关键词不能为空

当前您在: 主页 > 数学 >

幼儿园的数学小学数学课程标准完整解读

作者:高考题库网
来源:https://www.bjmy2z.cn/gaokao
2020-11-12 21:33
tags:小学数学课程标准

四年级数学上册课本113页-聊城大学东昌学院

2020年11月12日发(作者:叶童)
小学数学课程标准
第一部分 前言
数学是研究数量关系和空间形式的科学。数学 与人类发展和社会进步息息相关,随着现代信息技术
的飞速发展,数学更加广泛应用于社会生产和日常生 活的各个方面。数学作为对于客观现象抽象概括而
逐渐形成的科学语言与工具,不仅是自然科学和技术科 学的基础,而且在人文科学与社会科学中发挥着
越来越大的作用。特别是20世纪中叶以来,数学与计算 机技术的结合在许多方面直接为社会创造价值,
推动着社会生产力的发展。
数学是人类文化的 重要组成部分,数学素养是现代社会每一个公民应该具备的基本素养。作为促进
学生全面发展教育的重要 组成部分,数学教育既要使学生掌握现代生活和学习中所需要的数学知识与技
能,更要发挥数学在培养人 的理性思维和创新能力方面的不可替代的作用。
一、课程性质
义务教育阶段的数学课程是培 养公民素质的基础课程,具有基础性、普及性和发展性。数学课程能
使学生掌握必备的基础知识和基本技 能;培养学生的抽象思维和推理能力;培养学生的创新意识和实践
能力;促进学生在情感、态度与价值观 等方面的发展。义务教育的数学课程能为学生未来生活、工作和
学习奠定重要的基础。
二、课程基本理念
1.数学课程应致力于实现义务教育阶段的培养目标,要面向全体学生,适 应学生个性发展的需要,
使得:人人都能获得良好的数学教育,不同的人在数学上得到不同的发展。 < br>2.课程内容要反映社会的需要、数学的特点,要符合学生的认知规律。它不仅包括数学的结果,
也包括数学结果的形成过程和蕴涵的数学思想方法。课程内容的选择要贴近学生的实际,有利于学生体
验 与理解、思考与探索。课程内容的组织要重视过程,处理好过程与结果的关系;要重视直观,处理好
直观 与抽象的关系;要重视直接经验,处理好直接经验与间接经验的关系。课程内容的呈现应注意层次
性和多 样性。
3.教学活动是师生积极参与、交往互动、共同发展的过程。有效的教学活动是学生学与教师教 的
统一,学生是学习的主体,教师是学习的组织者、引导者与合作者。
数学教学活动应激发学 生兴趣,调动学生积极性,引发学生的数学思考,鼓励学生的创造性思维;
要注重培养学生良好的数学学 习习惯,使学生掌握恰当的数学学习方法。
学生学习应当是一个生动活泼的、主动的和富有个性的过程 。除接受学习外,动手实践、自主探索
与合作交流同样是学习数学的重要方式。学生应当有足够的时间和 空间经历观察、实验、猜测、计算、
推理、验证等活动过程。
教师教学应该以学生的认知发展 水平和已有的经验为基础,面向全体学生,注重启发式和因材施教。
教师要发挥主导作用,处理好讲授与 学生自主学习的关系,引导学生独立思考、主动探索、合作交流,
使学生理解和掌握基本的数学知识与技 能、数学思想和方法,获得基本的数学活动经验。
4.学习评价的主要目的是为了全面了解学生数学学 习的过程和结果,激励学生学习和改进教师教
学。应建立目标多元、方法多样的评价体系。评价既要关注 学生学习的结果,也要重视学习的过程;既
要关注学生数学学习的水平,也要重视学生在数学活动中所表 现出来的情感与态度,帮助学生认识自我、
建立信心。
5.信息技术的发展对数学教育的价值 、目标、内容以及教学方式产生了很大的影响。数学课程的
设计与实施应根据实际情况合理地运用现代信 息技术,要注意信息技术与课程内容的整合,注重实效。
要充分考虑信息技术对数学学习内容和方式的影 响,开发并向学生提供丰富的学习资源,把现代信息技
术作为学生学习数学和解决问题的有力工具,有效 地改进教与学的方式,使学生乐意并有可能投入到现
实的、探索性的数学活动中去。
三、课程设计思路
义务教育阶段数学课程的设计,充分考虑本阶段学生数学学习的特点,符合 学生的认知规律和心理
特征,有利于激发学生的学习兴趣,引发数学思考;充分考虑数学本身的特点,体 现数学的实质;在呈
现作为知识与技能的数学结果的同时,重视学生已有的经验,使学生体验从实际背景 中抽象出数学问题、
构建数学模型、寻求结果、解决问题的过程。
按以上思路具体设计如下。
(一) 学段划分
为了体现义务教育数学课程的整体性,统筹考虑九年的课程内容。同时,根 据学生发展的生理和心
理特征,将九年的学习时间划分为三个学段:第一学段(1~3年级)、第二学段 (4~6年级)、第三学段
(7~9年级)。
(二) 课程目标
义务教育阶段数学 课程目标分为总目标和学段目标,从知识技能、数学思考、问题解决、情感态度
等四个方面加以阐述。
数学课程目标包括结果目标和过程目标。结果目标使用“了解、理解、掌握、运用”等术语表述,
过程目标使用“经历、体验、探索”等术语表述(术语解释见附录1)。
(三) 课程内容
在各学段中,安排了四个部分的课程内容:“数与代数”“图形与几何”“统计与概率”“综合与实践”。 < br>“综合与实践”内容设置的目的在于培养学生综合运用有关的知识与方法解决实际问题,培养学生的问题意识、应用意识和创新意识,积累学生的活动经验,提高学生解决现实问题的能力。
“数与代数 ”的主要内容有:数的认识,数的表示,数的大小,数的运算,数量的估计;字母表示
数,代数式及其运 算;方程、方程组、不等式、函数等。
“图形与几何”的主要内容有:空间和平面基本图形的认识,图 形的性质、分类和度量;图形的平
移、旋转、轴对称、相似和投影;平面图形基本性质的证明;运用坐标 描述图形的位置和运动。
“统计与概率”的主要内容有:收集、整理和描述数据,包括简单抽样、整理 调查数据、绘制统计
图表等;处理数据,包括计算平均数、中位数、众数、极差、方差等;从数据中提取 信息并进行简单的
推断;简单随机事件及其发生的概率。
“综合与实践”是一类以问题为载体 、以学生自主参与为主的学习活动。在学习活动中,学生将综
合运用“数与代数”“图形与几何”“统计 与概率”等知识和方法解决问题。“综合与实践”的教学活动
应当保证每学期至少一次,可以在课堂上完 成,也可以课内外相结合。
在数学课程中,应当注重发展学生的数感、符号意识、空间观念、几何直观 、数据分析观念、运算
能力、推理能力和模型思想。为了适应时代发展对人才培养的需要,数学课程还要 特别注重发展学生的
应用意识和创新意识。
数感主要是指关于数与数量、数量关系、运算结果 估计等方面的感悟。建立数感有助于学生理解现
实生活中数的意义,理解或表述具体情境中的数量关系。
符号意识主要是指能够理解并且运用符号表示数、数量关系和变化规律;知道使用符号可以进行运
算和推理,得到的结论具有一般性。建立符号意识有助于学生理解符号的使用是数学表达和进行数学思
考的重要形式。
空间观念主要是指根据物体特征抽象出几何图形,根据几何图形想象出所描述的实际物 体;想象出
物体的方位和相互之间的位置关系;描述图形的运动和变化;依据语言的描述画出图形等。
几何直观主要是指利用图形描述和分析问题。借助几何直观可以把复杂的数学问题变得简明、形象,有助于探索解决问题的思路,预测结果。几何直观可以帮助学生直观地理解数学,在整个数学学习过程
中都发挥着重要作用。
数据分析观念包括:了解在现实生活中有许多问题应当先做调查研究,收集数 据,通过分析做出判
断,体会数据中蕴涵着信息;了解对于同样的数据可以有多种分析的方法,需要根据 问题的背景选择合
适的方法;通过数据分析体验随机性,一方面对于同样的事情每次收集到的数据可能不 同,另一方面只
要有足够的数据就可能从中发现规律。
运算能力主要是指能够根据法则和运算 律正确地进行运算的能力。培养运算能力有助于学生理解运
算的算理,寻求合理简洁的运算途径解决问题 。
推理能力的发展应贯穿在整个数学学习过程中。推理是数学的基本思维方式,也是人们学习和生活< br>中经常使用的思维方式。推理一般包括合情推理和演绎推理,合情推理是从已有的事实出发,凭借经验和直觉,通过归纳和类比等推断某些结果;演绎推理是从已有的事实(包括定义、公理、定理等)和确
定的规则(包括运算的定义、法则、顺序等)出发,按照逻辑推理的法则证明和计算。在解决问题的过
程中,合情推理用于探索思路,发现结论;演绎推理用于证明结论。
模型思想的建立是学生体会和理解 数学与外部世界联系的基本途径。建立和求解模型的过程包括:
从现实生活或具体情境中抽象出数学问题 ,用数学符号建立方程、不等式、函数等表示数学问题中的数
量关系和变化规律,求出结果、并讨论结果 的意义。这些内容的学习有助于学生初步形成模型思想,提
高学习数学的兴趣和应用意识。
应 用意识有两个方面的含义,一方面有意识利用数学的概念、原理和方法解释现实世界中的现象,
解决现实 世界中的问题;另一方面,认识到现实生活中蕴涵着大量与数量和图形有关的问题,这些问题
可以抽象成 数学问题,用数学的方法予以解决。在整个数学教育的过程中都应该培养学生的应用意识,
综合实践活动 是培养应用意识很好的载体。
创新意识的培养是现代数学教育的基本任务,应体现在数学教与学的过 程之中。学生自己发现和提
出问题是创新的基础;独立思考、学会思考是创新的核心;归纳概括得到猜想 和规律,并加以验证,是
创新的重要方法。创新意识的培养应该从义务教育阶段做起,贯穿数学教育的始 终。
第二部分 课程目标

一、总目标
通过义务教育阶段的数学学习,学生能:
1. 获得适应社会生活和进一步发展所必需的数学的基础知识、基本技能、基本思想、基本活动经
验。
2. 体会数学知识之间、数学与其他学科之间、数学与生活之间的联系,运用数学的思维方式进行思考,增强发现和提出问题的能力、分析和解决问题的能力。
3. 了解数学的价值,提高学习数 学的兴趣,增强学好数学的信心,养成良好的学习习惯,具有初
步的创新意识和实事求是的科学态度。
总目标从以下四个方面具体阐述:
●经历数与代数的抽象、运算与建模等过程,掌握数与代数的基础知识和基本技能。
●经历图 形的抽象、分类、性质探讨、运动、位置确定等过程,掌握图形与几何的基础知识和基本技
知识技能
能。
●经历在实际问题中收集和处理数据、利用数据分析问题、获取信息的过程,掌握统计与 概率的基础
知识和基本技能。
●参与综合实践活动,积累综合运用数学知识、技能和方法等解决简单问题的数学活动经验。
●建立数感、符号意识和空间观念,初步形成几何直观和运算能力,发展形象思维与抽象思维。
数学思考
●体会统计方法的意义,发展数据分析观念,感受随机现象。
●在参与观 察、实验、猜想、证明、综合实践等数学活动中,发展合情推理和演绎推理能力,清晰地
表达自己的想法 。
●学会独立思考,体会数学的基本思想和思维方式。
●初步学会从数学的角度发现问题和 提出问题,综合运用数学知识解决简单的实际问题,增强应用意
识,提高实践能力。
问题解决 ●获得分析问题和解决问题的一些基本方法,体验解决问题方法的多样性,发展创新意识。
●学会与他人合作交流。
●初步形成评价与反思的意识。
●积极参与数学活动,对数学有好奇心和求知欲。
情感态度
●在数学学习过程中,体验获得成功的乐趣,锻炼克服困难的意志,建立自信心。
●体会数学的特点,了解数学的价值。
●养成认真勤奋、独立思考、合作交流、反思质疑等学习习惯,形成实事求是的科学态度。
总 目标的这四个方面,不是相互独立和割裂的,而是一个密切联系、相互交融的有机整体。在课程
设计和教 学活动组织中,应同时兼顾这四个方面的目标。这些目标的整体实现,是学生受到良好数学教
育的标志, 它对学生的全面、持续、和谐发展有着重要的意义。数学思考、问题解决、情感态度的发展
离不开知识技 能的学习,知识技能的学习必须有利于其他三个目标的实现。
二、学段目标
第一学段(1~3年级)
知识技能
1.经历从日常生活中抽象出数的过程,理解万 以内数的意义,初步认识分数和小数;理解常见的
量;体会四则运算的意义,掌握必要的运算技能;在具 体情境中,能进行简单的估算。
2.经历从实际物体中抽象出简单几何体和平面图形的过程,了解一些 简单几何体和常见的平面图
形;感受平移、旋转、轴对称现象;认识物体的相对位置。掌握初步的测量、 识图和画图的技能。
3.经历简单的数据收集、整理、分析的过程,了解简单的数据处理方法。
数学思考
1.在运用数及适当的度量单位描述现实生活中的简单现象,以及对运算结果进行估 计的过程中,
发展数感;在从物体中抽象出几何图形、想象图形的运动和位置的过程中,发展空间观念。
2.能对调查过程中获得的简单数据进行归类,体验数据中蕴涵着信息。
3. 在观察、操作等活动中,能提出一些简单的猜想。
4.会独立思考问题,表达自己的想法。
问题解决
1.能在教师的指导下,从日常生活中发现和提出简单的数学问题,并尝试解决。
2.了解分析问题和解决问题的一些基本方法,知道同一个问题可以有不同的解决方法。
3.体验与他人合作交流解决问题的过程。
4.尝试回顾解决问题的过程。
情感态度
1.对身边与数学有关的事物有好奇心,能参与数学活动。
2.在他人帮助下,感受数学活动中的成功,能尝试克服困难。
3.了解数学可以描述生活中的一些现象,感受数学与生活有密切联系。
4.能倾听别人的意见,尝试对别人的想法提出建议,知道应该尊重客观事实。
第二学段(4~6年级)
知识技能
1.体验从具体情境中抽象出数的过程,认识万 以上的数;理解分数、小数、百分数的意义,了解
负数;掌握必要的运算技能;理解估算的意义;能用方 程表示简单的数量关系,能解简单的方程。
2.探索一些图形的形状、大小和位置关系,了解一些几何 体和平面图形的基本特征;体验简单图
形的运动过程,能在方格纸上画出简单图形运动后的图形,了解确 定物体位置的一些基本方法;掌握测
量、识图和画图的基本方法。
3.经历数据的收集、整理 和分析的过程,掌握一些简单的数据处理技能;体验随机事件和事件发
生的等可能性。
4.能借助计算器解决简单的应用问题。
数学思考
1.初步形成数感和空间观念,感受符号和几何直观的作用。
2.进一步认识到数据中蕴涵着信息,发展数据分析观念;感受随机现象。
3.在观察、实验 、猜想、验证等活动中,发展合情推理能力,能进行有条理的思考,能比较清楚
地表达自己的思考过程与 结果。
4. 会独立思考,体会一些数学的基本思想。
问题解决
1.尝试从日常生活中发现并提出简单的数学问题,并运用一些知识加以解决。
2.能探索分析和解决简单问题的有效方法,了解解决问题方法的多样性。
3.经历与他人合作解决问题的过程,尝试解释自己的思考过程。
4.能回顾解决问题的过程,初步判断结果的合理性。
情感态度
1.愿意了解社会生活中与数学相关的信息,主动参与数学学习活动。
2.在他人的鼓励和引导下,体验克服困难、解决问题的过程,相信自己能够学好数学。
3.在运用数学知识和方法解决问题的过程中,认识数学的价值。
4.初步养成乐于思考、勇于质疑、实事求是等良好品质。
第三部分 内容标准
第一学段(1~3年级)
一、数与代数
(一)数的认识
1. 在现实情 境中理解万以内数的意义,能认、读、写万以内的数,能用数表示物体的个数或事物
的顺序和位置。
2. 能说出各数位的名称,理解各数位上的数字表示的意义;知道用算盘可以表示多位数(参见例1)。
3. 理解符号<,=,>的含义,能用符号和词语描述万以内数的大小(参见例2)。
4. 在生活情境中感受大数的意义,并能进行估计(参见例3)。
5. 能结合具体情境初步认识小数和分数,能读、写小数和分数。
6. 能结合具体情境比较两个一位小数的大小,能比较两个同分母分数的大小。
7. 能运用数表示日常生活中的一些事物,并能进行交流(参见例4)。
(二)数的运算
1. 结合具体情境,体会整数四则运算的意义(参见例5)。
2. 能熟练地口算20以内的加减法和表内乘除法,能口算百以内的加减法和一位数乘除两位数。
3. 能计算三位数的加减法,一位数乘三位数、两位数乘两位数的乘法,三位数除以一位数的除法。
4.认识小括号,能进行简单的整数四则混合运算(两步)。
5. 会进行同分母分数(分母小于10)的加减运算以及一位小数的加减运算。
6. 能结合具体情境进行估算,并会解释估算的过程(参见例6)。
7. 经历与他人交流各自算法的过程。
8. 能运用数及数的运算解决生活中的简单问题,并能对结果的实际意义作出解释(参见例7)。
(三)常见的量
1. 在现实情境中,认识元、角、分,并了解它们之间的关系。
2. 能认识钟表,了解24时记时法;结合自己的生活经验,体验时间的长短(参见例8)。
3. 认识年、月、日,了解它们之间的关系。
4. 在现实情境中,感受并认识克、千克、吨,能进行简单的单位换算。
5. 能结合生活实际,解决与常见的量有关的简单问题。
(四)探索规律
探索简单的变化规律(参见例9,例10)。
二、图形与几何
(一)图形的认识
1. 能通过实物和模型辨认长方体、正方体、圆柱和球等几何体。
2. 能根据具体事物、照片或直观图辨认从不同角度观察到的简单物体(参见例11)。
3. 能辨认长方形、正方形、三角形、平行四边形、圆等简单图形。
4. 通过观察、操作,初步认识长方形、正方形的特征。
5. 会用长方形、正方形、三角形、平行四边形或圆拼图。
6. 结合生活情境认识角,了解直角、锐角和钝角。
7. 能对简单几何体和图形进行分类(参见例21)。
(二)测量
1. 结合生活实际,经历用不同方式测量物体长度的过程,体会建立统一度量单位的重要性。
2. 在实践 活动中,体会并认识长度单位千米、米、厘米,知道分米、毫米,能进行简单的单位换
算,能恰当地选择 长度单位(参见例12)。
3. 能估测一些物体的长度,并进行测量。
4. 结合实例认识周长,并能测量简单图形的周长(参见例13),探索并掌握长方形、正方形的周长
公式。
5. 结合实例认识面积,体会并认识面积单位厘米、分米、米,能进行简单的单位换算。
6. 探索并掌握长方形、正方形的面积公式,会估计给定简单图形的面积(参见例14)。
(三)图形的运动
1. 结合实例,感受平移、旋转、轴对称现象(参见例15)。
2. 能辨认简单图形平移后的图形(参见例16)。
3. 通过观察、操作,初步认识轴对称图形。
(四)图形与位置
1. 会用上、下、左、右、前、后描述物体的相对位置。
2. 给定东、南、西、北四个方向中的一个方向 ,能辨认其余三个方向,知道东北、西北、东南、
西南四个方向,会用这些词语描绘物体所在的方向(参 见例17)。
三、统计与概率
1. 能根据给定的标准或者自己选定的标准,对事物或数 据进行分类,感受分类与分类标准的关系
(参见例18)。
2. 经历简单的数据收集和整理 过程,了解调查、测量等收集数据的简单方法,并能用自己的方式
(文字、图画、表格等)呈现整理数据 的结果(参见例19)。
3. 通过对数据的简单分析,体会运用数据进行表达与交流的作用,感受数据蕴涵信息(参见例20)。
四、综合与实践
1.通过实践活动,感受数学在日常生活中的作用,体验能够运用所学的知识 和方法解决简单问题,
获得初步的数学活动经验。
222
2.在实践活动中,了解要解决的问题和解决问题的办法。
3.经历实践操作的过程,进一步理解所学的内容。
(参见例21,例22,例23)
第二学段(4~6年级)
一、数与代数
(一)数的认识
1. 在具体情境中,认识万以上的数,了解十进制计数法,会用万、亿为单位表示大数。
2. 结合现实情境感受大数的意义,并能进行估计(参见例24)。
3. 会运用数描述事物的某些特征,进一步体会数在日常生活中的作用(参见例25)。
4. 知道2,3 ,5的倍数的特征,了解公倍数和最小公倍数;在1~100的自然数中,能找出10以内
自然数的所有 倍数,能找出10以内两个自然数的公倍数和最小公倍数。
5. 了解公因数和最大公因数;在1~1 00的自然数中,能找出一个自然数的所有因数,能找出两个
自然数的公因数和最大公因数。
6. 了解自然数、整数、奇数、偶数、质(素)数和合数。
7. 结合具体情境,理解小数 和分数的意义,理解百分数的意义(参见例26);会进行小数、分数和
百分数的转化(不包括将循环小 数化为分数)。
8. 能比较小数的大小和分数的大小。
9.在熟悉的生活情境中,了解负数的意义,会用负数表示日常生活中的一些量。
(二)数的运算
1.能计算三位数乘两位数的乘法,三位数除以两位数的除法。
2.认识中括号,能进行简单的整数四则混合运算(以两步为主,不超过三步)。
3.探索并 了解运算律(加法的交换律和结合律、乘法的交换律和结合律、乘法对加法的分配律),
会应用运算律进 行一些简便运算。
4.在具体运算和解决简单实际问题的过程中,体会加与减、乘与除的互逆关系。
5.能分别进行简单的小数、分数(不含带分数)加、减、乘、除运算及混合运算(以两步为主,
不超过三步)。
6.能解决小数、分数和百分数的简单实际问题。
7.在具体情境中,了 解常见的数量关系:总价=单价×数量、路程=速度×时间,并能解决简单的实
际问题。
8.经历与他人交流各自算法的过程,并能表达自己的想法。
9.在解决问题的过程中,能选择合适的方法进行估算(参见例27,例28)。
10.能借助计算器进行运算,解决简单的实际问题,探索简单的规律(参见例29)。
(三)式与方程
1.在具体情境中能用字母表示数。
2.结合简单的实际情境,了解等量关系,并能用字母表示。
3. 能用方程表示简单情境中 的等量关系(如3
x
+2=5,2
x
-
x
=3),了解方程 的作用。
4.了解等式的性质,能用等式的性质解简单的方程。
(四)正比例、反比例
1.在实际情境中理解比及按比例分配的含义,并能解决简单的问题。
2.通过具体情境,认识成正比例的量和成反比例的量。
3.会根据给出的有正比例关系的数 据在方格纸上画图,并会根据其中一个量的值估计另一个量的
值(参见例30)。
4.能找出生活中成正比例和成反比例关系量的实例,并进行交流。
(五)探索规律
探索给定情境中隐含的规律或变化趋势(参见例31,例32)。
二、图形与几何
(一)图形的认识
1.结合实例了解线段、射线和直线。
2.体会两点间所有连线中线段最短,知道两点间的距离。
3.知道平角与周角,了解周角、平角、钝角、直角、锐角之间的大小关系。
4.结合生活情境了解平面上两条直线的平行和相交(包括垂直)关系。
5.通过观察、操作,认识平行四边形、梯形和圆,知道扇形,会用圆规画圆。
6.认识三角形,通过观察、操作,了解三角形两边之和大于第三边、三角形内角和是180°。
7.认识等腰三角形、等边三角形、直角三角形、锐角三角形、钝角三角形。
8.能辨认从不同方向(前面、侧面、上面)看到的物体的形状图(参见例33)。
9.通过观察、操作,认识长方体、正方体、圆柱和圆锥,认识长方体、正方体和圆柱的展开图。
(二)测量
1.能用量角器量指定角的度数,能画指定度数的角,会用三角尺画30°,45 °,60°,90°角。
2.探索并掌握三角形、平行四边形和梯形的面积公式,并能解决简单的实际问题。
3.知道面积单位:千米、公顷。
4.通过操作,了解圆的周长与直径的比为定值,掌握圆的 周长公式;探索并掌握圆的面积公式,
并能解决简单的实际问题。
5.会用方格纸估计不规则图形的面积(参见例34)。
6.通过实例了解体积(包括容积) 的意义及度量单位(米、分米、厘米、升、毫升),能进行
单位之间的换算,感受1米、1厘米以及1升 、1毫升的实际意义。
7.结合具体情境,探索并掌握长方体、正方体、圆柱的体积和表面积以及圆锥 体积的计算方法,
并能解决简单的实际问题。
8.体验某些实物(如土豆等)体积的测量方法(参见例35)。
(三)图形的运动
1.通过观察、操作等活动,进一步认识轴对称图形及其对称轴,能在方格纸上画出轴对称图形的
对称 轴;能在方格纸上补全一个简单的轴对称图形。
2.通过观察、操作等,在方格纸上认识图形的平移与 旋转,能在方格纸上按水平或垂直方向将简
单图形平移,会在方格纸上将简单图形旋转90°(参见例3 6)。
3.能利用方格纸按一定比例将简单图形放大或缩小。
4.能从平移、旋转和轴对称的角度欣赏生活中的图案,并运用它们在方格纸上设计简单的图案。
(四)图形与位置
1.了解比例尺;在具体情境中,会按给定的比例进行图上距离与实际距离的换算。
2.能根据物体相对于参照点的方向和距离确定其位置。
3.会描述简单的路线图(参见例37)。
4.在具体情境中,能在方格纸上用数对(限于正 整数)表示位置,知道数对与方格纸上点的对应
(参见例38)。
三、统计与概率
(一)简单数据统计过程
1.经历简单的收集、整理、描述和分析数据的过程(可使用计算器)。
2.会根据实际问题设计简单的调查表,能选择适当的方法(如调查、试验、测量)收集数据。
3.认识条形统计图、扇形统计图、折线统计图;能用条形统计图、折线统计图直观、有效地表示
数据 (参见例39)。
4.体会平均数的作用,能计算平均数,能用自己的语言解释其实际意义(参见例39)。
3 3
333
2
5.能从报纸杂志、电视等媒体中,有意识地获得一些数据信息,并能读懂 简单的统计图表(参见
例40)。
6.能解释统计结果,根据结果作出简单的判断和预测,并能进行交流(参见例39和例41)。
(二)随机现象发生的可能性
1.结合具体情境,了解简单的随机现象;能列出简单的随机现 象中所有可能发生的结果(参见例
42)。
2.通过试验、游戏等活动,感受随机现象结果发 生的可能性是有大小的,能对一些简单的随机现
象发生的可能性大小作出定性描述,并能进行交流(参见 例42)。
四、综合与实践
1. 经历有目的、有设计、有步骤、有合作的实践活动。
2.结合实际情境,体验发现和提出问题、分析和解决问题的过程。
3.在给定目标下,感受针对具体问题提出设计思路、制定简单的方案解决问题的过程。
4. 通过应用和反思,进一步理解所用的知识和方法,了解所学知识之间的联系,获得数学活动经
验。
(参见例43,例44,例45,例46)
第四部分 实施建议

一、教学建议
教学活动是师生积极参与、交往互动、共同发展的过程。
数学教学应 根据具体的教学内容,注意使学生在获得间接经验的同时也能够有机会获得直接经验,
即从学生实际出发 ,创设有助于学生自主学习的问题情境,引导学生通过实践、思考、探索、交流等,
获得数学的基础知识 、基本技能、基本思想、基本活动经验,促使学生主动地、富有个性地学习,不断
提高发现问题和提出问 题的能力、分析问题和解决问题的能力。
在数学教学活动中,教师要把基本理念转化为自己的教学行为, 处理好教师讲授与学生自主学习的关系,注重启发学生积极思考;发扬教学民主,当好学生数学活动的组织者、引导者、合作者;激发学
生的学习潜能,鼓励学生大胆创新与实践;创造性地使用教材,积极开发、利用各种教学资源,为学生
提供丰富多彩的学习素材;关注学生的个体差异,有效地实施有差异的教学,使每个学生都得到充分的
发 展;合理地运用现代信息技术,有条件的地区,要尽可能合理、有效地使用计算机和有关软件,提高
教学 效益。
1. 数学教学活动要注重课程目标的整体实现
为使每个学生都受到良好的 数学教育,数学教学不仅要使学生获得数学的知识技能,而且要把知识
技能、数学思考、问题解决、情感 态度四个方面目标有机结合,整体实现课程目标。
课程目标的整体实现需要日积月累。在日常的教学活 动中,教师应努力挖掘教学内容中可能蕴涵的、
与上述四个方面目标有关的教育价值,通过长期的教学过 程,逐渐实现课程的整体目标。因此,无论是
设计、实施课堂教学方案,还是组织各类教学活动,不仅要 重视学生获得知识技能,而且要激发学生的
学习兴趣,通过独立思考或者合作交流感悟数学的基本思想, 引导学生在参与数学活动的过程中积累基
本经验,帮助学生形成认真勤奋、独立思考、合作交流、反思质 疑等良好的学习习惯。
例如,关于“零指数”教学方案的设计可作如下考虑:教学目标不仅要包括了解 零指数幂的“规定”、
会进行简单计算,还要包括感受这个“规定”的合理性,并在这个过程中学会数学 思考、感悟理性精神
(参见例81)。
2. 重视学生在学习活动中的主体地位
有效的数学教学活动是教师教与学生学的统一,应体现“以人为本”的理念,促进学生的全面发展。
(1)学生是数学学习的主体,在积极参与学习活动的过程中不断得到发展。
学生获得知识, 必须建立在自己思考的基础上,可以通过接受学习的方式,也可以通过自主探索等
方式;学生应用知识并 逐步形成技能,离不开自己的实践;学生在获得知识技能的过程中,只有亲身参
与教师精心设计的教学活 动,才能在数学思考、问题解决和情感态度方面得到发展(参见例82)。
(2)教师应成为学生学习活动的组织者、引导者、合作者,为学生的发展提供良好的环境和条件。 < br>教师的“组织”作用主要体现在两个方面:第一,教师应当准确把握教学内容的数学实质和学生的
实际情况,确定合理的教学目标,设计一个好的教学方案;第二,在教学活动中,教师要选择适当的教
学 方式,因势利导、适时调控、努力营造师生互动、生生互动、生动活泼的课堂氛围,形成有效的学习
活动 。
教师的“引导”作用主要体现在:通过恰当的问题,或者准确、清晰、富有启发性的讲授,引导学< br>生积极思考、求知求真,激发学生的好奇心;通过恰当的归纳和示范,使学生理解知识、掌握技能、积累经验、感悟思想;能关注学生的差异,用不同层次的问题或教学手段,引导每一个学生都能积极参与
学习活动,提高教学活动的针对性和有效性。
教师与学生的“合作”主要体现在:教师以平等、尊重 的态度鼓励学生积极参与教学活动,启发学
生共同探索,与学生一起感受成功和挫折、分享发现和成果。
(3)处理好学生主体地位和教师主导作用的关系。
好的教学活动,应是学生主体地位和教师 主导作用的和谐统一。一方面,学生主体地位的真正落实,
依赖于教师主导作用的有效发挥;另一方面, 有效发挥教师主导作用的标志,是学生能够真正成为学习
的主体,得到全面的发展(参见例32,例52 )。
实行启发式教学有助于落实学生的主体地位和发挥教师的主导作用。教师富有启发性的讲授;创设
情境、设计问题,引导学生自主探索、合作交流;组织学生操作实验、观察现象、提出猜想、推理论证< br>等,都能有效地启发学生的思考,使学生成为学习的主体,逐步学会学习。
3. 注重学生对基础知识、基本技能的理解和掌握
“知识技能”既是学生发展的基础性目标,又是落实“数 学思考”“问题解决”“情感态度”目标的
载体。
(1)数学知识的教学,应注重学生对所学知识的理解,体会数学知识之间的关联。
学生掌握 数学知识,不能依赖死记硬背,而应以理解为基础,并在知识的应用中不断巩固和深化。
为了帮助学生真 正理解数学知识,教师应注重数学知识与学生生活经验的联系、与学生学科知识的联系,
组织学生开展实 验、操作、尝试等活动,引导学生进行观察、分析,抽象概括,运用知识进行判断。教
师还应揭示知识的 数学实质及其体现的数学思想,帮助学生理清相关知识之间的区别和联系等。
数学知识的教学,要注重 知识的“生长点”与“延伸点”,把每堂课教学的知识置于整体知识的体
系中,注重知识的结构和体系, 处理好局部知识与整体知识的关系,引导学生感受数学的整体性,体会
对于某些数学知识可以从不同的角 度加以分析、从不同的层次进行理解。
(2)在基本技能的教学中,不仅要使学生掌握技能操作的程序 和步骤,还要使学生理解程序和步
骤的道理。例如,对于整数乘法计算,学生不仅要掌握如何进行计算, 而且要知道相应的算理;对于尺
规作图,学生不仅要知道作图的步骤,而且要能知道实施这些步骤的理由 。
基本技能的形成,需要一定量的训练,但要适度,不能依赖机械的重复操作,要注重训练的实效性。
教师应把握技能形成的阶段性,根据内容的要求和学生的实际,分层次地落实。
4. 感悟数学思想,积累数学活动经验
数学思想蕴涵在数学知识形成、发展和应用的过程中,是数学知识和 方法在更高层次上的抽象与概
括,如抽象、分类、归纳、演绎、模型等。学生在积极参与教学活动的过程 中,通过独立思考、合作交
流,逐步感悟数学思想。
例如,分类是一种重要的数学思想。学习 数学的过程中经常会遇到分类问题,如数的分类,图形的
分类,代数式的分类,函数的分类等。在研究数 学问题中,常常需要通过分类讨论解决问题,分类的过
程就是对事物共性的抽象过程。教学活动中,要使 学生逐步体会为什么要分类,如何分类,如何确定分
类的标准,在分类的过程中如何认识对象的性质,如 何区别不同对象的不同性质。通过多次反复的思考
和长时间的积累,使学生逐步感悟分类是一种重要的思 想。学会分类,可以有助于学习新的数学知识,
有助于分析和解决新的数学问题。
数学活动经 验的积累是提高学生数学素养的重要标志。帮助学生积累数学活动经验是数学教学的重
要目标,是学生不 断经历、体验各种数学活动过程的结果。数学活动经验需要在“做”的过程和“思考”
的过程中积淀,是 在数学学习活动过程中逐步积累的。
教学中注重结合具体的学习内容,设计有效的数学探究活动,使学 生经历数学的发生发展过程,是
学生积累数学活动经验的重要途径。例如,在统计教学中,设计有效的统 计活动,使学生经历完整的统
计过程,包括收集数据、整理数据、展示数据、从数据中提取信息,并利用 这些信息说明问题。学生在
这样的过程中,不断积累统计活动经验,加深理解统计思想与方法。
“综合与实践”是积累数学活动经验的重要载体。在经历具体的“综合与实践”问题的过程中,引
导学 生体验如何发现问题,如何选择适合自己完成的问题,如何把实际问题变成数学问题,如何设计解
决问题 的方案,如何选择合作的伙伴,如何有效地呈现实践的成果,让别人体会自己成果的价值。通过
这样的教 学活动,学生会逐步积累运用数学解决问题的经验。
5. 关注学生情感态度的发展 根据课程目标,广大教师要把落实情感态度的目标作为己任,努力把情感态度目标有机地融合在数
学 教学过程之中。设计教学方案、进行课堂教学活动时,应当经常考虑如下问题:
如何引导学生积极参与教学过程?
如何组织学生探索,鼓励学生创新?
如何引导学生感受数学的价值?
如何使他们愿意学,喜欢学,对数学感兴趣?
如何让学生体验成功的喜悦,从而增强自信心?
如何引导学生善于与同伴合作交流,既能理解、尊重他人的意见,又能独立思考、大胆质疑?
如何让学生做自己能做的事,并对自己做的事情负责?
如何帮助学生锻炼克服困难的意志?
如何培养学生良好的学习习惯?
在教育教学活动中,教师要尊重学生,以强烈的责任心,严谨 的治学态度,健全的人格感染和影响
学生;要不断提高自身的数学素养,善于挖掘教学内容的教育价值; 要在教学实践中善于用本标准的理
念分析各种现象,恰当地进行养成教育。
6. 合理把握“综合与实践”的实施
“综合与实践”的实施是以问题为载体、以学生自主参与为主的学习活 动。它有别于学习具体知识
的探索活动,更有别于课堂上教师的直接讲授。它是教师通过问题引领、学生 全程参与、实践过程相对
完整的学习活动。
积累数学活动经验、培养学生应用意识和创新意识 是数学课程的重要目标,应贯穿整个数学课程之
中。“综合与实践”是实现这些目标的重要和有效的载体 。“综合与实践”的教学,重在实践、重在综合。
重在实践是指在活动中,注重学生自主参与、全过程参 与,重视学生积极动脑、动手、动口。重在综合
是指在活动中,注重数学与生活实际、数学与其他学科、 数学内部知识的联系和综合应用。
教师在教学设计和实施时应特别关注的几个环节是:问题的选择,问 题的展开过程,学生参与的方
式,学生的合作交流,活动过程和结果的展示与评价等。
要使学 生能充分、自主地参与“综合与实践”活动,选择恰当的问题是关键。这些问题既可来自教
材,也可以由 教师、学生开发。提倡教师研制、开发、生成出更多适合本地学生特点的、有利于实现“综
合与实践”课 程目标的好问题。
实施“综合与实践”时,教师要放手让学生参与,启发和引导学生进入角色,组织好 学生之间的合
作交流,并照顾到所有的学生。教师不仅要关注结果,更要关注过程,不要急于求成,要鼓 励引导学生
充分利用“综合与实践”的过程,积累活动经验、展现思考过程、交流收获体会、激发创造潜 能。
在实施过程中,教师要注意观察、积累、分析、反思,使“综合与实践”的实施成为提高教师自身
和学生素质的互动过程。
教师应该根据不同学段学生的年龄特征和认知水平,根据学段目标, 合理设计并组织实施“综合与
实践”活动。
7. 教学中应当注意的几个关系
(1)“预设”与“生成”的关系
教学方案是教师对教学过程的“预设”,教学方案 的形成依赖于教师对教材的理解、钻研和再创造。
理解和钻研教材,应以本标准为依据,把握好教材的编 写意图和教学内容的教育价值;对教材的再创造,
集中表现在:能根据所教班级学生的实际情况,选择贴 切的教学素材和教学流程,准确地体现基本理念
和内容标准规定的要求。
实施教学方案,是把 “预设”转化为实际的教学活动。在这个过程中,师生双方的互动往往会“生
成”一些新的教学资源,这 就需要教师能够及时把握,因势利导,适时调整预案,使教学活动收到更好
的效果。
(2)面向全体学生与关注学生个体差异的关系
教学活动应努力使全体学生达到课程目标的基 本要求,同时要关注学生的个体差异,促进每个学生
在原有基础上的发展。
对于学习有困难的 学生,教师要给予及时的关注与帮助,鼓励他们主动参与数学学习活动,并尝试
用自己的方式解决问题、 发表自己的看法,要及时地肯定他们的点滴进步,耐心地引导他们分析产生困
难或错误的原因,并鼓励他 们自己去改正,从而增强学习数学的兴趣和信心。对于学有余力并对数学有
兴趣的学生,教师要为他们提 供足够的材料和思维空间,指导他们阅读,发展他们的数学才能。
在教学活动中,要鼓励与提倡解决问 题策略的多样化,恰当评价学生在解决问题过程中所表现出的
不同水平;问题情境的设计、教学过程的展 开、练习的安排等要尽可能地让所有学生都能主动参与,提
出各自解决问题的策略,并引导学生通过与他 人的交流选择合适的策略,丰富数学活动的经验,提高思
维水平。
(3)合情推理与演绎推理的关系
推理贯穿于数学教学的始终,推理能力的形成和提高需要一 个长期的、循序渐进的过程。义务教育
阶段要注重学生思考的条理性,不要过分强调推理的形式。 推理包括合情推理和演绎推理。教师在教学过程中,应该设计适当的学习活动,引导学生通过观察、
尝试、估算、归纳、类比、画图等活动发现一些规律,猜测某些结论,发展合情推理能力;通过实例使
学 生逐步意识到,结论的正确性需要演绎推理的确认,可以根据学生的年龄特征提出不同程度的要求。
在第三学段中,应把证明作为探索活动的自然延续和必要发展,使学生知道合情推理与演绎推理是
相辅 相成的两种推理形式。“证明”的教学应关注学生对证明必要性的感受,对证明基本方法的掌握和
证明过 程的体验。证明命题时,应要求证明过程及其表述符合逻辑,清晰而有条理(参见例63)。此外,
还可 以恰当地引导学生探索证明同一命题的不同思路和方法,进行比较和讨论,激发学生对数学证明的
兴趣, 发展学生思维的广阔性和灵活性。
(4)使用现代信息技术与教学手段多样化的关系
积极开 发和有效利用各种课程资源,合理地应用现代信息技术,注重信息技术与课程内容的整合,
能有效地改变 教学方式,提高课堂教学的效益。有条件的地区,教学中要尽可能地使用计算器、计算机
以及有关软件; 暂时没有这种条件的地区,一方面要积极创造条件改善教学设施,另一方面广大教师应
努力自制教具以弥 补教学设施的不足。
在学生理解并能正确应用公式、法则进行计算的基础上,鼓励学生用计算器完成较 为繁杂的计算。
课堂教学、课外作业、实践活动中,应当根据内容标准的要求,允许学生使用计算器,还 应当鼓励学生
用计算器进行探索规律等活动(参见例28,例51)。
现代信息技术的作用不 能完全替代原有的教学手段,其真正价值在于实现原有的教学手段难以达到
甚至达不到的效果。例如,利 用计算机展示函数图像、几何图形的运动变化过程;从数据库中获得数据,
绘制合适的统计图表;利用计 算机的随机模拟结果,引导学生更好地理解随机事件以及随机事件发生的
概率;等等。在应用现代信息技 术的同时,教师还应注重课堂教学的板书设计。必要的板书有利于实现
学生的思维与教学过程同步,有助 于学生更好地把握教学内容的脉络。
二、评价建议
评价的主要目的是全面了解学生数学学习 的过程和结果,激励学生学习和改进教师教学。评价应以
课程目标和内容标准为依据,体现数学课程的基 本理念,全面评价学生在知识技能、数学思考、问题解
决和情感态度等方面的表现。
评价不仅 要关注学生的学习结果,更要关注学生在学习过程中的发展和变化。应采用多样化的评价
方式,恰当呈现 并合理利用评价结果,发挥评价的激励作用,保护学生的自尊心和自信心。通过评价得
到的信息,可以了 解学生数学学习达到的水平和存在的问题,帮助教师进行总结与反思,调整和改进教
学内容和教学过程。
1. 基础知识和基本技能的评价
对基础知识和基本技能的评价,应以各学段的具体目标和要 求为标准,考查学生对基础知识和基本
技能的理解和掌握程度,以及在学习基础知识与基本技能过程中的 表现。在对学生学习基础知识和基本
技能的结果进行评价时,应该准确地把握“了解、理解、掌握、应用 ”不同层次的要求。在对学生学习
过程进行评价时,应依据“经历、体验、探索”不同层次的要求,采取 灵活多样的方法,定性与定量相
结合、以定性评价为主。
每一学段的目标是该学段结束时学生 应达到的要求,教师需要根据学习的进度和学生的实际情况确
定具体的要求。例如,下表是对第一学段有 关计算技能的基本要求,这些要求是在学段结束时应达到的,
评价时应注意把握尺度,对计算速度不作过 高要求。
表1 第一学段计算技能评价要求
学习内容
20以内加减法和表内乘除法口算
百以内加减法口算
三位数以内的加减法笔算
两位数乘两位数笔算
一位数除两位或三位数的除法笔算
1
速度要求
8~10题分
3~4题分
2~3题分
1~2题分
1~2题分
教师应允许学生经过较长时间的努力,随着数学知识与技能的积累逐步达到学段目标。在实施评价时,< br>可以对部分学生采取“延迟评价”的方式,提供再次评价的机会,使他们看到自己的进步,树立学好数学的信心。
2. 数学思考和问题解决的评价
数学思考和问题解决的评价要依据总目标和学段目标的要求,体现在整个数学学习过程中。
对 数学思考和问题解决的评价应当采用多种形式和方法,特别要重视在平时教学和具体的问题情境
中进行评 价。例如,在第二学段,教师可以设计下面的活动,评价学生数学思考和问题解决的能力:
用长为50厘米的细绳围成一个边长为整厘米数的长方形,怎样才能使面积达到最大?
在对学生进行评价时,教师可以关注以下几个不同的层次:

1
延迟评价是指在平时学习过程中,对尚未达到目标要求的学生,可暂时不给明确的评价结果 ,给学生更多的机会,
当取得较好的成绩时再给予评价,以保护学生学习的积极性。
第一,学生是否能理解题目的意思,能否提出解决问题的策略,如通过画图进行尝试;
第二,学生能否列举若干满足条件的长方形,通过列表等形式将其进行有序排列;
第三,在观察、比较的基础上,学生能否发现长和宽变化时,面积的变化规律,并猜测问题的结果;
第四,对猜测的结果给予验证;
第五,鼓励学生发现和提出一般性问题,如,猜想当长和宽的 变化不限于整厘米数时,面积何时最
大。
为此,教师可以根据实际情况,设计有层次的问题评价学生的不同水平。例如,设计下面的问题: (1)找出三个满足条件的长方形,记录下长方形的长、宽和面积,并依据长或宽的长短有序地排
列 出来。
(2)观察排列的结果,探索长方形的长和宽发生变化时,面积相应的变化规律。猜测当长和宽 各
为多少厘米时,长方形的面积最大。
(3)列举满足条件的长和宽的所有可能结果,验证猜测。
(4)猜想:如果不限制长方形的长和宽为整厘米数,怎样才能使它的面积最大?
教师可以预 设目标:对于第二学段的学生,能够完成第(1)(2)题就达到基本要求,对于能完成
第(3)(4) 题的学生,则给予进一步的肯定。
学生解决问题的策略可能与教师的预设有所不同,教师应给予恰当的评价。
3. 情感态度的评价
情感态度的评价应依据课程目标的要求,采用适当的方法进行。主要方式有课堂观察、 活动记录、
课后访谈等。
情感态度评价主要在平时教学过程中进行,注重考查和记录学生在不 同阶段情感态度的状况和发生
的变化。例如,可以设计下面的评价表,记录、整理和分析学生参与数学活 动的情况。这样的评价表每
个学期至少记录1次,教师可以根据实际需要自行设计或调整评价的具体内容 。
表2 参与数学活动情况的评价表
学生姓名: 时间: 活动内容:
评价内容
参与活动
思考问题
与他人合作
表达与交流
主要表现




教师可以根据实际情况设计类似的评价表,也可以根据需要设计学生情感态度的综合评价表。
4. 注重对学生数学学习过程的评价
学生在数学学习过程中,知识技能、数学思考、问题解 决和情感态度等方面的表现不是孤立的,这
些方面的发展综合体现在数学学习过程之中。在评价学生每一 个方面表现的同时,要注重对学生学习过
程的整体评价,分析学生在不同阶段的发展变化。评价时应注意 记录、保留和分析学生在不同时期的学
习表现和学业成就。
例如,可以设计下面的课堂观察表 用于记录学生在课堂中的表现,积累起来,以便综合了解学生的
学习表现以及变化情况。观察表中的项目 可以根据实际需要自行调整,随时记录学生在课堂教学中的表
现。教师可以有计划地每天记录几位同学的 表现,保证每学期每位同学有3~5次的记录;也可以根据实
际情况记录某些同学的特殊表现,如提出或 回答问题具有独特性的同学、在某方面表现突出的同学、或
在某方面需要改进的同学。经过一段时间的积 累,对于学生平时数学学习的表现,就会有一个较为清晰
具体的了解。
表3 课堂观察表
上课时间: 科目: 内容:


项目
课堂参与
提出或回答问题
合作与交流
课堂练习
知识技能的掌握
独立思考
其他







































































说明:记录时,可以用3表示优,2表示良,1表示一般,等等。
5. 体现评价主体的多元化和评价方式的多样化
评价主体的多元化是指教师、家长、同学及 学生本人都可以作为评价者,可以综合运用教师评价、
学生自我评价、学生相互评价、家长评价等方式, 对学生的学习情况和教师的教学情况进行全面的考查。
例如,每一个学习单元结束时,教师可以要求学生 自我设计一个“学习小结”,用合适的形式(表、图、
卡片、电子文本等)归纳学到的知识和方法,学习 中的收获,遇到的问题,等等。教师可以通过学习小
结对学生的学习情况进行评价,也可以组织学生将自 己的学习小结在班级展示交流,通过这种形式总结
自己的进步,反思自己的不足以及需要改进的地方,汲 取他人值得借鉴的经验。条件允许时,可以请家
长参与评价。
评价方式多样化体现在多种评价 方法的运用,包括书面测验、口头测验、开放式问题、活动报告、
课堂观察、课后访谈、课内外作业、成 长记录等等(参见例83)。在条件允许的地方,也可以采用网上
交流的方式进行评价。每种评价方式都 具有各自的特点,教师应结合学习内容及学生学习的特点,选择
适当的评价方式。例如,可以通过课堂观 察了解学生学习的过程与学习态度,从作业中了解学生基础知
识与基本技能掌握的情况,从探究活动中了 解学生独立思考的习惯和合作交流的意识,从成长记录中了
解学生的发展变化。
6. 恰当地呈现和利用评价结果
评价结果的呈现应采用定性与定量相结合的方式。第一学段的评价应当以描 述性评价为主,第二学
段采用描述性评价和等级评价相结合的方式,第三学段可以采用描述性评价和等级 (或百分制)评价相
结合的方式。
评价结果的呈现和利用应有利于增强学生学习数学的自信心 ,提高学生学习数学的兴趣,使学生养
成良好的学习习惯,促进学生的发展。评价结果的呈现,应该更多 地关注学生的进步,关注学生已经掌
握了什么,获得了哪些提高,具备了什么能力,还有什么潜能,在哪 些方面还存在不足,等等。
例如,下面是对某同学第二学段关于“统计与概率”学习的书面评语: < br>王小明同学,本学期我们学习了收集、整理和表达数据。你通过自己的努力,能收集、记录数据,
知道如何求平均数,了解统计图的特点,制作的统计图很出色,在这方面表现突出。但你在使用语言解
释 统计结果方面还存在一定差距。继续努力,小明! 评定等级:B。
这个以定性为主的评语,实际上也 是教师与学生的一次情感交流。学生阅读这一评语,能够获得成
功的体验,树立学好数学的自信心,也知 道自己的不足和努力方向。
教师要注意分析全班学生评价结果随时间的变化,从而了解自己教学的成绩 和问题,分析、反思教
学过程中影响学生能力发展和素质提高的原因,寻求改善教学的对策。同时,以适 当的方式,将学生一
些积极的变化及时反馈给学生。
7. 合理设计与实施书面测验
书面测验是考查学生课程目标达成状况的重要方式,合理地设计和实施书面测验有助于全面考查学
生的 数学学业成就,及时反馈教学成效,不断提高教学质量。
(1)对于学生基础知识和基本技能达成情况 的评价,必须准确把握内容标准中的要求。例如,对
于一元二次方程根与系数关系的考查,内容标准中的 要求是“了解”,并不要求应用这个关系解决其他
问题,设计测试题目时应符合这个要求。
内容标准中的选学内容,不得列入考查(考试)范围。
对基础知识和基本技能的考查,要注重 考查学生对其中所蕴涵的数学本质的理解,考查学生能否在
具体情境中合理应用。因此,在设计试题时, 应淡化特殊的解题技巧,不出偏题怪题。
(2)在设计试题时,应该关注并且体现本标准的设计思路 中提出的几个核心词:数感、符号意识、
空间观念、几何直观、数据分析观念、运算能力、推理能力、模 型思想,以及应用意识和创新意识。
(3)根据评价的目的合理地设计试题的类型,有效地发挥各种类 型题目的功能。例如,为考查学
生从具体情境中获取信息的能力,可以设计阅读分析的问题;为考查学生 的探究能力,可以设计探索规
律的问题;为考查学生解决问题的能力,可以设计具有实际背景的问题;为 了考查学生的创造能力,可
以设计开放性问题。
(4)在书面测验中,积极探索可以考察学生学习过程的试题,了解学生的学习过程。
四、课程资源开发与利用建议
数学课程资源是指应用于教与学活动中的各种资源。主要包括文 本资源——如教科书、教师用书,
教与学的辅助用书、教学挂图等;信息技术资源——如网络、数学软件 、多媒体光盘等;社会教育资源
——如教育与学科专家,图书馆、少年宫、博物馆,报纸杂志、电视广播 等;环境与工具——如日常生
活环境中的数学信息,用于操作的学具或教具,数学实验室等;生成性资源 ——如教学活动中提出的问
题、学生的作品、学生学习过程中出现的问题、课堂实录等。
数学 教学过程中恰当的使用数学课程资源,将在很大程度上提高学生从事数学活动的水平和教师从
事教学活动 的质量。教材编写者、教学研究人员、教师和有关人员应依据本标准,有意识、有目的地开
发和利用各种 课程资源。
1. 文本资源
关于教科书、教师用书的开发,参见“教材编写建议”。 < br>学生学习辅助用书主要是为了更好地激发学生学习数学的兴趣和动力,帮助学生理解所学内容,巩
固相关技能,开拓数学视野,进而满足他们学习数学的个性化需求。这一类用书的开发不能仅仅着眼于
解 题活动和技能训练,单纯服务于应试。更重要的,还应当开发多品种、多形式的数学普及类读物,使
得学 生在义务教育阶段能够有足够的机会阅读数学、了解数学、欣赏数学。
教师教学辅助用书主要是为了加 深教师对于教学内容的理解,加强教师对于学生学习过程的认识,
提高教师采用有效教学方法的能力。为 此,在编制教学辅助用书时,提倡以研讨数学教学过程中的问题
为主线,赋予充分的教学实例,注重数学 教育理论与教学实践的有机结合,使之成为提高教师专业水准
的有效读物。
2. 信息技术资源
信息技术能向学生提供并展示多种类型的资料,包括文字、声音、图像等,并能灵活选 择与呈现;
可以创设、模拟多种与教学内容适应的情境;能为学生从事数学探究提供重要的工具;可以使 得相距千
里的个体展开面对面交流。信息技术是从根本上改变数学学习方式的重要途径之一,必须充分加 以应用。
信息技术资源的开发与利用需要关注三个方面:
其一,将信息技术作为教师从事数 学教学实践与研究的辅助性工具。为此,教师可以通过网络查阅
资料、下载富有参考价值的实例、课件, 并加以改进,使之适用于自身课堂教学;可以根据需要开发音
像资料,构建生动活泼的教学情境;还可以 设计与制作有关的计算机软件、教学课件,用于课堂教学活
动研究等。
其二,将信息技术作为 学生从事数学学习活动的辅助性工具。为此,可以引导学生积极有效地将计
算器、计算机用于数学学习活 动之中,如,在探究活动中借助计算器(机)处理复杂数据和图形,发现
其中存在的数学规律;使用有效 的数学软件绘制图形、呈现抽象对象的直观背景,加深对相关数学内容
的理解;通过互联网搜寻解决问题 所需要的信息资料,帮助自己形成解决问题的基本策略和方法等。
其三,将计算器等技术作为评价学生 数学学习的辅助性工具。为此,应当积极开展基于计算器环境
的评价方式与评价工具研究,如:哪些试题 或评价任务适宜在计算器环境下使用,哪些不适宜,等等。
总之,一切有条件和能够创造条件的地区和 学校,都应积极开发与利用计算机(器)、多媒体、互
联网等信息技术资源,组织教学研究人员、专业技 术人员和教师开发与利用适合自身课堂教学的信息技
术资源,以充分发挥其优势,为学生的学习和发展提 供丰富多彩的教育环境和有力的学习工具和评价工
具;为学生提供探索复杂问题、多角度理解数学的机会 、丰富学生的数学视野、提高学生的数学素养;
为有需要的学生提供个体学习的机会,以便于教师为特殊 需要的学生提供帮助;为教育条件欠发达地区
的学生提供教学指导和智力资源,更有效地吸引和帮助学生 进行数学学习。
值得注意的是,教学中应有效地使用信息技术资源,发挥其对学习数学的积极作用,减 少其对学习
数学的消极作用。例如,不应在数学教学过程中简单地将信息技术作为缩短思维过程、加大教 学容量的
工具;不提倡用计算机上的模拟实验来代替学生能够操作的实践活动;也不提倡利用计算机演示 来代替
学生的直观想象,弱化学生对数学规律的探索活动。同时,学校之间要加强交流,共享资源,避免 相关
教学资源的低水平重复,也可以积极引进国外先进的教育软件,并根据本学校学生的特点加以改进。
3. 社会教育资源
在数学教学活动中,应当积极开发利用社会教育资源。例如,邀请有关 专家向学生介绍数学在自然
界、科学技术、社会生活和其他学科发展中的应用,帮助学生体会数学的价值 ;邀请教学专家与教师共
同开展教学研究,以促进教师的专业成长。
学校应充分利用图书馆、 少年宫、博物馆、科技馆等,寻找合适的学习素材,如,学生感兴趣的自
然现象、工程技术、历史事件、 社会问题、数学史与数学家的故事和其他学科的相关内容,以开阔学生
的视野,丰富教师的教学资源。
报纸杂志、电视广播和网络等媒体常常为我们提供许多贴近时代、贴近生活的有意义话题,教师要
从中充分挖掘适合学生学习的素材,向学生介绍其中与数学有关的栏目,组织学生对某些内容进行交流,
以增强学生学习数学的兴趣,提高学生运用数学解决问题的能力。
4. 环境与工具
教师应当充分利用日常生活环境中与数学有关的信息,开发成为教学资源。教师应当努力开发制作
简便实 用的教具和学具,有条件的学校可以建立“数学实验室”供学生使用,以拓宽他们的学习领域,
培养他们 的实践能力,发展其个性品质与创新精神,促进不同的学生在数学上得到不同的发展。
5. 生成性资源
生成性资源是在教学过程中动态生成的,如,师生交互、生生交流过程中产生的新情境、新 问题、
新思路、新方法、新结果等。合理地利用生成性资源有利于提高教学有效性。
附 录
附录1 有关行为动词的分类
附录2 内容标准及实施建议的实例

数学与桥 论文-艺术学院招生网


2016莱芜中考数学试题-对口高职成绩查询


与数学分析有关的论文-国际商务专业介绍


初二数学辅导书推荐-淄川一中


数学课思政-江苏高考志愿


对口升学数学公式-陇桥学院


安徽理科数学2017答案-牛骥同槽


高考数学券-英语基本语法



本文更新与2020-11-12 21:33,由作者提供,不代表本网站立场,转载请注明出处:https://www.bjmy2z.cn/gaokao/443652.html

小学数学课程标准完整解读的相关文章

  • 余华爱情经典语录,余华爱情句子

    余华的经典语录——余华《第七天》40、我不怕死,一点都不怕,只怕再也不能看见你——余华《第七天》4可是我再也没遇到一个像福贵这样令我难忘的人了,对自己的经历如此清楚,

    语文
  • 心情低落的图片压抑,心情低落的图片发朋友圈

    心情压抑的图片(心太累没人理解的说说带图片)1、有时候很想找个人倾诉一下,却又不知从何说起,最终是什么也不说,只想快点睡过去,告诉自己,明天就好了。有时候,突然会觉得

    语文
  • 经典古训100句图片大全,古训名言警句

    古代经典励志名言100句译:好的药物味苦但对治病有利;忠言劝诫的话听起来不顺耳却对人的行为有利。3良言一句三冬暖,恶语伤人六月寒。喷泉的高度不会超过它的源头;一个人的事

    语文
  • 关于青春奋斗的名人名言鲁迅,关于青年奋斗的名言鲁迅

    鲁迅名言名句大全励志1、世上本没有路,走的人多了自然便成了路。下面是我整理的鲁迅先生的名言名句大全,希望对你有所帮助!当生存时,还是将遭践踏,将遭删刈,直至于死亡而

    语文
  • 三国群英单机版手游礼包码,三国群英手机单机版攻略

    三国群英传7五神兽洞有什么用那是多一个武将技能。青龙飞升召唤出东方的守护兽,神兽之一的青龙。玄武怒流召唤出北方的守护兽,神兽之一的玄武。白虎傲啸召唤出西方的守护兽,

    语文
  • 不收费的情感挽回专家电话,情感挽回免费咨询

    免费的情感挽回机构(揭秘情感挽回机构骗局)1、牛牛(化名)向上海市公安局金山分局报案,称自己为了挽回与女友的感情,被一家名为“实花教育咨询”的情感咨询机构诈骗4万余元。

    语文