关键词不能为空

当前您在: 主页 > 数学 >

高中数学-数列公式及解题技巧

作者:高考题库网
来源:https://www.bjmy2z.cn/gaokao
2020-10-07 10:20
tags:高中数学数列视频

高中数学学科本质属性-高中数学怎么能讲的有意思

2020年10月7日发(作者:施乃良)


数列求和的基本方法和技巧

除了等差数列和等比数列有求和公式外,大部分数列的求和都需要一定的技巧. 下面,就几个历届高
考数学来谈谈数列求和的基本方法和技巧.

一、利用常用求和公式求和
利用下列常用求和公式求和是数列求和的最基本最重要的方法.
1、 等差数列求和公式:
S
n
?
n(a
1
?a
n
)
n(n?1)< br>?na
1
?d

22
(q?1)
?
na
1
?
n
2、 等比 数列求和公式:
S
n
?
?
a
1
(1?q)
a
1
?a
n
q

?(q?1)
?
1?q
?
1?q
自然数方幂和公式:
n
11
2
3、
S
n
?
?
k?n(n?1)
4、
S
n
?
?
k?n(n?1)(2n?1)

6
2
k?1
k?1
n
5、
S
n
?
1
3
k?[n(n?1)]
2

?
2
k?1
n
[例]
求和1+x
2
+x
4
+x
6
+…x
2n+4
(x≠0)
解: ∵x≠0
∴该数列是首项为1,公比为x
2
的等比数列而且有n+3项
当x
2
=1 即x=±1时 和为n+3

评注:

(1)利用等比数列求和公式.当公比是用字母表示时,应对其是否为1进行讨论,如 本
题若为“等比”的形式而并未指明其为等比数列,还应对x是否为0进行讨论.
(2)要弄清数列共有多少项,末项不一定是第n项.
对应高考考题:设数列1,(1+2),…,(1+2+



2??2
2n?1
),……的前顶和为
s
n
,则
s
n
的值。
第 1 页 共 17 页
1



二、错位相减法求和

错位相减法求和在高考中占有相当重要的位置,近 几年来的高考题其中的数列方面都出
了这方面的内容。需要我们的学生认真掌握好这种方法。这种方法是 在推导等比数列的前n
项和公式时所用的方法,这种方法主要用于求数列{a
n
· b
n
}的前n项和,其中{ a
n
}、{ b
n
}
分别是等差数列和等比数列.求和时一般在已知和式的两边都乘以组成这个数列的等比数列

的公比
q
;然后再将得到的新和式和原和式相减,转化为同倍数的等比数列求和,这种 方法
就是错位相减法。

23n?1
[

] 求和:
S
n
?1?3x?5x?7x?????(2n?1)x

x?1
)………………………①
n?1
解:由题可知,{
(2n?1)x
n?1< br>}的通项是等差数列{2n-1}的通项与等比数列{
x
}的通项之积
234 n

xS
n
?1x?3x?5x?7x?????(2n?1)x
… ……………………. ②
(设制错位)

234n?1n
①-②得
(1?x)S
n
?1?2x?2x?2x?2x?????2x?(2n?1)x
(错位相减

1?x
n?1
?(2n?1)x
n
再利用等比数列的求和公式得:
(1?x)S
n
?1?2x?
1?x
(2n?1)x
n?1
?(2n?1)x
n
?(1?x)

S
n
?

2
(1?x)
注意、1 要考虑 当公比x为值1时为特殊情况
2 错位相减时要注意末项
此类题的特点是所求数列是由一个等差数列与一个等比数列对应项相乘。
对应高考考题 :
设正项等比数列
?
a
n
?
的首项
a
1< br>?
1
,前n项和为
S
n
,且
2
2
1 0
S
30
?(2
10
?1)S
20
?S
1 0
?0
。(Ⅰ)求
?
a
n
?
的通项; (Ⅱ)求
?
nS
n
?
的前n项和
T
n


三、反序相加法求和
这是推导等差数列的前n项和公式时所用的方法,就是将一个数列倒过来 排列(反序),再把它与原
数列相加,就可以得到n个
(a
1
?a
n
)
.
012nn
[

] 求证:
C
n< br>?3C
n
?5C
n
?????(2n?1)C
n
?( n?1)2

012n
证明: 设
S
n
?C
n?3C
n
?5C
n
?????(2n?1)C
n
……… ………………….. ①
把①式右边倒转过来得
nn?110
S< br>n
?(2n?1)C
n
?(2n?1)C
n
?????3C< br>n
?C
n

(反序)

第 2 页 共 17 页
2


mn?m
又由
C
n
?C
n
可得
01n?1n

S
n
?(2n?1)C
n
?(2n?1)C
n
?? ???3C
n
?C
n
…………..…….. ②
01n?1nn
①+②得
2S
n
?(2n?2)(Cn
?C
n
?????C
n
?C
n
)?2(n? 1)?2

(反序相加)

n

S
n
?(n?1)?2

四、分组法求和
有一类数列,既 不是等差数列,也不是等比数列,若将这类数列适当拆开,可分为几个等差、等比或
常见的数列,然后分 别求和,再将其合并即可.
若数列
?
a
n
?
的通项公式为
c
n
?a
n
?b
n
,其中
?
a< br>n
?
,
?
b
n
?
中一个是等差数列,另一个 是等比
数列,求和时一般用分组结合法。
1111
[

]
:求数列
1,2,3,4?
的前n项和;
24816
分析:数列的通项公式 为
a
n
?n?
和时一般用分组结合法;
[解] :因为
a
n
?n?
1
,所以
n
2
1?
1
?
??
n,
,而数列
?
n
?分别是等差数列、等比数列,求
2
n
?
2
?
1111< br>s
n
?(1?)?(2?)?(3?)???(n?
n
)

248
2
1111

?(1?2?3???n)?(?????
n
)
(分组)
248
2
前一个括号内是一个等比数列的和,后一个括号内是一个等差数列的和,因此

11
(1?
n
)
n(n?1)
2
n2
?n1
2

????
n
?1

1
22
2
1?
2


五、裂项法求和
这是分解与组合思想在数列求和中的具体应用. 裂项法的实质是将数列中的 每项(通项)分解,然后
重新组合,使之能消去一些项,最终达到求和的目的. 通项分解
(裂项)
如:
sin1
?
??
?tan(n?1 )?tann
(1)
a
n
?f(n?1)?f(n)
(2)
cosn
?
cos(n?1)
?
第 3 页 共 17 页
3


(2n)
2
111
111
?1?(?)

??
(3)
a
n
?
(4)
a
n?
(2n?1)(2n?1)22n?12n?1
n(n?1)nn?1
(5)< br>a
n
?
1111
?[?]

n(n?1)(n?2) 2n(n?1)(n?1)(n?2)
1
,
1
2?3
1
n? n?1
1
1?2
?
,???,
1
n?n?1
,?? ?
的前n项和. [

] 求数列
1?2
解:设
a
n
??n?1?n

(裂项)

1
n?n?1

S
n
?
1
2?3
?????

(裂项求和)


(2?1)?(3?2)?????(n?1?n)


n?1?1

小结:此类变形的特点是将原数列每一项拆为两项之后,其中中间的大 部分项都互相抵消了。只剩下有限
的几项。
注意: 余下的项具有如下的特点
1余下的项前后的位置前后是对称的。
2余下的项前后的正负性是相反的。
[
练习
] 在数列{a
n
}中,
a
n
?
和.
2
12 n
,又
b
n
?
,求数列{b
n
}的前n项的
??????
a?a
n?1n?1n?1
nn?1
第 4 页 共 17 页
4




六、合并法求和
针对 一些特殊的数列,将某些项合并在一起就具有某种特殊的性质,因此,在求数列的和时,可将这
些项放在 一起先求和,然后再求S
n
.
[

] 在各项均为正数的等比数 列中,若
a
5
a
6
?9,求log
3
a
1
?log
3
a
2
?????log
3
a
1 0
的值.
解:设
S
n
?log
3
a
1< br>?log
3
a
2
?????log
3
a
10

由等比数列的性质
m?n?p?q?a
m
a
n
?a
p
a
q

(找特殊性质项)

和对数的运算性质
log
a
M?lo g
a
N?log
a
M?N

S
n
? (log
3
a
1
?log
3
a
10
)?( log
3
a
2
?log
3
a
9
)???? ?(log
3
a
5
?log
3
a
6
)
(合并求和)


(log
3
a1
?a
10
)?(log
3
a
2
?a
9
)?????(log
3
a
5
?a
6
)


log
3
9?log
3
9?????log
3
9

=10
数列的求和方法多种多样,它在高考中的重要性也显 而易见。我们的学生在学习中必须要掌握好
几种最基本的方法,在解题中才能比较容易解决数列问题。


数列通项公式的十种求法

一、公式法
n
例1 已知数列
{a
n
}
满足
a
n? 1
?2a
n
?3?2

a
1
?2
,求数列
{a
n
}
的通项公式。
a
n?1
a
n< br>3
a
n?1
a
n
3
a
n
a
1
2
????
{}
,则,故数列是以
??1
2
n? 1
2
n
22
n?1
2
n
2
2
n< br>2
1
2
a
3
3
?1?(n?1)
为首项,以 为公差的等差数列,由等差数列的通项公式,得
n
,所以数列
{a
n
}
的通项公
n
2
22
31
n
式为
a
n
?(n?)2

22
n
n?1
解:
a
n?1
?2a
n
?3?2
两边除以
2
,得
n评注:本题解题的关键是把递推关系式
a
n?1
?2a
n
?3? 2
转化为
a
n?1
a
n
3
a
n
? ?
{}
是等差数,说明数列
2
n?1
2
n
2
2
n
列,再直接利用等差数列的通项公式求出
a
n
3
?1 ?(n?1)
,进而求出数列
{a
n
}
的通项公式。
n
22
第 5 页 共 17 页
5



二、累加法
例2 已知数列
{a
n
}
满足
a< br>n?1
?a
n
?2n?1,a
1
?1
,求数列
{a
n
}
的通项公式。
解:由
a
n?1
?a< br>n
?2n?1

a
n?1
?a
n
?2n?1

a
n
?(a
n
?a
n?1
)?(a< br>n?1
?a
n?2
)?
L
?(a
3
?a2
)?(a
2
?a
1
)?a
1
?[2(n?1 )?1]?[2(n?2)?1]?
L
?(2?2?1)?(2?1?1)?1
?2[ (n?1)?(n?2)?
L
?2?1]?(n?1)?1

(n?1)n< br>?2?(n?1)?1
2
?(n?1)(n?1)?1
?n
2
2
所以数列
{a
n
}
的通项公式为
a
n
? n

评注:本题解题的关键是把递推关系式
a
n?1
?a
n
?2n?1
转化为
a
n?1
?a
n
?2n?1< br>,进而求出
(a
n
?a
n?1
)?(a
n?1
?a
n?2
)?L?(a
3
?a
2
)?(a
2< br>?a
1
)?a
1
,即得数列
{a
n
}
的通项公式。
n
例3 已知数列
{a
n
}
满足
a
n?1
?a
n
?2?3?1,a
1
?3
,求数 列
{a
n
}
的通项公式。
解:由
a
n?1
?a
n
?2?3
n
?1

a
n?1
?a
n
?2?3
n
?1

a
n
?(a
n
?a
n?1
)?(a
n?1
?a
n?2
)?L
?(a
3
?a
2
)?(a
2
?a
1
)?a
1
?(2?3
n?1
?1)?(2?3
n?2
?1)?
L
?(2?3
2
?1)?(2?3
1
?1)?3
?2(3
n?1
?3
n?2
?
L
?3
2< br>?3
1
)?(n?1)?3
3(1?3
n?1
)
?2 ?(n?1)?3
1?3
?3
n
?3?n?1?3
?3
n< br>?n?1
n
所以
a
n
?3?n?1.

< br>nn
评注:本题解题的关键是把递推关系式
a
n?1
?a
n< br>?2?3?1
转化为
a
n?1
?a
n
?2?3?1< br>,进而求出
a
n
?(a
n
?a
n?1
)?( a
n?1
?a
n?2
)?L?(a
3
?a
2
)?(a
2
?a
1
)?a
1
,即得数列
{an
}
的通项公式。
n
例4 已知数列
{a
n
}
满足
a
n?1
?3a
n
?2?3?1,a
1?3
,求数列
{a
n
}
的通项公式。
第 6 页 共 17 页
6


n
n?1
解:
a
n?1?3a
n
?2?3?1
两边除以
3
,得
a
n? 1
a
n
21

???
3
n?1
3
n
33
n?1

a
n?1
a
n
21,故
???
3
n?1
3
n
33
n?1
a
n
a
n
a
n?1
a
n?1
a
n?2
a
n?2
a
n?3
a
2
a
1
a
1
?(?)?(?)?(?)?
L
?(?
1
)?
nnn?2n?2n?32
33a
n?1
a
n?1
333333< br>212121213
?(?
n
)?(?
n?1
)?(?
n?2
)?
L
?(?
2
)?
333333333
2(n?1)11111
??(
n
?
n
?
n?1
?
n?2
?
L
?
2
)?1
333333
< br>1
n?1
(1?3)
a
n
2(n?1)
3
n
2n11
因此
n
?

??1???
331?33 22?3
n

a
n
?
211
?n?3
n< br>??3
n
?.

322
a
n?1
a
n
21
?
n
??
n?1
,进而求出
n?1
3333
n
评注:本题解题的关键是把递推关系式
a
n?1
?3a< br>n
?2?3?1
转化为
(
a
n
a
n?1a
n?1
a
n?2
a
n?2
a
n?3
a
2
a
1
a
1
?
a
n
?
,即得数列
?)?(?)?(?)?L?(?)?
?
n
?
的通项公式 ,最后再求
3
n
3
n?1
3
n?1
3
n? 2
3
n?2
3
n?3
3
2
3
1
3
?
3
?
数列
{a
n
}
的通项公式。
第 7 页 共 17 页
7



三、累乘法
n
例5 已知数列
{a
n
}
满足
a
n? 1
?2(n?1)5?a
n
,a
1
?3
,求数列
{ a
n
}
的通项公式。
n
解:因为
a
n?1
?2(n?1)5?a
n
,a
1
?3
,所以
a
n
?0
,则
a
n?1
?2(n?1)5
n
,故
a
n
a
n
?
a
n
a
n?1
a< br>a
??
L
?
3
?
2
?a
1
a
n?1
a
n?2
a
2
a
1
?[2(n? 1?1)5
n?1
][2(n?2?1)5
n?2
]?
L
? [2(2?1)?5
2
][2(1?1)?5
1
]?3

? 2
n?1
[n(n?1)?
L
?3?2]?5
(n?1)?(n?2 )?
L
?2?1
?3
?3?2
n?1
n(n?1)
2
?5?n!
n?1
所以数列
{a
n
}
的通项公式 为
a
n
?3?2?5
n(n?1)
2
?n!.
< br>n
评注:本题解题的关键是把递推关系
a
n?1
?2(n?1)5?a
n
转化为
a
n?1
?2(n?1)5
n
,进而求出
a
n
a
n
a
n?1
a
a
??L?
3
?
2
?a
1
,即得数列
{a
n
}
的通项公式。
a
n?1
a
n?2
a
2
a
1
例6 (2004年全国I第15题,原题是填空题)已知数列
{a
n
}
满足
a
1
?1,a
n
?a
1
?2a
2
?3a
3
?L?(n?1)a
n?1
(n?2)
,求
{a
n
}
的通项公式。
解:因为
a
n
?a
1
?2a
2
?3a
3
?L?(n?1)a
n?1
(n?2)< br>
所以
a
n?1
?a
1
?2a
2
?3a
3
?L?(n?1)a
n?1
?na
n

用②式-①式得
a
n?1
?a
n
?na
n
.


a
n?1
?(n?1)a
n
(n?2)




a
n?1
?n?1(n?2)

a
n
a
n
a
n?1
a
n!
??L?3
?a
2
?[n(n?1)?L?4?3]a
2
?a
2
.

a
n?1
a
n?2
a
2
2
第 8 页 共 17 页
所以
a
n
?

8



a
n
?a
1
?2a
2
?3a
3
?L?(n?1)a
n?1
(n?2)

取n?2得a
2
? a
1
?2a
2
,则
a
2
?a
1
, 又知
a
1
?1
,则
a
2
?1
,代入③得< br>a
n
?1?3?4?5?L?n?
所以,
{a
n
}< br>的通项公式为
a
n
?
n!

2
n!
.

2
a
n?1
?n?1(n?2 )
,进而求出
a
n
评注:本题解题的关键是把递推关系式
a
n?1
?(n?1)a
n
(n?2)
转化为
a
n
a
n?1
a
??L?
3
?a
2
,从而可得当
n?2时,a
n
的表达式,最后再求出数列
{a
n
}
的通项 公式。
a
n?1
a
n?2
a
2
四、待定系数法
n
例7 已知数列
{a
n
}
满足
a
n? 1
?2a
n
?3?5,a
1
?6
,求数列
?
a
n
?
的通项公式。
解:设
a
n?1
?x?5
n?1
?2(a
n
?x?5
n
)

nn?1n
n

a
n?1
?2a
n
?3?5
代入④式,得
2a
n
?3?5?x?5?2a
n
?2x?5
,等式两边消去
2a
n
,得
3?5
n
?x?5
n ?1
?2x?5
n
,两边除以
5
n
,得
3?5x? 2x,则x??1,
代入④式得
a
n?1
?5
n?1
?2( a
n
?5
n
)


1
n
a< br>n?1
?5
n?1
n1

a
1
?5?6?5 ?1?0
及⑤式得
a
n
?5?0
,则则数列
{a
n
?5}
是以
a
1
?5?1
为首项,
?2

n
a
n
?5
nn?1n?1n
以2为公比的等比数列,则< br>a
n
?5?2
,故
a
n
?2?5

n
评注:本题解题的关键是把递推关系式
a
n?1
?2a
n
?3?5
转化为
a
n?1
?5
n?1
?2(a
n
?5
n
)
,从而可知数列
{a
n
?5
n< br>}
是等比数列,进而求出数列
{a
n
?5
n
}
的通项公式,最后再求出数列
{a
n
}
的通项公式。
n
例8 已知数列
{a
n
}
满足
a
n? 1
?3a
n
?5?2?4,a
1
?1
,求数列
{a
n
}
的通项公式。
解:设
a
n?1
?x?2n?1
?y?3(a
n
?x?2
n
?y)
n

a
n?1
?3a
n
?5?2?4
代入⑥式 ,得
3a
n
?5?2
n
?4?x?2
n?1
?y ?3(a
n
?x?2
n
?y)

第 9 页 共 17 页
9


整理得
(5?2x)?2
n
?4?y?3x?2
n
?3y


?
?
5?2x?3x
?< br>x?
4?y?3y
,则
?
5
,代入⑥式得
?
?
y?2
a
?1
n?1
?5?2
n
?2?3(a
n
?5?2
n
?2)


a
1
1
?5?2?2?1?12?13?0
及⑦式, < br>得
a
n
?2?0
,则
a
n?1
?5?2n?1
?2
n
?5?2
a
n
?3

n
?5?2?2
故数列
{a?2
n
?2}
是以
a< br>1
n
?5
1
?5?2?2?1?12?13
为首项,以3为公 比的等比数列,
a
n
?5?2
n
?2?13?3
n?1,则
a
n
?13?3
n?1
?5?2
n
?2< br>。
评注:本题解题的关键是把递推关系式
a
n
n?1
?3a
n
?5?2?4
转化为
a
n?1
?5?2
n?1< br>?2?3(a
n
?5?2
n
?2)
,从而可知数列
{ a
n
?5?2
n
?2}
是等比数列,进而求出数列
{an
?5?2
n
?2}
的通项公式,最后再求数列
{a
n
}
的通项公式。
例9 已知数列
{a
a
2
n< br>}
满足
n?1
?2a
n
?3n?4n?5,a
1?1
,求数列
{a
n
}
的通项公式。
解:设
a(n?1)
2
?y(n?1)?z?2(a
2
n?1
?x
n
?xn?yn?z)


a?3n
2
n?1?2a
n
?4n?5
代入⑧式,得
2a
n
?3n2
?4n?5?x(n?1)
2
?y(n?1)?z?2(a
n
?xn
2
?yn?z)
,则
2a
n
?(3?x)n
2
?(2x?y?4)n?(x?y?z?5)?2a
n
?2xn
2
?2yn?2z

等式两边消去
2a
2
n
,得
( 3?x)n?(2x?y?4)n?(x?y?z?5)?2xn
2
?2yn?2z

?
3?x?2x
解方程组
?
?
x?3
?
2 x?y?4?2y
,则
?
?
y?10
,代入⑧式,得
?< br>?
x?y?z?5?2z
?
?
z?18
a
n?1?3(n?1)
2
?10(n?1)?18?2(a
n
?3n
2
?10n?18)

第 10 页 共 17 页

10


22

a
1
?3?1?10?1?18? 1?31?32?0
及⑨式,得
a
n
?3n?10n?18?0
< br>a
n?1
?3(n?1)
2
?10(n?1)?18
2
{a?3n?10n?18}
为以则,故数列
?2
n
2
a
n
?3n?10n?18
2n?1
a
1
?3?1
2
?10?1?18?1?31?32
为首项,以2为公比的等比数列,因此
a
n
?3n?10n?18?32?2

n?42

a
n
?2 ?3n?10n?18

2
评注:本题解题的关键是把递推关系式
a
n?1
?2a
n
?3n?4n?5
转化为
a
n?1
?3(n?1)
2
?10(n?1)?18?2(a
n
?3n
2< br>?10n?18)
,从而可知数列
{a
n
?3n
2
? 10n?18}
是等比数
2
列,进而求出数列
{a
n
?3n ?10n?18}
的通项公式,最后再求出数列
{a
n
}
的通项公式 。
五、对数变换法
n5
例10 已知数列
{a
n
}< br>满足
a
n?1
?2?3?a
n

a
1
?7
,求数列
{a
n
}
的通项公式。
n5
n5
解:因为
a
n?1
?2?3?a
n
,a
1
?7
,所以
a
n
?0,a
n?1
?0
。在
a
n?1
?2?3?a
n
式两边取常用对数得
lga
n?1
?5lga
n
?nlg3?lg2

11


lga
n?1
?x(n?1)?y?5(lga
n
?xn?y)

将⑩式代入

11式,得
5lga
n
?nlg3 ?lg2?x(n?1)?y?5(lga
n
?xn?y)
,两边消去
5lg a
n
并整理,得
(lg3?x)n?x?y?lg2?5xn?5y
,则 < br>lg3
?
x?
?
?
lg3?x?5x
?
4< br>,故
?
?
lg3lg2
x?y?lg2?5y
?
?
y??
?
164
?
代入

11式,得
lg a
n?1
?

lga
1
?

lga
n
?
lg3lg3lg2lg3lg3lg2
(n?1)???5(lga
n
?n??)


12
41644164
lg3lg 3lg2lg3lg3lg2
?1???lg7??1???0


12式,
41644164
lg3lg3lg2
n???0

4164
第 11 页 共 17 页
11


lga
n?1
?

lg3lg3lg2
(n?1)??
4164
?5

lg3lg3lg2
lga
n
?n??
4164< br>所以数列
{lga
n
?
lg3lg3lg2lg3lg3lg2
为首项,以5为公比的等比数列,则
n??}
是以
lg7???
41644 164
lg3lg3lg2lg3lg3lg2
n?1
lga
n
?n ???(lg7???)5
,因此
41644164
lga
n
?(l g7?
lg3lg3lg2
n?1
lg3lg3lg2
??)5?n??4164464
1
4
1
6
1
4
n?1
n
4
?(lg7?lg3?lg3?lg2)5
?[lg(7?3?3?2)]51
4
1
16
1
4
1
4
1
16
1
4
n?1
?lg3?lg3?lg2
1
16
1< br>4
n
4
1
16
1
4
?lg(3?3?2)< br>n
4
1
16
1
4

?lg(7?3?3?2 )5
n?1
?lg(3?3?2)
?lg(7
5n?1
?3
?lg(7
5n?1
?3
n?1
5
n?1
?n
4< br>?3
5
n?1
?1
16
?2
)
5
n ?1
?1
4
)
5n?4n?1
16
?2
5
n?1
?1
4

a
n
?7
5
?3
5n?4n?1
16
?2
5
n?1
?1
4
n5
评注:本题解题的关键是通过对数变换把递推关系式
a
n?1
?2? 3?a
n
转化为
lg3lg3lg2lg3lg3lg2
(n?1)???5 (lga
n
?n??)
,从而可知数列
41644164
lg3lg 3lg2lg3lg3lg2
{lga
n
?n??}
是等比数列,进而求出数 列
{lga
n
?n??}
的通项公式,最后再
41644164lga
n?1
?
求出数列
{a
n
}
的通项公式 。
六、迭代法
例11 已知数列
{a
n
}
满足
a
n?1
?a
n
解:因为
a
n?1
?a
n
3(n?1)2
n
3(n?1)2
n
,a
1
?5
,求数列
{a
n
}
的通项公式。
3(n?1)?2
?[a
n
]
3n?2

?2n?2n?1
,所以
a
n
?a
n?1
3n?2
n?1
第 12 页 共 17 页
12


3(n?1)?n?2< br>?a
n?2
2(n?2)?(n?1)
3(n?2)?23
?[an
]
?3
3
n?32
(n?1)?n?2
(n?2)? (n?1)
(n?3)?(n?2)?(n?1)
3(n?2)(n?1)n?2
?a
n?3
?
L
?a
1
3
?a
n?1

?2?3
LL
(n?2)?(n?1)?n?2
1?2?
LL
?(n?3)?(n?2)?(n?1)
n(n?1)
2
3
n?1
?n!?2
1

a
1
?5
,所以数列
{a
n
}
的通项公式为
a
n
?5
3
n?1
?n !?2
n(n?1)
2

3(n?1)2
n
n
评 注:本题还可综合利用累乘法和对数变换法求数列的通项公式。即先将等式
a
n?1
? a
n
数得
lga
n?1
?3(n?1)?2?lga
n两边取常用对
,即
lga
n?1
?3(n?1)2
n
, 再由累乘法可推知
lga
n
n(n?1)
2
n?1
lga< br>n
lga
n?1
lga
3
lga
2
lga< br>n
???L???lga
1
?lg5
3?n!?2
lgan?1
lga
n?2
lga
2
lga
1
,从而
a
n
?5
3
n?1
?n!?2
n(n?1)
2

第 13 页 共 17 页
13



七、数学归纳法
8(n?1)8
例12 已知数列
{a
n
}
满足
a
n?1
?a
n
?
(2n?1)
2
(2n?3)
2
,a
1
?
9
,求数列
{a
n
}
的通项公式。
解:由
a
n?1
?a
n
?
8(n?1)
(2n?1)
2
(2n?3)
2

a
8
1
?
9
,得
a
8(1?1)2
?a
1
?
(2?1?1)
2
(2?1?3)
2
?
8
9
?
8?224
9?25
?
25< br>a
8(2?1)248?348
3
?a
2
?
(2?2 ?1)
2
(2?2?3)
2
?
25
?
25?49< br>?
49

a?
8(3?1)488?480
4
?a< br>3
(2?3?1)
2
(2?3?3)
2
?
49
?
49?81
?
81
由此可猜测
a
(2n?1)
2
?1
n
?
(2n?1)
2
,往下用数学归纳法证明这个结 论。
(1)当
n?1
时,
a
(2?1?1)
2
? 18
1
?
(2?1?1)
2
?
9
,所以等式成立。
(2)假设当
n?k
时等式成立,即
a
(2k?1)
2?1
k
?
(2k?1)
2
,则当
n?k?1
时 ,
a
8(k?1)
k?1
?a
k
?
(2k?1)
2
(2k?3)
2

?
(2k?1)
2
? 18(k?1)
(2k?1)
2
?
(2k?1)
2
(2k? 3)
2
?
[(2k?1)
2
?1](2k?3)
2
?8(k?1)
(2k?1)
2
(2k?3)
2
?
(2k? 1)
2
(2k?3)
2
?(2k?3)
2
?8(k?1)< br>(2k?1)
2
(2k?3)
2
222

?
(2k?1)(2k?3)?(2k?1)
(2k?1)
2
(2k?3)
2< br>?
(2k?3)
2
?1
(2k?3)
2
[2(k?1 )?1]
2
?
?1
[2(k?1)?1]
2
第 14 页 共 17 页
14


由此可知,当
n?k?1
时等式也成立。
根据(1),(2)可知,等式对任何
n?N
都成立。
评注:本题解题的关 键是通过首项和递推关系式先求出数列的前n项,进而猜出数列的通项公式,最后再
用数学归纳法加以证 明。
八、换元法
例13 已知数列
{a
n
}
满足
a
n?1
?
*
1
(1?4a
n
?1?24an
),a
1
?1
,求数列
{a
n
}
的 通项公式。
16
1
2
(b
n
?1)

2 4
解:令
b
n
?1?24a
n
,则
a
n< br>?

a
n?1
?
1
2
1
(b
n?1
?1)
,代入
a
n?1
?(1?4a
n
? 1?24a
n
)

2416
1
2
11
2
(b
n?1
?1)?[1?4(b
n
?1)?b
n
]

241624
22

4b
n?1
?(b
n
?3)

因为
b
n
?1?24a
n
? 0
,故
b
n?1
?1?24a
n?1
?0


2b
n?1
?b
n
?3
,即
b
n?1
?
可化为
b
n?1
?3?
13
b
n
?

22
1
(b
n
?3)

21
为公比的等比数列,因此
2
所以
{b
n
?3}
是以
b
1
?3?1?24a
1
?3?1?24?1?3?2
为首项,以
1111
b
n
?3?2()
n?1
?()n?2
,则
b
n
?()
n?2
?3
,即
1?24a
n
?()
n?2
?3
,得
2222
2111
a
n
?()
n
?()
n
?
。 < br>3423
评注:本题解题的关键是通过将
1?24a
n
的换元为
b
n
,使得所给递推关系式转化
b
n?1
?
13
b
n
?
形式,
22
从而可知数列
{b
n
? 3}
为等比数列,进而求出数列
{b
n
?3}
的通项公式,最后再求 出数列
{a
n
}
的通项公式。
第 15 页 共 17 页
15



九、不动点法
例14 已知数列
{a< br>n
}
满足
a
n?1
?
21a
n
?2 4
,a
1
?4
,求数列
{a
n
}
的通项公 式。
4a
n
?1
解:令
x?
因为
21x?24 21x?24
2
,得
4x?20x?24?0
,则
x
1?2,x
2
?3
是函数
f(x)?
的两个不动点。
4x ?14x?1
21a
n
?24
?2
a
n?1
?24 a
n
?121a
n
?24?2(4a
n
?1)13a
n
?26
13
a
n
?2
????
。所以数列a
n?1
?3
21a
n
?24
?3
21an
?24?3(4a
n
?1)9a
n
?279a
n?3
4a
n
?1
a?2
a
1
?2
4? 213
13
??2
为首项,以为公比的等比数列,故
n
?2()n?1
,则
a
n
?
9
a
1
?34?3 a
n
?39
?
a
n
?2
?
??
是 以
a?3
?
n
?
1
?3

13
2()
n?1
?1
9
评注:本题解题的关键是先求出函数
f(x)?
21x?2421x?24
的不动点,即方程
x?
的两个根
4x?1 4x?1
x
1
?2,x
2
?3
,进而可推出
?a
n
?2
?
a
n?1
?2
13
an
?2
??
,从而可知数列
??
为等比数列,再求出数列
a
n?1
?39a
n
?3
a?3
?
n
?
?
a
n
?2
?
??
的通项公式,最后求出数列{a
n
}
的通项公式。
?
a
n
?3
?
例15 已知数列
{a
n
}
满足
a
n?1
?
7a
n
?2
, a
1
?2
,求数列
{a
n
}
的通项公式。
2a
n
?3
解:令
x?
7x?23x?1
2
,得
2x?4x?2?0
,则
x?1
是函数
f(x)?
的不动点 。
2x?34x?7
7a
n
?25a?5
?1?
n
,所以
2a
n
?32a
n
?3
因为
a
n?1
?1?
2111
a
n
?()
n
?()
n
?

3423
评注:本题解题的关键是通过将
1?24an
的换元为
b
n
,使得所给递推关系式转化
b
n?1< br>?
13
b
n
?
形式,
22
从而可知数列{b
n
?3}
为等比数列,进而求出数列
{b
n
?3}
的通项公式,最后再求出数列
{a
n
}
的通项公式。
九、不动点法
第 16 页 共 17 页
16


例14 已知数列
{a
n
}
满足
a
n?1
?
21a
n
?24
,a
1
?4
,求数列
{a
n}
的通项公式。
4a
n
?1
解:令
x?
因为
21x?2421x?24
2
,得
4x?20x?24?0
,则x
1
?2,x
2
?3
是函数
f(x)?
的两个 不动点。
4x?14x?1
21a
n
?24
?2
a
n?1
?24a
n
?121a
n
?24?2(4a
n
?1)13a
n
?26
13
a
n
?2
????< br>。所以数列
21a?24
a
n?1
?39a
n
?3< br>n
?3
21a
n
?24?3(4a
n
?1)9an
?27
4a
n
?1
a?2
a
1
?2
4?213
13
??2
为首项,以为公比的等比数列,故
n
?2()
n?1
,则
a
n
?
9
a
1
?34?3a
n
?39
?
a
n
?2
?
? ?
是以
?
a
n
?3
?
1
?3

13
2()
n?1
?1
9
评注:本题解题的关键是先求出函 数
f(x)?
21x?2421x?24
的不动点,即方程
x?
的两 个根
4x?14x?1
x
1
?2,x
2
?3
,进而 可推出
?
a?2
?
a
n?1
?2
13
a< br>n
?2
??
,从而可知数列
?
n
?
为等比数 列,再求出数列
a
n?1
?39a
n
?3
?
an
?3
?
?
a
n
?2
?
??
的通项公式,最后求出数列
{a
n
}
的通项公式。
a?3
?
n
?
例15 已知数列
{a
n
}
满足
a
n?1
?
7a
n
?2
,a
1
?2
,求数列
{a
n
}
的通项公式。
2a< br>n
?3
解:令
x?
7x?23x?1
2
,得
2x?4x?2?0
,则
x?1
是函数
f(x)?
的不动点。 2x?34x?7
7a
n
?25a?5
?1?
n
,所以
2a
n
?32a
n
?3
因为
a
n?1?1?




第 17 页 共 17 页
17

领域和范围高中数学-高中数学必修版目录


怎样取得高中数学教师资格证-高中数学考试能力点


江苏用的高中数学竞赛书推荐-高中数学解题分步


高中数学包括-高中数学射影什么意思


高中数学数列贷款问题-高中数学关系教案


高中数学集合例题-高中数学正余弦知识点


高中数学德育目标内容-高中数学定积分乐乐课堂


高中数学德育目标内容-高中数学如何进行分层教学



本文更新与2020-10-07 10:20,由作者提供,不代表本网站立场,转载请注明出处:https://www.bjmy2z.cn/gaokao/412144.html

高中数学-数列公式及解题技巧的相关文章