关键词不能为空

当前您在: 主页 > 数学 >

高中数学奥林匹克竞赛讲座 23完全平方数

作者:高考题库网
来源:https://www.bjmy2z.cn/gaokao
2020-10-07 10:53
tags:高中数学奥

大连育明高中数学老师于焱-人教版高中数学必修一命题

2020年10月7日发(作者:宗楷)


高中数学奥林匹克竞赛讲座 23完全平方数
竞赛讲座23
-完全平方数
(一)完全平方数的性质
一个数如果是另一个整数的完全平方,那么我们就称这个数为完全平方数,也叫
做平方数。例如:
0,1,4,9,16,25,36,49,64,81,100,121,144,169,19 6,225,256,289,324,361,400,441,484,…
观察这些完全 平方数,可以获得对它们的个位数、十位数、数字和等的规律性的
认识。下面我们来研究完全平方数的一 些常用性质:
性质1:完全平方数的末位数只能是0,1,4,5,6,9。
性质2:奇数的平方的个位数字为奇数,十位数字为偶数。
证明 奇数必为下列五种形式之一:
10a+1, 10a+3, 10a+5, 10a+7, 10a+9
分别平方后,得
(10a+1)=100+20a+1=20a(5a+1)+1
(10a+3)=100+60a+9=20a(5a+3)+9
(10a+5)=100+100a+25=20(5a+5a+1)+5
(10a+7)=100+140a+49=20(5a+7a+2)+9
(10a+9)=100+180a+81=20
(5a+9a+4)+1
综上各种情形可知:奇数的平方,个位数字为奇数1,5,9;十位数字为偶数。
性质3:如 果完全平方数的十位数字是奇数,则它的个位数字一定是6;反之,
如果完全平方数的个位数字是6,则 它的十位数字一定是奇数。
证明 已知=10k+6,证明k为奇数。因为的个位数为6,所以m 的个位数为4或6,
于是可设m=10n+4或10n+6。则
10k+6=(10n+4)=100+(8n+1)x10+6
或 10k+6=(10n+6)=100+(12n+3)x10+6
即 k=10+8n+1=2(5+4n)+1
或 k=10+12n+3=2(5+6n)+3
∴ k为奇数。
推论1:如果一个数的十位数字是奇数,而个位数字不是6,那么这个数一定不是完
全平方数。
推论2:如果一个完全平方数的个位数字不是6,则它的十位数字是偶数。
性质4:偶数的平方是4的倍数;奇数的平方是4的倍数加1。
这是因为 (2k+1)=4k(k+1)+1
(2k)=4
性质5:奇数的平方是8n+1型;偶数的平方为8n或8n+4型。
在性质4的证明中,由k( k+1)一定为偶数可得到(2k+1)是8n+1型的数;由为奇数或偶
数可得(2k)为8n型或8 n+4型的数。
性质6:平方数的形式必为下列两种之一:3k,3k+1。
因为自然数被3除按余数的不同可以分为三类:3m,3m+1, 3m+2。平方后,分别得
(3m)=9=3k
(3m+1)=9+6m+1=3k+1
- 1 - 5


高中数学奥林匹克竞赛讲座 23完全平方数
(3m+2)=9+12m+4=3k+1
同理可以得到:
性质7:不能被5整除的数的平方为5k±1型,能被5整除的数的平方为5k型。
性质8:平方数的形式具有下列形式之一:16m,16m+1,16m+4,16m+9。
除了 上面关于个位数,十位数和余数的性质之外,还可研究完全平方数各位数字之和。
例如,256它的各位 数字相加为2+5+6=13,13叫做256的各位数字和。如果再把13
的各位数字相加:1+3= 4,4也可以叫做256的各位数字的和。下面我们提到的一个数
的各位数字之和是指把它的各位数字相 加,如果得到的数字之和不是一位数,就把所
得的数字再相加,直到成为一位数为止。我们可以得到下面 的命题:
一个数的数字和等于这个数被9除的余数。
下面以四位数为例来说明这个命题。
设四位数为,则
= 1000a+100b+10c+d
= 999a+99b+9c+(a+b+c+d)
= 9(111a+11b+c)+(a+b+c+d)
显然,a+b+c+d是四位数被9除的余数。
对于n位数,也可以仿此法予以证明。
关于完全平方数的数字和有下面的性质:
性质9:完全平方数的数字之和只能是0,1,4,7,9。
证明 因为一个整数被9除只能是9k,9k±1, 9k±2, 9k±3, 9k±4这几种形式,而
(9k)=9(9)+0
(9k±1)=9(9±2k)+1
(9k±2)=9(9±4k)+4
(9k±3)=9(9±6k)+9
(9k±4)=9(9±8k+1)+7
除了以上几条性质以外,还有下列重要性质:
性质10:为完全平方数的充要条件是b为完全平方数。
证明 充分性:设b为平方数,则
==(ac)
必要性:若为完全平方数,=,则

性质11:如果质数p能整除a,但不能整除a,则a不是完全平方数。
证明 由题设可知,a有 质因子p,但无因子,可知a分解成标准式时,p的次方为1,
而完全平方数分解成标准式时,各质因子 的次方均为偶数,可见a不是完全平方数。
性质12:在两个相邻的整数的平方数之间的所有整数都不是完全平方数,即若
则k一定不是完全平方数。
性质13:一个正整数n是完全平方数的充分必要条件是n有奇数个因子(包括1和n
本身)。
(二)重要结论
1.个位数是2,3,7,8的整数一定不是完全平方数;
2.个位数和十位数都是奇数的整数一定不是完全平方数;
3.个位数是6,十位数是偶数的整数一定不是完全平方数;
4.形如3n+2型的整数一定不是完全平方数;
- 2 - 5


高中数学奥林匹克竞赛讲座 23完全平方数
5.形如4n+2和4n+3型的整数一定不是完全平方数;
6.形如5n±2型的整数一定不是完全平方数;
7.形如8n+2, 8n+3, 8n+5, 8n+6,8n+7型的整数一定不是完全平方数;
8.数字和是2,3,5,6,8的整数一定不是完全平方数。
(三)范例
[例1]:一个自然数减去45及加上44都仍是完全平方数,求此数。
解:设此自然数为x,依题意可得
(m,n为自然数)
(2)-(1)可得
∴n>m
(
但89为质数,它的正因子只能是1与89,于是。解 之,得n=45。代入(2)得。故所
求的自然数是1981。
[例2]:求证:四个连续的整数的积加上1,等于一个奇数的平方(1954年基辅数
学竞赛题)。
分析 设四个连续的整数为,其中n为整数。欲证
是一奇数的平方,只需将它通过因式分解而变成一个奇数的平方即可。
证明 设这四个整数之积加上1为m,则





而n(n+1)是两个连续整数的积,所以是偶数;又因为2n+1是奇数, 因而n(n+1)+2n+1
是奇数。这就证明了m是一个奇数的平方。
[例3]:求证:11,111,1111,这串数中没有完全平方数(1972年基辅数学竞赛题)。
分析 形如的数若是完全平方数,必是末位为1或9的数的平方,即

在两端同时减去1之后即可推出矛盾。
证明 若,则

因为左端为奇数,右端为偶数,所以左右两端不相等。
若,则

因为左端为奇数,右端为偶数,所以左右两端不相等。
综上所述,不可能是完全平方数。
另证 由为奇数知,若它为完全平方数,则只能是奇数的平方。但已证过,奇数
的平方 其十位数字必是偶数,而十位上的数字为1,所以不是完全平方数。
[例4]:试证数列49,4489,444889,的每一项都是完全平方数。
证明
=
=++1
=4+8+1
=4()(9+1)+8+1
- 3 - 5


高中数学奥林匹克竞赛讲座 23完全平方数
=36()+12+1
=(6+1)
即为完全平方数。
[例5]:用300个2和若干个0组成的整数有没有可能是完全平方数?
解:设由300个2和若干个0组成的数为A,则其数字和为600
3︱600 ∴3︱A
此数有3的因子,故9︱A。但9︱600,∴矛盾。故不可能有完全平方数。
[例 6]:试求一个四位数,它是一个完全平方数,并且它的前两位数字相同,后两位
数字也相同(1999 小学数学世界邀请赛试题)。
解:设此数为

此数为完全平方,则必须是11的倍数。因此11︱a + b,而a,b为0,1,2,9,故共有
(2,9),(3,8), (4,7),(9,2)等8组可能。
直接验算,可知此数为7744=88。
[例7]:求满足下列条件的所有自然数:
(1)它是四位数。
(2)被22除余数为5。
(3)它是完全平方数。
解:设,其中n,N为自然数,可知N为奇数。
11︱N - 4或11︱N + 4

k = 1
k = 2
k = 3
k = 4
k = 5
所以此自然数为1369, 2601, 3481, 5329, 6561, 9025。
[例8]:甲、乙两人合养了n头羊,而每头羊的卖价 又恰为n元,全部卖完后,
两人分钱方法如下:先由甲拿十元,再由乙拿十元,如此轮流,拿到最后,剩 下不足
十元,轮到乙拿去。为了平均分配,甲应该补给乙多少元(第2届“祖冲之杯”初中数学
邀请赛试题)?
解:n头羊的总价为元,由题意知元中含有奇数个10元,即完全平方数的十 位
数字是奇数。如果完全平方数的十位数字是奇数,则它的个位数字一定是6。所以,
的末位数 字为6,即乙最后拿的是6元,从而为平均分配,甲应补给乙2元。
[例9]:矩形四边的长 度都是小于10的整数(单位:公分),这四个长度数可构成
一个四位数,这个四位数的千位数字与百位 数字相同,并且这四位数是一个完全平方
数,求这个矩形的面积(1986年缙云杯初二数学竞赛题)。
解:设矩形的边长为x,y,则四位数
∵N是完全平方数,11为质数 ∴x+y能被11整除。
又 ,得x+y=11。
∴∴9x+1是一个完全平方数,而,验算知x=7满足条件。又由x+y=11得。
[例10]:求一个四位数,使它等于它的四个数字和的四次方,并证明此数是唯一
的。
解:设符合题意的四位数为,则,∴为五位数,为三位数,∴。经计算得,其中
- 4 - 5


高中数学奥林匹克竞赛讲座 23完全平方数
符合题意的只有2401一个。
[例11]:求自然数n,使的值是由数字0,2,3,4,4,7,8,8,9组成。
解:显然,。为了便于估计,我们把的变化范围放大到,于是,即。∵,∴。
另 一方面,因已知九个数码之和是3的倍数,故及n都是3的倍数。这样,n只有
24,27,30三种可 能。但30结尾有六个0,故30不合要求。经计算得
故所求的自然数n = 27。
(四)讨论题
1.(1986年第27届IMO试题)
设正整数d不等于2,5,13,求证在集合{2,5,13,d}中可以找到两个不同的元素a , b,使
得ab -1不是完全平方数。
2.求k的最大值,使得可以表示为k个连续正整数之和。

- 5 - 5

高中数学科任教班级分析-解题王高中数学 亚马逊


高中数学诗歌-2016浙江高中数学学考试卷


果农概率高中数学-2016高中数学联赛a卷


高中数学让学引思心得体会-高中数学教师资格证面试题目图片


高中数学教师资格证题目及答案-高中数学老师履职总结


河南高中数学北师版教材目录-高中数学 高一数学试卷 测试题答案


吉林省高中数学教材是A版还是B版-高中数学实用公式


浙江省高中数学作业本答案-高中数学分段函数的题目



本文更新与2020-10-07 10:53,由作者提供,不代表本网站立场,转载请注明出处:https://www.bjmy2z.cn/gaokao/412187.html

高中数学奥林匹克竞赛讲座 23完全平方数的相关文章