关键词不能为空

当前您在: 主页 > 数学 >

齐晖高一数学必修一知识点梳理5篇精选分享

作者:高考题库网
来源:https://www.bjmy2z.cn/gaokao
2020-12-01 13:00
tags:知识点, 高一数学, 金融/投资

-小别离结局

2020年12月1日发(作者:曲振侔)

高一数学必修一知识点梳理5篇精选分享



高一数学必修一知识点1

函数

1、函数定义域、值域求法综合

2.、函数奇偶性与单调性问题的解题策略

3、恒成立问题的求解策略

4、反函数的几种题型及方法

5、二次函数根的问题——一题多解

&指数函数y=a^x

a^a^b=a^a+b(a>0,a、b属于Q)

(a^a)^b=a^ab(a>0,a、b属于Q)

(ab)^a=a^a^a(a>0,a、b属于Q)

指数函数对称规律:

1、函数y=a^x与y=a^-x关于y轴对称

2、函数y=a^x与y=-a^x关于x轴对称

3、函数y=a^x与y=-a^-x关于坐标原点对称

&对数函数y=loga^x

如果,且,,,那么:

○1?+;

○2-;

○3.



注意:换底公式

(,且;,且;).

幂函数y=x^a(a属于R)

1、幂函数定义:一般地,形如的函数称为幂函数,其中为常数.

2、幂函数性质归纳.

(1)所有的幂函数在(0,+∞)都有定义并且图象都过点(1,1);

(2)时 ,幂函数的图象通过原点,并且在区间上是增函数.特别地,
当时,幂函数的图象下凸;当时,幂函数的 图象上凸;

(3)时,幂函数的图象在区间上是减函数.在第一象限内,当从右
边趋 向原点时,图象在轴右方无限地逼近轴正半轴,当趋于时,图
象在轴上方无限地逼近轴正半轴.

方程的根与函数的零点

1、函数零点的概念:对于函数,把使成立的实数叫做函数的零
点。

2、函 数零点的意义:函数的零点就是方程实数根,亦即函数的
图象与轴交点的横坐标。

即:方程有实数根函数的图象与轴有交点函数有零点.

3、函数零点的求法:

○1(代数法)求方程的实数根;

○2( 几何法)对于不能用求根公式的方程,可以将它与函数的图
象联系起来,并利用函数的性质找出零点.< br>
高一数学必修一知识点2

I.定义与定义表达式

一般地,自变量x和因变量y之间存在如下关系:



y=ax^2+bx+c

(a,b,c为常数,a≠0,且a决定函数的开口方向, a>0时,开
口方向向上,a<0时,开口方向向下,IaI还可以决定开口大小,
IaI越大 开口就越小,IaI越小开口就越大.)

则称y为x的二次函数。

二次函数表达式的右边通常为二次三项式。

II.二次函数的三种表达式

一般式:y=ax^2+bx+c(a,b,c为常数,a≠0)

顶点式:y=a(x-h)^2+k[抛物线的顶点P(h,k)]

交点式:y=a (x-x?)(x-x?)[仅限于与x轴有交点A(x?,0)和
B(x?,0)的抛物线]

注:在3种形式的互相转化中,有如下关系:

h=-b/2ak=(4ac-b^2 )/4ax?,x?=(-b±√b^2-4ac)/2a

III.二次函数的图像

在平面直角坐标系中作出二次函数y=x^2的图像,

可以看出,二次函数的图像是一条抛物线。

IV.抛物线的性质

1.抛物线是轴对称图形。对称轴为直线

x=-b/2a。

对称轴与抛物线的交点为抛物线的顶点P。

特别地,当b=0时,抛物线的对称轴是y轴(即直线x=0)

2.抛物线有一个顶点P,坐标为

P(-b/2a,(4ac-b^2)/4a)



当-b/2a=0时,P在y轴上;当Δ=b^2-4ac=0时,P在x轴上。

3.二次项系数a决定抛物线的开口方向和大小。

当a>0时,抛物线向上开口;当a<0时,抛物线向下开口。

|a|越大,则抛物线的开口越小。

4.一次项系数b和二次项系数a共同决定对称轴的位置。

当a与b同号时(即ab>0),对称轴在y轴左;

当a与b异号时(即ab<0),对称轴在y轴右。

5.常数项c决定抛物线与y轴交点。

抛物线与y轴交于(0,c)

6.抛物线与x轴交点个数

Δ=b^2-4ac>0时,抛物线与x轴有2个交点。

Δ=b^2-4ac=0时,抛物线与x轴有1个交点。

Δ=b^2-4ac<0时 ,抛物线与x轴没有交点。X的取值是虚数(x=-
b±√b^2-4ac的值的相反数,乘上虚数i, 整个式子除以2a)

V.二次函数与一元二次方程

特别地,二次函数(以下称函数)y=ax^2+bx+c,

当y=0时,二次函数为关于x的一元二次方程(以下称方程),

即ax^2+bx+c=0

此时,函数图像与x轴有无交点即方程有无实数根。

函数与x轴交点的横坐标即为方程的根。

高一数学必修一知识点3

1.并集

(1)并集的定义

-什么叫虚荣心


-泞淖


-校园交响曲


-520情话


-perth什么意思


-关于环保的作文题目


-basketball是什么意思


-怎样恢复刚刚删除的文件



本文更新与2020-12-01 13:00,由作者提供,不代表本网站立场,转载请注明出处:https://www.bjmy2z.cn/gaokao/475974.html

高一数学必修一知识点梳理5篇精选分享的相关文章

  • 余华爱情经典语录,余华爱情句子

    余华的经典语录——余华《第七天》40、我不怕死,一点都不怕,只怕再也不能看见你——余华《第七天》4可是我再也没遇到一个像福贵这样令我难忘的人了,对自己的经历如此清楚,

    语文
  • 心情低落的图片压抑,心情低落的图片发朋友圈

    心情压抑的图片(心太累没人理解的说说带图片)1、有时候很想找个人倾诉一下,却又不知从何说起,最终是什么也不说,只想快点睡过去,告诉自己,明天就好了。有时候,突然会觉得

    语文
  • 经典古训100句图片大全,古训名言警句

    古代经典励志名言100句译:好的药物味苦但对治病有利;忠言劝诫的话听起来不顺耳却对人的行为有利。3良言一句三冬暖,恶语伤人六月寒。喷泉的高度不会超过它的源头;一个人的事

    语文
  • 关于青春奋斗的名人名言鲁迅,关于青年奋斗的名言鲁迅

    鲁迅名言名句大全励志1、世上本没有路,走的人多了自然便成了路。下面是我整理的鲁迅先生的名言名句大全,希望对你有所帮助!当生存时,还是将遭践踏,将遭删刈,直至于死亡而

    语文
  • 三国群英单机版手游礼包码,三国群英手机单机版攻略

    三国群英传7五神兽洞有什么用那是多一个武将技能。青龙飞升召唤出东方的守护兽,神兽之一的青龙。玄武怒流召唤出北方的守护兽,神兽之一的玄武。白虎傲啸召唤出西方的守护兽,

    语文
  • 不收费的情感挽回专家电话,情感挽回免费咨询

    免费的情感挽回机构(揭秘情感挽回机构骗局)1、牛牛(化名)向上海市公安局金山分局报案,称自己为了挽回与女友的感情,被一家名为“实花教育咨询”的情感咨询机构诈骗4万余元。

    语文