12
≥22,当且仅当m=n =
mn2
时取等号.
3

2
x-1,x<-2,
11

m

n
的最小值为22.
B组 (时间:30分钟)
6.已知函数f(x)=|2x-a|+|2x+3|,g(x)=|x-1|+2.
(1)解不等式:|g(x)|<5;
(2)若对任意的x
1
∈R,都有x
2
∈R,使得f(x
1
)=g(x
2
)成立,求实数a的取 值范围.


解 (1)由||x-1|+2|<5,得-5<|x-1|+2<5,
所以-7<|x-1|<3,
解不等式得-2<x<4,
所以原不等式的解集是{x|-2<x<4}.
(2)因为对任意的x
1
∈R,都有x
2
∈R,
使得f(x
1
)=g(x
2
)成立,
所以{y|y=f(x)}?{y|y=g(x)},
又f(x)=|2x-a|+|2x+ 3|≥|2x-a-(2x+3)|=|a+3|,g(x)=|x-1|+2≥2,
所以|a+3|≥2,
解得a≥-1或a≤-5,
所以实数a的取值范围是{a|a≥-1或a≤-5}.
7.已知函数f(x)=|x-2|,g(x)=|x+1|-x.
(1)解不等式f(x)>g(x);
(2)若存在实数x,使不等式m-g(x)≥f(x)+x(m∈R)成立,求实数m的最小值.
解 (1)原不等式f(x)>g(x)化为|x-2|+x>|x+1|,
当x<-1时,-(x-2)+x>-(x+1),
解得x>-3,即-3当-1≤x≤2时,-(x-2)+x>x+1,
解得x<1,即-1≤x<1.
当x>2时,x-2+x>x+1,解得x>3,即x>3.
综上所述,不等式f(x)>g(x)的解集为{x|-33}.
(2)由m-g(x)≥f(x)+x(m∈R)可得m≥|x-2|+|x+1|,
由题意知m≥(|x-2|+|x+1|)
min

∵|x-2|+|x+1|≥|x-2-(x+1)|=3,
∴m≥3,故实数m的最小值是3.
8.已知不等式|x-m|<|x|的解集为(1,+∞).
(1)求实数m的值;
a-5
?
1
??
m
?
a+2
(2)若不等式x
<
?
1+
x
?

?
1-
x
?
<
x
对x∈(0,+∞)恒成立,求实数a的取值
????
范围.


解 (1)由|x-m|<|x|,得|x-m|
2
<|x |
2
,即2mx>m
2

又不等式|x-m|<|x|的解集为(1,+∞),
则1是方程2mx=m
2
的解,解得m=2(m=0舍去).
a-5
?
1
??
m
?
a+2
(2)∵m=2,∴不等式
x
<
?
1+
x
?

?
1-
x?
<
x
对x∈(0,+∞)恒成立等价于不
????
等式a-5 <|x+1|-|x-2|?
2x-1,0设f(x)=|x+1|-|x-2|=
?

3,x≥2,
?
当0则-1当x≥2时,f(x)=3.
因此函数f(x)的值域为(-1,3].
?
a-5≤-1,
从而原不等式等价于
?
解得1?
a+2>3,
所以实数a的取值范围是(1,4].

2016高中数学竞赛联赛-如何做好高中数学立体几何


高中数学学考函数压轴题-2018全国高中数学联赛山东


高中数学中的五心-高中数学必修五1.1.1正弦定理教案


吉林省高中数学学哪些书-高中数学必修1 4公式


高中数学新课标研讨交流活动-全国高中数学科普竞赛


高中数学提问方法-2017甘肃省高中数学联赛


高中数学必修1教学光盘-高中数学几何分类讨论


教师述职报告 高中数学教师-高中数学课件微盘



选修4-5 绝对值不等式教案(绝对经典)的相关文章