关键词不能为空

当前您在: 主页 > 英语 >

数据生命周期模型和概念

作者:高考题库网
来源:https://www.bjmy2z.cn/gaokao
2021-01-24 23:13
tags:

-

2021年1月24日发(作者:侦查)
CEOS Data Life Cycle Models and Concepts

01 Issue 1.0 September 2011































CEOS Data Life Cycle Models and Concepts

01 Issue 1.0 September 2011


Version 7.0



August 10, 2011


INTRODUCTION

This is a compilation of data lifecycle models and concepts assembled in part to fulfill
Committee on Earth Observation Satellites (CEOS) Working Group on Information Systems and
Services (WGISS) and the U.S. Geological Survey (USGS) Community for Data Integration
Data Management Best Practices needs. It is intended to be a living document, which will evolve
as new information is discovered.

CEOS Data Life Cycle Models and Concepts

01 Issue 1.0 September 2011

CONTENTS


1.

Digital Curation Centre (DCC) Lifecycle Model
2.

Ellyn Montgomery, USGS, Data Lifecycle Diagram
3.

FGDC Stages of the Geospatial Data Lifecycle pursuant to OMB Circular A

16
4.

University of Oxford Research Data Management Chart
5.

NOAA Environmental Data Life Cycle Functions
6.

Open Archival Information System (OAIS) Framework
7.

USGS Scientific Information Management Workshop Vocabulary
8.

Peter Fox Lifecycle Diagrams
9.

National Science Foundation
10.

NDIIPP Preserving Our Digital Heritage
11.

What Researchers Want
12.

EPA Project Life Cycle
13.

IWGDD’s Digital Data Life Cycle Model

14.

Scientific Data Management Plan Guidance
15.

Linear Data Life Cycle
16.

Generic Science Data Lifecycle
17.

Cassandra Ladino Hybrid Data Lifecycle Model
18.

Ray Obuch Data Management

A Lifecycle Approach
19.

USGS Data Management Plan Framework (DMPf)

Smith, Tessler, and McHale

20.

BLM Data Management Handbook

21.

ARL Joint Task Force on Library Support for E-Science

22.

U.S. Department of Health and Human Services Key Components

23.

ICPSR Preservation over the Data Life Cycle

24.

William Michener DataONE: Data Life Cycle Management

25.

IBM Aspects of Lifecycle Management - Research

26.

University of California San Diego Digital Curation Program

27.

University of Miami Scientific Data Lifecycle

28.

Managing Research Data Lifecycles through Context

29.

Purdue University Research Repository Collaborative Model

30.

Data Lifecycle Management at Dell

31.

John Faundeen & Ellyn Montgomery “Spins”

32.

DataTrain Model 1

33.

DataTrain Model 2

34.

Steve Tessler Data Management Cycles

35.

Peter Fox Full Life Cycle of Data

36.

Guide to Social Science Data Preparation and Archiving: Best Practice Throughout
the Data Life Cycle

37.

Steve Tessler Data and System Lifecycle Models

38.

University of Virginia Library

39.

Mario Valle

40.

Michigan State University Records Life Cycle Model
CEOS Data Life Cycle Models and Concepts

01 Issue 1.0 September 2011

41.

GeoMAPP Geoarchiving Process Lifecycle
42.

Jeff de La Beaujardiè
re's proposed Data Management Framework
43.

Sarah Demb Continuumm Model
44.

USGS Data Life Cycle Model Elements

CEOS Data Life Cycle Models and Concepts

01 Issue 1.0 September 2011

1.

THE DIGITAL CURATION CENTRE MODEL

The Digital Curation Centre is based in Great Britain. The URL for the information
below is /resources/curation-lifecycle-model

Our Curation Lifecycle Model provides a graphical, high-level overview of the stages
required for successful curation and preservation of data from initial conceptualisation or
receipt. You can use our model to plan activities within your organisation or consortium
to ensure that all of the necessary steps in the curation lifecycle are covered. It is
important to note that the model is an ideal. In reality, users of the model may enter at
any stage of the lifecycle depending on their current area of need. For instance, a digital
repository manager may engage with the model for this first time when considering
curation from the point of ingest. The repository manger may then work backwards
to refine the support they offer during the conceptualisation and creation processes to
improve data management and longer-term curation.


CEOS Data Life Cycle Models and Concepts

01 Issue 1.0 September 2011

Key elements of the DCC Curation Lifecycle Model Data

Data, any information in binary digital form, is at the centre of the Curation Lifecycle. This includes:

Digital Objects:
simple digital objects (discrete digital items such as text files, image files or sound files,
along with their related identifiers and metadata) or complex digital objects (discrete digital objects made
by combining a number of other digital objects, such as websites)

Databases:
structured collections of records or data stored in a computer system

Full Lifecycle Actions

Description and Representation Information

Assign administrative, descriptive, technical, structural and preservation metadata, using appropriate
standards, to ensure adequate description and control over the long-term. Collect and assign representation
information required to understand and render both the digital material and the associated metadata.

Preservation Planning

Plan for preservation throughout the curation lifecycle of digital material. This would include plans for
management and administration of all curation lifecycle actions.

Community Watch and Participation

Maintain a watch on appropriate community activities, and participate in the development of shared
standards, tools and suitable software.

Curate and Preserve

Be aware of, and undertake management and administrative actions planned to promote curation and
preservation throughout the curation lifecycle.

Sequential Actions

Conceptualise

Conceive and plan the creation of data, including capture method and storage options.

Create or Receive

Create data including administrative, descriptive, structural and technical metadata. Preservation metadata
may also be added at the time of creation.

Receive data, in accordance with documented collecting policies, from data creators, other archives,
repositories or data centres, and if required assign appropriate metadata.

Appraise and Select

Evaluate data and select for long- term curation and preservation. Adhere to documented guidance, policies
or legal requirements.

CEOS Data Life Cycle Models and Concepts

01 Issue 1.0 September 2011

Ingest

Transfer data to an archive, repository, data centre or other custodian. Adhere to documented guidance,
policies or legal requirements.

Preservation Action
Undertake actions to ensure long-term preservation and retention of the authoritative nature of data.
Preservation actions should ensure that data remains authentic, reliable and usable while maintaining its
integrity. Actions include data cleaning, validation, assigning preservation metadata, assigning
representation information and ensuring acceptable data structures or file formats.

Store

Store the data in a secure manner adhering to relevant standards.

Access, Use and Reuse

Ensure that data is accessible to both designated users and reusers, on a day-to-day basis. This may be in
the form of publicly available published information. Robust access controls and authentication procedures
may be applicable.

Transform

Create new data from the original, for example:
by migration into a different format, or
by creating a subset, by selection or query, to create newly derived results, perhaps for publication

Occasional Actions


Dispose

Dispose of data, which has not been selected for long-term curation and preservation in accordance with
documented policies, guidance or legal requirements.
Typically data may be transferred to another archive, repository, data centre or other custodian. In some
instances data is destroyed. The data's nature may, for legal reasons, necessitate secure destruction.

Reappraise

Return data which fails validation procedures for further appraisal and re-selection.

Migrate

Migrate data to a different format. This may be done to accord with the storage environment or to ensure
the data's immunity from hardware or software obsolescence.


CEOS Data Life Cycle Models and Concepts

01 Issue 1.0 September 2011

2. THE ELLYN MONTGOMERY, USGS, DATA LIFECYCLE DIAGRAM


Provided via email 18 November 2010.

Many of the diagrams out there have appealing elements, but I couldn't find one I really liked so sketched
something that's a combination of some of Ted Habermann's ideas and the material at:
/wiki//ADMIRAL_Data_Management_Plan_Template.

The ideas I tried to capture are:

1) it's a non-linear (and perhaps multi- threaded) process
2) multiple loops or phases (not restricted to the number drawn) that may overlap are needed
3) parts of the process are ongoing
4) there's a transition between data provider and data curator somewhere in the middle of the
progression this may vary between types of data and the eventual avenue for publication and distribution


CEOS Data Life Cycle Models and Concepts

01 Issue 1.0 September 2011

3
.
FGDC Stages of the Geospatial Data Lifecycle pursuant to OMB Circular A

16

Figure A1 below shows the FGDC lifecycle model, which advocates compliance of Office of Management
and Budget (OMB) Circular A-
16, “Coordination of Geographic Information and Related Spatial Data
Activities.” This framework encourages “timely and high
-quality geospatial data to support business
processes and operations; stronger partnerships across all levels of government and, when appropriate,
the private sector, to increase cost efficiency and return on investment; and improve strategies for
completing and maintaining nationally significant themes and datasets associated with OMB Circular A-16
to enhance service to citizens” (FGDC, 2010).




―Harnessing the Power of Digital Data: Taking the Next Step.

Scientific Data Management (SDM) for
Government Agencies: Report from the Workshop to Improve SDM. Workshop held June 29 - July 1, 2010,
Washington D.C. March 2011. Report No. CENDI/2011-1. Co-sponsored by the Environmental Protection Agency
(EPA), CENDI (The Federal STI Managers Group), and the Interagency Working Group on Digital Data (IWGDD)



CEOS Data Life Cycle Models and Concepts

01 Issue 1.0 September 2011

4. University of Oxford Research Data Management Chart

Found at /rdm/


Research Data Management

Good practice in data management is one of the core areas of research integrity, or the responsible conduct
of research. The following diagram provides further insight to some of the stages involved in research data management, and the
facilities and services available to help, both within the University and from external providers.



CEOS Data Life Cycle Models and Concepts

01 Issue 1.0 September 2011

5. NOAA Environmental Data Life Cycle Functions

Provided by Peter Steurer, NOAA, National Climatic Data Center, 2009.






CEOS Data Life Cycle Models and Concepts

01 Issue 1.0 September 2011

6. Open Archival Information System (OAIS) Framework

Introduction by Larry Baume from NARA. OAIS Reference model found at
/publications/archive/


OAIS Framework for
Developing a “Community of

Practice”


Larry Baume
NARA
October 27, 2009

OAIS Framework

? ISO Standard 14721:2002

? Conceptual framework describing
the environment, functional components, and
information objects within a system responsible for the long- term preservation
of digital materials
? Lifecycle model for data archives

? Widely
recognized in scientific, data management, and archival communities
? Integrates with
other ISO standards such at ISO 9000, ISO 15489

OAIS Framework




TRAC Report

? Trusted Rep
ository Audit and Certification methodology, 2007
CEOS Data Life Cycle Models and Concepts

01 Issue 1.0 September 2011

? OCLC, DPC, and NARA

? Restructu
red and adopted in Oct. 2009 as CCSDS Recommended Practice
(Red Book)
? Nests with OAIS Framework

? Widely rec
ognized in archival and library communities

CCSDS Red Book

? Audit
and certification criteria for
measuring “trustworthiness” of a digital

repository
? Lists
criteria and evidence needed to support the criteria
? Assumes an external certification process
which does not exist now
? Can be used as a self
-assessment guide

DRAMBORA

? “Digital Reposi
tory Audit Methodology Based on
Risk Analysis,” Feb. 2007

?
Digital Conservation Centre (DCC) and DigitalPreservationEurope (DPE),
? Propo
ses a methodological framework, guidelines and audit tools to support the
identification, assessment and management of risks in a digital repository
? Self
-assessment checklist, no certification at this time
? Integrates with OAIS framework


Challenges

? No integrated “community of practice”
for promoting trusted repositories
? CCDS
C Red Book and DRAMBORA are not widely known in the scientific, IT,
and data management communities
? They do not add
ress design of data systems and data management, e.g.
systems planning, funding, system requirements
? No Case Studies and Lessons Learned


CEOS Data Life Cycle Models and Concepts

01 Issue 1.0 September 2011

7. USGS Scientific Information Management Workshop Vocabulary

From Tom Gunther and Dave Govoni, USGS, 2006.


A Vocabulary for Scientific Information and Knowledge Management

Producer perspective



Consumer perspective



Source: Govoni, D.L. and T.M. Gunther, 2006. Scientific Information Management at the U.S. Geological
CEOS Data Life Cycle Models and Concepts

01 Issue 1.0 September 2011

Survey: Issues, Challenges, and a Collaborative Approach to Identifying and Applying Solutions
(Abstract). Geoinformatics 2006

Abstracts. Scientific Investigations Report 2006-5201, p. 19-20. U.S.
Geological Survey, Reston, Virginia.

CEOS Data Life Cycle Models and Concepts

01 Issue 1.0 September 2011

8. Peter Fox Lifecycle Diagrams


Presented by Peter Fox, Rennsselaer Polytechnic Institute at USGS CDI August 13, 2010
Denver, CO.









CEOS Data Life Cycle Models and Concepts

01 Issue 1.0 September 2011




CEOS Data Life Cycle Models and Concepts

01 Issue 1.0 September 2011

9.
National Science Foundation

Provided by Vivian Hutchinson (USGS) via email on 16 November 2010.

This is the National Science Foundation's data lifecyle: (taken from the program
solicitations for NSF DataNet projects)...How does it compare to what we are
addressing?

* Data deposition/acquisition/ingest - Provide systems, tools, procedures, and capacity
for efficient data and metadata deposition by authors and others; acquisition from
appropriate sources; and ingest in accordance with well-developed and transparent
policies and procedures that are responsive to community needs, maximize the potential
for re-use, and ensure preservation and access over a decades timeline.

* Data curation and metadata management - Provide for appropriate data curation and
indexing, including metadata deposition, acquisition and/or entry and continuing
metadata management for use in search, discovery, analysis, provenance and attribution,
and integration. Develop and maintain transparent policies and procedures for ongoing
collection management, including deaccessioning of data as appropriate.

* Data protection - Provide systems, tools, policies, and procedures for protecting
legitimate privacy, confidentiality, intellectual property, or other security needs as
appropriate to the data type and use.

* Data discovery, access, use, and dissemination - Provide systems, tools, procedures,
and capacity for discovery of data by specialist and non-specialist users, access to data
through both graphical and machine interfaces, and dissemination of data in response to
users needs.

* Data interoperability, standards, and integration - Promote the efficient use and
continuing evolution of existing standards (e.g. ontologies, semantic frameworks, and
knowledge representation strategies). Support community- based efforts to develop new
standards and merge or adapt existing standards. Provide systems, tools, procedures, and
capacity to enhance data interoperability and integration.

* Data evaluation, analysis, and visualization - Provide systems, tools, procedures, and
capacity to enable data driven visual understanding and integration and to enhance the
ability of diverse users to evaluate, analyze, and visualize data.



CEOS Data Life Cycle Models and Concepts

01 Issue 1.0 September 2011

10.
NDIIPP Preserving Our Digital Heritage


Source: National Digital Information Infrastructure & Preservation Program, Preserving
Our Digital Heritage: The National Digital Information Infrastructure and Preservation
Program 2010 Report, A Collaborative Initiative of the Library of Congress.




CEOS Data Life Cycle Models and Concepts

01 Issue 1.0 September 2011

11.
What Researchers Want

A literature study of
researchers’ requirements with respect to storage and access to
research data.

SURFfoundation
PO Box 2290
NL-3500 GG Utrecht

Author Martin Feijen

February 2011

Creative Commons Attribution 3.0 Netherlands License.





CEOS Data Life Cycle Models and Concepts

01 Issue 1.0 September 2011

12.
EPA Project Life Cycle

U.S. Environmental Protection Agency



The project lifecycle presented in figure 1.4-1 is a generic model of how science is conducted at its most
elemental level. Questions are posed, and projects are planned and resourced to answer those questions.
Previous results, data, and publications are reviewed for relevance. Experiments are designed and
conducted, and results analyzed and published. The cycle repeats, incorporating lessons learned from
previous iterations. Because data often have utility beyond individual projects, the data lifecycle (also
presented in figure 1.4-2) [next page], overlaps but differs from the project lifecycle.

―Harnessing the Power of Digital Data: Taking the Next Step.

Scientific Data Management (SDM) for
Government Agencies: Report from the Workshop to Improve SDM. Workshop held June 29 - July 1, 2010,
Washington D.C. March 2011. Report No. CENDI/2011-1. Co-sponsored by the Environmental Protection Agency
(EPA), CENDI (The Federal STI Managers Group), and the Interagency Working Group on Digital Data (IWGDD)


CEOS Data Life Cycle Models and Concepts

01 Issue 1.0 September 2011

13.
IWGDD’s Digital Data Life Cycle Model


Interagency Working Group on Digital Data of the Office of Science and Technology Policy
[U.S.]


―Harnessing the Power of Digital Data: Taking the Next Step.

Scientific Data Management (SDM) for
Government Agencies: Report from the Workshop to Improve SDM. Workshop held June 29 - July 1, 2010,
Washington D.C. March 2011. Report No. CENDI/2011-1. Co-sponsored by the Environmental Protection Agency
(EPA), CENDI (The Federal STI Managers Group), and the Interagency Working Group on Digital Data (IWGDD)



CEOS Data Life Cycle Models and Concepts

01 Issue 1.0 September 2011

14.
Scientific Data Management Plan Guidance

2.3 Scientific Data should be Managed According to an SDM Plan that
Covers the Full Data Lifecycle

The
Harnessing
guiding principle
—―longer preservation, access, and interoperability require
management of the full data lifecycle

—was clearly supported by the planning team‘s observation that
both data and project lifecycles are critical. Policy should require that data management planning be well
integrated into project planning, as noted in Section 1.4.1. The planning should begin at the inception of
the project/effort and should be an integral part of project planning, budgeting, and management. The
survey and workshop confirmed this need. In fact, 90% of survey participants declared that after a project
begins, a data management plan should be ―an ongoing, open
-ended, living document that follows the
data through its lifecycle.

Discussions also strongly supported the idea that a data management plan is a
living document. It is this document and its metadata that connect and document the data lifecycle with
the project lifecycle. Survey responses indicate that project data and metadata are both important for
context to allow effective secondary use of data by operational and policy users.

Federal science agencies are heterogeneous with respect to their scientific data policy requirements and
approaches. Data producers often have little incentive to expend resources on extensive data planning that
will primarily benefit secondary users. Research agencies vary from regulatory agencies in this regard.
Regulatory agencies use their data to develop regulations, so they must prepare the data for a known
secondary use. Legal and scientific defensibility must also be addressed in agency policy.

As agencies increase data management requirements, they must also help create or support the
infrastructure needed to allow project managers to fulfill policy requirements. This will ultimately change
the entire agency culture and practice regarding scientific data management. For example, if an agency
provides an institutional repository to its COPs either directly or through supporting initiatives, then
multiple projects could incorporate the repository into their plans for storage and archiving. This will help
the project manager to define this part of the lifecycle and will help to realize economies of scale and
coordination.

As the government looks to its plans for open government through the development of tools such as
, it is important to integrate these tools into the overall federal architecture and project lifecycle.
Federal objectives for transparency and open access to data can only be met sustainably and economically
if they are (1) integrated into the business process of science and (2) supported by an interoperable federal
architecture. SDM policies and planning are needed to enable this environment to exist.

At the bottom line, agency policy should acknowledge the importance of the project lifecycle context in
the data management lifecycle to facilitate data reuse.

―Harnessing the Power of Digital Data: Taking the Next Step.

Scientific Data Management (SDM) for
Government Agencies: Report from the Workshop to Improve SDM. Workshop held June 29 - July 1, 2010,
Washington D.C. March 2011. Report No. CENDI/2011-1. Co-sponsored by the Environmental Protection Agency
(EPA), CENDI (The Federal STI Managers Group), and the Interagency Working Group on Digital Data (IWGDD)

CEOS Data Life Cycle Models and Concepts

01 Issue 1.0 September 2011

15. Linear Data Life Cycle


A linear lifecycle model was suggested as being easier to work with in an operational environment. Figure
A2 shows a linear lifecycle adapted for use. This model was developed by the Environmental Protection
Agency (EPA) Office of Research and Development (ORD). The figure highlights the importance of
governance and communications as key aspects of implementing a lifecycle approach. Element
processes are defined below.




1. Plan:
Data are assessed and inventoried by open government governance bodies and
segment architects, and high-value sets are identified for sharing with the public through open
government initiatives such as .

2. Collect:
Data are collected by the source entity, source providers push data to federal source
systems, which provide data in a specified file format, and then deltas are managed by source record
tags in the specified file format.

3. Integrate and Transform:
The agencies integrate the raw data that were collected and add
value through various means, including input from individual program offices and scientific research
projects. The data are transformed from their initial state and stored in a value-added state, such as
through web services.

4. Publish:
Information resources are prepared for publishing to one or more of the many
audiences, including congress, the public, tribal governments, academia, research and scientific partners
in non-governmental organizations, other federal agencies, and other stakeholders (e.g., industry,
communities, researchers, the media, and audiences).

5. Discovery:
Agencies manage search and retrieval for various internal and external audiences.
Discovery will become more complex as secondary audiences are supported through open government
initiatives. Secondary audiences need to be informed of the meaning of data as understood by primary
audiences, who are more familiar with the environmental legal landscape.

6. Governance and Stewardship:
This element of the process defines governance bodies and
agendas, and it gains acceptance of data steward roles. Governance and stewardship manage the
publishing process for ongoing change control, and they maintain versions of the truth across common
data.
CEOS Data Life Cycle Models and Concepts

01 Issue 1.0 September 2011


7. Communications and Outreach:
This aspect provides for inventory of high value data sets,
enables technologies and controlled vocabularies for re-use, allows for management of information
exchange agreements, and encourage re-use through communications
.
―Harnessing the Power of Digital Data: Taking the Next Step.

Scientific Data Management (SDM) for
Government Agencies: Report from the Workshop to Improve SDM. Workshop held June 29 - July 1, 2010,
Washington D.C. March 2011. Report No. CENDI/2011-1. Co-sponsored by the Environmental Protection Agency
(EPA), CENDI (The Federal STI Managers Group), and the Interagency Working Group on Digital Data (IWGDD)



CEOS Data Life Cycle Models and Concepts

01 Issue 1.0 September 2011

16.
Generic Science Data Lifecycle



The science data lifecycle is given in Figure C2. The data outputs of a science project are freestanding
artifacts that must be maintained intact, secure, and accessible for future uses, foreseen and unforeseen,
but archived or disposed of when no longer useful. Within this linear construct, many data maintenance
feedback loops may be interpreted through this simplified model. Programs will plan next set of data
acquisitions based on discoveries from the current one and would use lessons learned from data
management to plan the evolution of data system for future datasets.

―Harnessing the Power of Digital Data: Taking the Next Step.

Scientific Data Management (SDM) for
Government Agencies: Report from the Workshop to Improve SDM. Workshop held June 29 - July 1, 2010,
Washington D.C. March 2011. Report No. CENDI/2011-1. Co-sponsored by the Environmental Protection Agency
(EPA), CENDI (The Federal STI Managers Group), and the Interagency Working Group on Digital Data (IWGDD)


CEOS Data Life Cycle Models and Concepts

01 Issue 1.0 September 2011

17.
Cassandra Ladino Hybrid Data Lifecycle Model





CEOS Data Life Cycle Models and Concepts

01 Issue 1.0 September 2011

18.
Ray Obuch Data Management

A Lifecycle Approach
USGS Information Management Workshop (May 1997)


What is The Life Cycle Approach to Data Management?



The Data Management Life Cycle Phases

1)
2)
3)
4)
5)
6)

Creation
Dissemination
Access

Use

Preservation

Evaluation

Phase 1

Creation
Production Agency Perspective

Create Government information in a variety of useful formats and in
consultation with other program partners.

Comply with 17 USC 105

17 USC Sec. 105. - Subject matter of copyright: United States Government works

Copyright protection under this title is not available for any work of the United
States Government, but the United States Government is not precluded from
receiving and holding copyrights transferred to it by assignment, bequest, or
otherwise

Phase 1

Creation
Central Operational Authority Perspective


Facilitate communication between Program partners in the design and
development of information products and services

Phase 1

Creation
Participating Libraries Perspective

CEOS Data Life Cycle Models and Concepts

01 Issue 1.0 September 2011



Phase 1

Creation
End User Perspective

As primary clientele, cooperate with Program partners in the design and
development of information products and services.
Phase 2

Dissemination
Producing Government Agencies Perspective

Provide government information products and services through multi
faceted dissemination programs at no cost to the public through
participating libraries.

Phase 2

Dissemination
Central Operational Authority Perspective

Distribute or coordinate the distribution of products and services in a timely
fashion.

Provide a variety of dissemination options and channels.

Phase 2

Dissemination
Participating Libraries Perspective



Work with other program partners to ensure the timely dissemination of
government information through a variety of dissemination programs
.

Phase 2

Dissemination
End User Perspective

Work with other Program partners to require that government information is
being disseminated through a variety of channels and that it is appropriate to
their needs.

Phase 3

As intermediaries, cooperate with Program partners in the design and
development of information products and services and facilitate user
feedback.


CEOS Data Life Cycle Models and Concepts

01 Issue 1.0 September 2011

Access
Producing Government Agencies Perspective

Release products and services in a timely and useable fashion.
Notify Program partners through the Central Authority about existing,
planned, changing, or discontinued products and services

Develop GILS and other locator systems to help identify government
information products and services.

Phase 3

Access
Central Operational Authority Perspective

Identify, obtain, or provide access to government information products and
services regardless of format.
Develop catalogs, pathfinders, and other locator systems to identify
government information products and services.
Establish standards and enforce regulations that ensure Program
compliance
In sales program, charge no more than marginal cost of dissemination.

Phase 3

Access
Participating Libraries Perspective

Provide timely access to government information at not fee to the user
regardless of their geographic location or ability to pay.
Share resources and expertise through interlibrary loan, document delivery,
reference assistance, and electronic networks.
Supplement distributed Program products with commercially produced
indexes, publications and equipment necessary to meet
public needs.

Phase 3

Access
End User Perspective

Own publicly supported government information products and services and
therefore must always have Guaranteed access to them.
Phase 4

Use







CEOS Data Life Cycle Models and Concepts

01 Issue 1.0 September 2011

Producing Government Agencies Perspective

Provide documentation, software, technical support and user training.

Phase 4

Use
Central Operational Authority Perspective

Distribute/coordinate access to government information to program partners
a no charge.

Phase 4

Use
Participating Libraries Perspective

As intermediaries, assist users in the identification, Location, use and
acquisition of government information Regardless of format.

Phase 4

Use
End User Perspective

Government information products and services must Always be provided in
usable format to the public.

Phase 5

Preservation
Producing Government Agencies Perspective

Cooperate with other Program participants to ensure That all information
products are archived, accessible, accurate, and compatible with current and
future technologies.

Phase 5

Preservation
Central Operational Authority Perspective

Ensure that all information products are archived, accessible, accurate, and
compatible with current and future technologies.

Phase 5

Preservation
Participating Libraries Perspective

CEOS Data Life Cycle Models and Concepts

01 Issue 1.0 September 2011

Cooperate with other Program participants to ensure That all information
products are archived, accessible, accurate and compatible with current and
future technologies.

Phase 5

Preservation
End User Perspective

Must always have access to government information in well-preserved,
accessible, and accurate condition.

Phase 6

Evaluation
Producing Government Agencies Perspective

Solicit and consider input from Program partners in the evaluation of
government information products and services.

Phase 6

Evaluation
Central Operational Authority Perspective

Provide avenues for the evaluation of the Program Including advisory
councils, Federal agencies, libraries, and the general public.

Phase 6

Evaluation
Participating Libraries Perspective

Work with other Program partners to determine the success of the Program
through formal and informal evaluations.

Phase 6

Evaluation
End User Perspective

Establish criteria and provide through formal and informal evaluation the
necessary feedback to determine the success of the Program.


Conclusions

Adopting the “life cycle” approach and evaluating work flow and data flow
throughout the organization will:

CEOS Data Life Cycle Models and Concepts

01 Issue 1.0 September 2011


?
Facilitate communication and planning

?
Improve current data management

?
Help meet the demand for digital products & data

?
Enhance return on investment by:

?
Accomplishing tasks on time and within budget

?
Re-utilization of data and information


CEOS Data Life Cycle Models and Concepts

01 Issue 1.0 September 2011

19. USGS Data Management Plan Framework (DMPf)

Smith, Tessler, and McHale,
2010 [Climate Effects Network (CEN) and Alaska Science Center (ASC)]

The DMPf recognizes three distinct phases in research-based data management:

(1) Research Data Management

(2) Preservation Data Management

(3) Data Exposure and Delivery

Each of these phases involve data management activities but they have different overall
objectives, utilize different people, roles, and skills, and usually imply different funding,
physical infrastructure, and technical requirements and support functions. All share the
goal of providing for the quality, provenance, and contextual integrity of the data, yet there
is a glaring need for some level of coordination, such as research requirements that
facilitate preservation, and preservation metadata and formats that facilitate dataset
cataloging and delivery. The missing connection simply highlights our current lack of
enterprise-level data management standards (either DOI or USGS) and an overall data-
integration strategy.

In particular it is important to recognize that the Research Data Management Cycle is
separate from the Preservation Data Management Cycle, although the two are often
discussed simultaneously, and often place an unacceptable ‘data management’ burden on
the research team when they are not preservation specialists. Data- sharing through
Exposure and Delivery activities after the conclusion of the active research phase is often
viewed as an ‘end point’ separate from the others, yet the best data source for delivery to
users will be obtained from those well-preserved and documented data stores
(preservation archives) that resulted from well-documented data developed during the
active research phase. These pieces of a full DMPf are separate and interrelated, but an
effective data management strategy requires that they be interdependent as well.

Many opportunities for confusion, conflict, and working at cross-purposes in data
management activities can occur when the separate nature of the three DMPf phases
CEOS Data Life Cycle Models and Concepts

01 Issue 1.0 September 2011

are not recognized and acknowledged.

CEOS Data Life Cycle Models and Concepts

01 Issue 1.0 September 2011

20. BLM Data Management Handbook (and related materials)

?

The Data Life Cycle is designed to provide a framework for data management.
?

That framework is intended to allow for management of the data independent of the
system or application that it resides in.
?

The Data Life Cycle has been intentionally drawn to be ‘non
-
linear’.

?

While there is a logical pattern to the life cycle, where necessary, the user may move in-
between stages as needed.
?

It is also important to note that QA/QC is located in the center where it can touch on all
stages of the life cycle.


All the questions of documentation, storage, quality assurance, and ownership then need to be answered
for each stage of the data life cycle, starting with the recognition of a need, and ending with archiving or
updating the information.
QA/QC involved with each stage are:

CEOS Data Life Cycle Models and Concepts

01 Issue 1.0 September 2011

?

?

?

?

?

?

Plan
: Decide on the quality level, method for measuring quality and how often the quality should be
evaluated.
Acquire
: Establish the data acquisition acceptance criteria and the acceptance testing process.
Maintain
: Conduct on-going data improvement.
Access
: Review and confirm access permissions.
Evaluate
: Evaluate quality control procedures, acceptable quality levels, and quality control results.
Archive
: Ensure metadata file is current and is archived with the actual data.
CEOS Data Life Cycle Models and Concepts

01 Issue 1.0 September 2011

21.

ARL Joint Task Force on Library Support for E-Science

Final Report and Recommendations to the Scholarly Communication Steering Committee,
the Public Policies Affecting Research Libraries Steering Committee, and
the Research, Teaching, and Learning Steering Committee

(/bm~doc/ARL_EScience_)


From the perspective of the life cycle of research data, preservation occurs through the
stages of data production and the creation of research outputs represented on the bottom
row. Long-term preservation in this model consists of the practices followed in caring for
the data, which is represented by the box on the right side of the figure. Data curation is
characterized on the top row by the stages of data discovery and data repurposing, which
make use of the preserved data. The activities of these two functions bring new value to the
collection through analyses of the metadata, which display aspects of the collection in new
light, and the creation of new data from the existing data collection.


The “KT Cycle” in the diagram represents the processes of knowledge transfer. This life
cycle diagram comes from Charles Humphrey, “E
-
Science and the Life Cycle of Research”
(2006) available online at /~humphrey/lifecycle-
.







CEOS Data Life Cycle Models and Concepts

01 Issue 1.0 September 2011

22. U.S. Department of Health and Human Services Key Components




Presented by Jose-Marie Griffiths, Bryant University, at the National Science Foundation
Research Data Lifecycle Management Workshop Princeton, NJ July 18-20, 2011.

-


-


-


-


-


-


-


-



本文更新与2021-01-24 23:13,由作者提供,不代表本网站立场,转载请注明出处:https://www.bjmy2z.cn/gaokao/562923.html

数据生命周期模型和概念的相关文章