关键词不能为空

当前您在: 主页 > 英语 >

cplex与matalb函数实例

作者:高考题库网
来源:https://www.bjmy2z.cn/gaokao
2020-10-31 10:24
tags:5655

阴的成语-ire

2020年10月31日发(作者:盛彦)


function cplexbilpex

% Use the function cplexbilp to solve a binary integer programming problem

%

% The bilp problem solved in this example is

% Maximize x1 + 2 x2 + 3 x3 + x4

% Subject to

% - x1 + x2 + x3 + 10 x4 <= 20

% x1 - 3 x2 + x3 <= 30

% x2 - 3.5x4 = 0

% Binary Integer

% x1 x2 x3 x4



%
-------------------- -------------------------------------------------- -
----

% File: cplexbilpex.m

% Version 12.5

%
----------------------- ----------------------------------------------------

% Licensed Materials - Property of IBM

% 5725-A06 5725-A29 5724-Y48 5724-Y49 5724-Y54 5724-Y55 5655-Y21

% Copyright IBM Corporation 2008, 2012. All Rights Reserved.

%

% US Government Users Restricted Rights - Use, duplication or

% disclosure restricted by GSA ADP Schedule Contract with IBM Corp.

%
------------------------------ -----------------------------------------
----< br>


try

% Since cplexbilp solves minimization problems and the problem

% is a maximization problem, negate the objective

f = [-1 -2 -3 -1]';

Aineq = [-1 1 1 10;

1 -3 1 0];

bineq = [20 30]';

Aeq = [0 1 0 -3.5];

beq = 0;



options = cplexoptimset;

stics = 'on';



[x, fval, exitflag, output] = cplexbilp (f, Aineq, bineq, Aeq, beq, ...

[ ], options);



fprintf ('nSolution status = %sn', tatusstring);

fprintf ('Solution value = %dn', fval);

disp ('Values = ');

disp (x');

catch m

disp(e);

end

end


function cplexlpex


% Use the function cplexlp to solve a linear programming problem

%

% The LP problem solved in this example is

% Maximize x1 + 2 x2 + 3 x3

% Subject to

% - x1 + x2 + x3 <= 20

% x1 - 3 x2 + x3 <= 30

% Bounds

% 0 <= x1 <= 40

% 0 <= x2

% 0 <= x3



%
-------------------- -------------------------------------------------- -
----

% File: cplexlpex.m

% Version 12.5

%
----------------------- ----------------------------------------------------

% Licensed Materials - Property of IBM

% 5725-A06 5725-A29 5724-Y48 5724-Y49 5724-Y54 5724-Y55 5655-Y21

% Copyright IBM Corporation 2008, 2012. All Rights Reserved.

%

% US Government Users Restricted Rights - Use, duplication or

% disclosure restricted by GSA ADP Schedule Contract with IBM Corp.

%
------------------------------ -----------------------------------------
----< br>


try

% Since cplexlp solves minimization problems and the problem

% is a maximization problem, negate the objective

f = [-1 -2 -3]';

Aineq = [-1 1 1; 1 -3 1];

bineq = [20 30]';



lb = [0 0 0]';

ub = [40 inf inf]';



options = cplexoptimset;

stics = 'on';



[x, fval, exitflag, output] = cplexlp ...

(f, Aineq, bineq, [], [], lb, ub, [], options);



fprintf ('nSolution status = %sn', tatusstring);

fprintf ('Solution value = %fn', fval);

disp ('Values =');

disp (x');

catch m

disp(e);

end

end


function cplexlsqbilpex

% Use the function cplexlsqbilp to solve a constrained least squares

% problem Some variables are binary.



%
------------------ -------------------------------------------------- ---
----

% File: cplexlsqbilpex.m

% Version 12.5

%
----------------- -------------------------------------------------- ----
----

% Licensed Materials - Property of IBM

% 5725-A06 5725-A29 5724-Y48 5724-Y49 5724-Y54 5724-Y55 5655-Y21

% Copyright IBM Corporation 2008, 2012. All Rights Reserved.

%

% US Government Users Restricted Rights - Use, duplication or

% disclosure restricted by GSA ADP Schedule Contract with IBM Corp.

%
------------ -------------------------------------------------- ---------
----



try

C = [0.9501 0.7620 0.6153 0.4057

0.2311 0.4564 0.7919 0.9354

0.6068 0.0185 0.9218 0.9169

0.4859 0.8214 0.7382 0.4102

0.8912 0.4447 0.1762 0.8936];

d = [0.0578

0.3528

0.8131

0.0098

0.1388];

Aineq = [0.2027 0.2721 0.7467 0.4659

0.1987 0.1988 0.4450 0.4186

0.6037 0.0152 0.9318 0.8462];

bineq = [0.5251

0.2026

0.6721];



lb = 0.0 * ones (4, 1);

ub = 1.0 * ones (4, 1);



options = cplexoptimset;

stics = 'on';



[x, resnorm, residual, exitflag, output] = ...

cplexlsqbilp (C, d, Aineq, bineq, ...

[ ], [ ], lb, ub, [ ], options);



fprintf ('nSolution status = %sn', tatusstring);

disp ('Values =');

disp (x');

disp ('resnorm =');

disp (resnorm);

disp ('residual =');


disp (residual');

catch m

throw (m);

end

end


function cplexlsqlinex

% Use the function cplexlsqlin to solve a constrained least squares problem



%
------------------ -------------------------------------------------- ---
----

% File: cplexlsqlinex.m

% Version 12.5

%
----------------- -------------------------------------------------- ----
----

% Licensed Materials - Property of IBM

% 5725-A06 5725-A29 5724-Y48 5724-Y49 5724-Y54 5724-Y55 5655-Y21

% Copyright IBM Corporation 2008, 2012. All Rights Reserved.

%

% US Government Users Restricted Rights - Use, duplication or

% disclosure restricted by GSA ADP Schedule Contract with IBM Corp.

%
------------ -------------------------------------------------- ---------
----



try

C = [0.9501 0.7620 0.6153 0.4057

0.2311 0.4564 0.7919 0.9354

0.6068 0.0185 0.9218 0.9169

0.4859 0.8214 0.7382 0.4102

0.8912 0.4447 0.1762 0.8936];

d = [0.0578

0.3528

0.8131

0.0098

0.1388];

Aineq = [0.2027 0.2721 0.7467 0.4659

0.1987 0.1988 0.4450 0.4186

0.6037 0.0152 0.9318 0.8462];

bineq = [0.5251

0.2026

0.6721];



lb = -0.1 * ones (4, 1);

ub = 2.0 * ones (4, 1);



options = cplexoptimset;

stics = 'on';



[x, resnorm, residual, exitflag, output] = ...

cplexlsqlin (C, d, Aineq, bineq, [ ], [ ], lb, ub, [], options);

fprintf ('nSolution status = %sn', tatusstring);

disp ('Values =');

disp (x');


disp ('resnorm =');

disp (resnorm);

disp ('residual =');

disp (residual');

catch m

disp(e);

end

end


function cplexlsqmilpex

% Use the function cplexlsqmilp to solve a constrained least squares problem

% Some variables are binary.



%
------------------ -------------------------------------------------- ---
----

% File: cplexlsqmilpex.m

% Version 12.5

%
----------------- -------------------------------------------------- ----
----

% Licensed Materials - Property of IBM

% 5725-A06 5725-A29 5724-Y48 5724-Y49 5724-Y54 5724-Y55 5655-Y21

% Copyright IBM Corporation 2008, 2012. All Rights Reserved.

%

% US Government Users Restricted Rights - Use, duplication or

% disclosure restricted by GSA ADP Schedule Contract with IBM Corp.

%
------------ -------------------------------------------------- ---------
----



try

C = [0.9501 0.7620 0.6153 0.4057

0.2311 0.4564 0.7919 0.9354

0.6068 0.0185 0.9218 0.9169

0.4859 0.8214 0.7382 0.4102

0.8912 0.4447 0.1762 0.8936];

d = [0.0578

0.3528

0.8131

0.0098

0.1388];

Aineq = [0.2027 0.2721 0.7467 0.4659

0.1987 0.1988 0.4450 0.4186

0.6037 0.0152 0.9318 0.8462];

bineq = [0.5251

0.2026

0.6721];



lb = [0.0 -0.1 0.0 -0.1];

ub = [1.0 2.0 1.0 2.0];

ctype = 'BCBC';



options = cplexoptimset;

stics = 'on';



[x, resnorm, residual, exitflag, output] = ...

cplexlsqmilp (C, d, Aineq, bineq, ...

[ ], [ ], [ ], [ ], [ ], lb, ub, ctype, [ ], options);



fprintf ('nSolution status = %sn', tatusstring);

disp ('Values =');

disp (x');

disp ('resnorm =');

disp (resnorm);

disp ('residual =');

disp (residual');

catch m

throw (m);

end

end


function cplexlsqmiqcpex

% Use the function cplexlsqmiqcp to solve a constrained least squares problem

% Some variables are binary and one constraint is quadratic.



% < br>----------------------------------------------- ------------------------
----

% File: cplexlsqmiqcpex.m

% Version 12.5

%
---------------------------------------------- -------------------------
----

% Licensed Materials - Property of IBM

% 5725-A06 5725-A29 5724-Y48 5724-Y49 5724-Y54 5724-Y55 5655-Y21

% Copyright IBM Corporation 2008, 2012. All Rights Reserved.

%

% US Government Users Restricted Rights - Use, duplication or

% disclosure restricted by GSA ADP Schedule Contract with IBM Corp.

%
------------------------------ -----------------------------------------
----< br>


try

C = [0.9501 0.7620 0.6153 0.4057

0.2311 0.4564 0.7919 0.9354

0.6068 0.0185 0.9218 0.9169

0.4859 0.8214 0.7382 0.4102

0.8912 0.4447 0.1762 0.8936];

d = [0.0578

0.3528

0.8131

0.0098

0.1388];

Aineq = [0.2027 0.2721 0.7467 0.4659

0.1987 0.1988 0.4450 0.4186

0.6037 0.0152 0.9318 0.8462];

bineq = [0.5251

0.2026

0.6721];

lb = [0.0 -0.1 0.0 -0.1];


ub = [1.0 2.0 1.0 2.0];



l = [0 0 0 0]';

r = 1;

Q = [1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1];



ctype = 'BCBC';



options = cplexoptimset;

stics = 'on';



[x, resnorm, residual, exitflag, output] = ...

cplexlsqmiqcp (C, d, Aineq, bineq,[ ], [ ], l, Q, r, [ ], [ ], [ ], ...

lb, ub, ctype, [ ], options);



fprintf ('nSolution status = %sn', tatusstring);

disp ('Values =');

disp (x');

disp ('resnorm =');

disp (resnorm);

disp ('residual =');

disp (residual');

catch m

throw (m);

end

end


function cplexlsqnonneglinex

% Use the function cplexlsqnonneglin to solve a nonnegative least squares

% problem



%
------------------------------ -----------------------------------------
----< br>
% File: cplexlsqnonneglinex.m

% Version 12.5

%
----------------------- ----------------------------------------------------

% Licensed Materials - Property of IBM

% 5725-A06 5725-A29 5724-Y48 5724-Y49 5724-Y54 5724-Y55 5655-Y21

% Copyright IBM Corporation 2008, 2012. All Rights Reserved.

%

% US Government Users Restricted Rights - Use, duplication or

% disclosure restricted by GSA ADP Schedule Contract with IBM Corp.

%
------------------------------ -----------------------------------------
----< br>


try

C = [0.0372 0.2869

0.6861 0.7071


0.6233 0.6245

0.6344 0.6170];

d = [0.8587

0.1781

0.0747

0.8405];

Aineq = [0.2027 0.2721

0.1987 0.1988

0.6037 0.0152];

bineq = [0.5251

0.2026

0.6721];



options = cplexoptimset;

stics = 'on';



[x, resnorm, residual, exitflag, output] = ...

cplexlsqnonneglin (C, d, Aineq, bineq, [], [], [], options);



fprintf ('nSolution status = %sn', tatusstring);

disp ('Values =');

disp (x');

disp ('resnorm =');

disp (resnorm);

disp ('residual =');

disp (residual');

catch m

throw (m);

end

end


function cplexlsqnonnegmilpex

% Use the function cplexlsqnonnegmilp to solve a nonnegative least squares

% problem. The variables are binary.



%
------------------ -------------------------------------------------- ---
----

% File: cplexlsqnonnegmilpex.m

% Version 12.5

%
---------------------------------------- -------------------------------
----

% Licensed Materials - Property of IBM

% 5725-A06 5725-A29 5724-Y48 5724-Y49 5724-Y54 5724-Y55 5655-Y21

% Copyright IBM Corporation 2008, 2012. All Rights Reserved.

%

% US Government Users Restricted Rights - Use, duplication or

% disclosure restricted by GSA ADP Schedule Contract with IBM Corp.

%
------------------------------ -----------------------------------------
----< br>


try

C = [0.0372 0.2869

0.6861 0.7071


0.6233 0.6245

0.6344 0.6170];

d = [0.8587

0.1781

0.0747

0.8405];

Aineq = [0.2027 0.2721

0.1987 0.1988

0.6037 0.0152];

bineq = [0.5251

0.2026

0.6721];

ctype = 'BB';



options = cplexoptimset;

stics = 'on';



[x, resnorm, residual, exitflag, output] = ...

cplexlsqnonnegmilp (C, d, Aineq, bineq, [], [], [], [], [], ctype, ...

[], options);



fprintf ('nSolution status = %sn', tatusstring);

disp ('Values =');

disp (x');

disp ('resnorm =');

disp (resnorm);

disp ('residual =');

disp (residual');

catch m

throw (m);

end

end


function cplexlsqnonnegmiqcpex

% Use the function cplexlsqnonnegmiqcp to solve a nonnegative least squares

% problem. The variables are binary and one constraint is quadratic.



%
--------------- -------------------------------------------------- ------
----

% File: cplexlsqnonnegmiqcpex.m

% Version 12.5

%
---------------------------------------- -------------------------------
----

% Licensed Materials - Property of IBM

% 5725-A06 5725-A29 5724-Y48 5724-Y49 5724-Y54 5724-Y55 5655-Y21

% Copyright IBM Corporation 2008, 2012. All Rights Reserved.

%

% US Government Users Restricted Rights - Use, duplication or

% disclosure restricted by GSA ADP Schedule Contract with IBM Corp.

%
------------------------------ -----------------------------------------
----< br>


try


C = [0.0372 0.2869

0.6861 0.7071

0.6233 0.6245

0.6344 0.6170];

d = [0.8587

0.1781

0.0747

0.8405];

Aineq = [0.2027 0.2721

0.1987 0.1988

0.6037 0.0152];

bineq = [0.5251

0.2026

0.6721];

ctype = 'BB';

l = [0 0]';

r = 1;

Q = [1 0

0 1];



options = cplexoptimset;

stics = 'on';



[x, resnorm, residual, exitflag, output] = ...

cplexlsqnonnegmiqcp (C, d, Aineq, bineq, [], [], l, Q, r, ...

[], [], [], ctype, [], options);



fprintf ('nSolution status = %sn', tatusstring);

disp ('Values =');

disp (x');

disp ('resnorm =');

disp (resnorm);

disp ('residual =');

disp (residual');

catch m

throw (m);

end

end


function cplexlsqnonnegqcpex

% Use the function cplexlsqnonnegqcp to solve a nonnegative least squares

% problem. The variables are binary and one constraint is quadratic.



%
----------------------------------- ------------------------------------
----

% File: cplexlsqnonnegmiqcpex.m

% Version 12.5

%
----------------------- ----------------------------------------------------

% Licensed Materials - Property of IBM

% 5725-A06 5725-A29 5724-Y48 5724-Y49 5724-Y54 5724-Y55 5655-Y21

% Copyright IBM Corporation 2008, 2012. All Rights Reserved.

%

% US Government Users Restricted Rights - Use, duplication or


% disclosure restricted by GSA ADP Schedule Contract with IBM Corp.

%
--------------------- --------------------------------------------------
----



try

C = [0.0372 0.2869

0.6861 0.7071

0.6233 0.6245

0.6344 0.6170];

d = [0.8587

0.1781

0.0747

0.8405];

Aineq = [0.2027 0.2721

0.1987 0.1988

0.6037 0.0152];

bineq = [0.5251

0.2026

0.6721];

l = [0 0]';

r = 1;

Q = [1 0

0 1];



options = cplexoptimset;

stics = 'on';



[x, resnorm, residual, exitflag, output] = ...

cplexlsqnonnegqcp (C, d, Aineq, bineq, [], [], l, Q, r, [], options);



fprintf ('nSolution status = %sn', tatusstring);

disp ('Values =');

disp (x');

disp ('resnorm =');

disp (resnorm);

disp ('residual =');

disp (residual');

catch m

throw (m);

end

end


function cplexlsqqcpex

% Use the function cplexlsqqcp to solve a constrained least squares problem

% Some variables are binary and one constraint is quadratic.



%
--------------- -------------------------------------------------- ------
----

% File: cplexlsqqcpex.m

% Version 12.5

%
----------------- -------------------------------------------------- ----
----

% Licensed Materials - Property of IBM


% 5725-A06 5725-A29 5724-Y48 5724-Y49 5724-Y54 5724-Y55 5655-Y21

% Copyright IBM Corporation 2008, 2012. All Rights Reserved.

%

% US Government Users Restricted Rights - Use, duplication or

% disclosure restricted by GSA ADP Schedule Contract with IBM Corp.

%
------------ -------------------------------------------------- ---------
----



try

C = [0.9501 0.7620 0.6153 0.4057

0.2311 0.4564 0.7919 0.9354

0.6068 0.0185 0.9218 0.9169

0.4859 0.8214 0.7382 0.4102

0.8912 0.4447 0.1762 0.8936];

d = [0.0578

0.3528

0.8131

0.0098

0.1388];

Aineq = [0.2027 0.2721 0.7467 0.4659

0.1987 0.1988 0.4450 0.4186

0.6037 0.0152 0.9318 0.8462];

bineq = [0.5251

0.2026

0.6721];

lb = -0.1 * ones(4, 1);

ub = 2.0 * ones(4, 1);



l = [0 0 0 0]';

r = 1;

Q = [1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1];



options = cplexoptimset;

stics = 'on';



[x, resnorm, residual, exitflag, output] = ...

cplexlsqqcp (C, d, Aineq, bineq,[ ], [ ], l, Q, r, ...

lb, ub, [ ], options);



fprintf ('nSolution status = %sn', tatusstring);

disp ('Values =');

disp (x');

disp ('resnorm =');

disp (resnorm);

disp ('residual =');

disp (residual');

catch m

throw (m);

end

end


function cplexmilpex


% Use the function cplexmilp to solve a mixed-integer linear programming
problem

%

% The MILP problem solved in this example is

% Maximize x1 + 2 x2 + 3 x3 + x4

% Subject to

% - x1 + x2 + x3 + 10 x4 <= 20

% x1 - 3 x2 + x3 <= 30

% x2 - 3.5x4 = 0

% Bounds

% 0 <= x1 <= 40

% 0 <= x2

% 0 <= x3

% 2 <= x4 <= 3

% Integers

% x4



% ------------------------------------------------ -----------------------
----

% File: cplexmilpex.m

% Version 12.5

%
------------------------------------------------- ----------------------
----

% Licensed Materials - Property of IBM

% 5725-A06 5725-A29 5724-Y48 5724-Y49 5724-Y54 5724-Y55 5655-Y21

% Copyright IBM Corporation 2008, 2012. All Rights Reserved.

%

% US Government Users Restricted Rights - Use, duplication or

% disclosure restricted by GSA ADP Schedule Contract with IBM Corp.

%
---------------------------------------------- -------------------------
----



try

% Since cplexmilp solves minimization problems and the problem

% is a maximization problem, negate the objective

f = [-1 -2 -3 -1]';

Aineq = [-1 1 1 10;

1 -3 1 0];

bineq = [20 30]';



Aeq = [0 1 0 -3.5];

beq = 0;



lb = [0; 0; 0; 2];

ub = [40; inf; inf; 3];

ctype = 'CCCI';



options = cplexoptimset;

stics = 'on';



[x, fval, exitflag, output] = cplexmilp (f, Aineq, bineq, Aeq, beq,...

[ ], [ ], [ ], lb, ub, ctype, [ ], options);




fprintf ('nSolution status = %s n', tatusstring);

fprintf ('Solution value = %f n', fval);

disp ('Values =');

disp (x');

catch m

throw (m);

end

end


function cplexmiqpex

% Use the function cplexmiqp to solve a mixed- integer quadratic programming
problem

%

% The MIQP problem solved in this example is

% Maximize x1 + 2 x2 + 3 x3 + x4

% - 0.5 ( 33x1*x1 + 22*x2*x2 + 11*x3*x3 - 12*x1*x2 - 23*x2*x3 )

% Subject to

% - x1 + x2 + x3 + 10 x4 <= 20

% x1 - 3 x2 + x3 <= 30

% x2 - 3.5x4 = 0

% Bounds

% 0 <= x1 <= 40

% 0 <= x2

% 0 <= x3

% 2 <= x4 <= 3

% Integers

% x4



% ------------------------------------------------ -----------------------
----

% File: cplexmiqpex.m

% Version 12.5

%
------------------------------------------------- ----------------------
----

% Licensed Materials - Property of IBM

% 5725-A06 5725-A29 5724-Y48 5724-Y49 5724-Y54 5724-Y55 5655-Y21

% Copyright IBM Corporation 2008, 2012. All Rights Reserved.

%

% US Government Users Restricted Rights - Use, duplication or

% disclosure restricted by GSA ADP Schedule Contract with IBM Corp.

%
---------------------------------------------- -------------------------
----



try

% Since cplexmiqp solves minimization problems and the problem

% is a maximization problem, negate the objective

H = [33 6 0 0;

6 22 11.5 0;

0 11.5 11 0;

0 0 0 0];

f = [-1 -2 -3 -1]';



Aineq = [-1 1 1 10;

1 -3 1 0];

bineq = [20 30]';



Aeq = [0 1 0 -3.5];

beq = 0;



lb = [ 0; 0; 0; 2];

ub = [40; inf; inf; 3];

ctype = 'CCCI';



options = cplexoptimset;

stics = 'on';



[x, fval, exitflag, output] = cplexmiqp (H, f, Aineq, bineq, Aeq, beq,...

[], [], [], lb, ub, ctype, [], options);



fprintf ('nSolution status = %s n', tatusstring);

fprintf ('Solution value = %f n', fval);

disp ('Values =');

disp (x');

catch m

disp(e);

end

end


metropolitan-矢气


嗡可以组什么词-paragraph是什么意思中文翻译


帮助的英文-洋泾浜


single是什么意思-境界是什么意思


淋漓的拼音-黄昏恋


骑自行车英语怎么写-crossover什么意思啊


accompanying-guarantee是什么意思


equalization-关节囊



本文更新与2020-10-31 10:24,由作者提供,不代表本网站立场,转载请注明出处:https://www.bjmy2z.cn/gaokao/434894.html

cplex与matalb函数实例的相关文章

  • 余华爱情经典语录,余华爱情句子

    余华的经典语录——余华《第七天》40、我不怕死,一点都不怕,只怕再也不能看见你——余华《第七天》4可是我再也没遇到一个像福贵这样令我难忘的人了,对自己的经历如此清楚,

    语文
  • 心情低落的图片压抑,心情低落的图片发朋友圈

    心情压抑的图片(心太累没人理解的说说带图片)1、有时候很想找个人倾诉一下,却又不知从何说起,最终是什么也不说,只想快点睡过去,告诉自己,明天就好了。有时候,突然会觉得

    语文
  • 经典古训100句图片大全,古训名言警句

    古代经典励志名言100句译:好的药物味苦但对治病有利;忠言劝诫的话听起来不顺耳却对人的行为有利。3良言一句三冬暖,恶语伤人六月寒。喷泉的高度不会超过它的源头;一个人的事

    语文
  • 关于青春奋斗的名人名言鲁迅,关于青年奋斗的名言鲁迅

    鲁迅名言名句大全励志1、世上本没有路,走的人多了自然便成了路。下面是我整理的鲁迅先生的名言名句大全,希望对你有所帮助!当生存时,还是将遭践踏,将遭删刈,直至于死亡而

    语文
  • 三国群英单机版手游礼包码,三国群英手机单机版攻略

    三国群英传7五神兽洞有什么用那是多一个武将技能。青龙飞升召唤出东方的守护兽,神兽之一的青龙。玄武怒流召唤出北方的守护兽,神兽之一的玄武。白虎傲啸召唤出西方的守护兽,

    语文
  • 不收费的情感挽回专家电话,情感挽回免费咨询

    免费的情感挽回机构(揭秘情感挽回机构骗局)1、牛牛(化名)向上海市公安局金山分局报案,称自己为了挽回与女友的感情,被一家名为“实花教育咨询”的情感咨询机构诈骗4万余元。

    语文