-
《数据科学》硕士专业设置
俞梦怡
14723396
专业(方向
)
名称:
Data Science
学位名称:
professional Master of Information and
Data Science (MIDS)
信息和数据科学专业硕士
级别:
master
硕士
所属院系:
The UC Berkeley School
of Information (I school)
信息学院
所属学校:
加州大学伯克利分校
网址:
/
专业介绍:
Designed by I School
faculty, our curriculum is multidisciplinary. You
will
bring together a range of methods
to define a research question; to gather,
store,
retrieve,
and
analyze
data;
to
interpret
results;
and
to
convey
findings effectively.
Using the latest tools and practices, you will
identify
patterns in and gain insights
from complex data sets.
由信息学院的教师设计,
课程是多学
科的。
你将使用一系列方法
来定义一个研究问题:去收集、存储
、检索和分析数据,去解释结果
并有效地传达发现。
采用最新的
工具和实践,
你会识别模式,
并从复
杂
的数据集中获得见解。
专业培养目标:
train leaders in the
ever-evolving field of data science
培养在数据科学领域的领导人
专业培养方案:
The program focuses
on problem solving, preparing you to creatively
apply methods of data collection,
analysis, and presentation to solve
the
world’s most challenging problems.
侧重于问题解决,
帮助你准备创造性
地运用数据的收集、
分
析和图像的方法来解决世界上最具挑战性
的问题。
学生背景要求:
1.
A bachelor’s
degree
学士学位
2.
Test scores
考试成绩(
GRE/GMAT/TO
EFL
)
3. A high level of
quantitative ability
高层次的定量能力
4. A problem-
solving mindset
解决问题的思维方式
5.
A working knowledge of fundamental concepts
基本概念的应用知识
6. The ability
to communicate effectively
有效的沟通能力
7. Programming
proficiency
编程能力
学分:
27
学分(九门课)
完成时间:
5
terms
,
20 months
五个学期,
20
个月
授课方式:
The UC Berkeley School
of Information’s Mas
ter of Information
and Data
Science (MIDS) is a web-based
program featuring immersive coursework
and
live,
online
classes
you
can
attend
from
anywhere
in
the
world.
Delivered
on
a
state-of-
the-art
learning
platform,
datascience@berkeley
facilitates
collaboration
and
discussion
to
help
you
build
a
professional
network of faculty and peers from the
start.
Students
can access
all
datascience@berkeley
content 24 hours a day, 7
days a week.
加州大学伯克利分校信息学院的信
息与数据科学硕士(
MIDS
)
是一个
基于网络的项目,这是具有身临其境的课程和直播,你可以在
世界任何地方参加网上课程
。在国家最先进的学习平台上进行传送,
伯克利分校的数据科学有助于协作和讨论,
p>
以帮助学生从一开始就建
立一个与教师和同行一起的专业网络。
p>
学生可以一周七天,每天
24
小时访问伯克利分校所有数据科学
的内容。
课程架构
/
课程体系:
Below
is
a
sample
course
schedule
and
the
expected
path
through
the
degree
program.
Students
who
are
interested
in
taking the program on an accelerated
basis can complete their
coursework in
3 or 4 terms with approval from the School by
taking up to 3 courses in one or more
terms.
下面是
一个示例课程安排,
以及通过学位课程的预期路
径。有兴趣在加
速基础上参加该项目的学生能够在
3
或
4
学期完成他们的课程,
这需要获得学院批准其在一个或多个<
/p>
学期内完成
3
门课程。
< br>
每门课程简介:
1.
Research
Design and Application for Data and Analysis
数据和分析研究设计与应用
技能:
Research design /
Question formulation
/
Data and decision making
/
Understanding cognitive bias
/
Data for persuasion and action
/
Integrating data and domain knowledge
/
Storytelling with data
研究设
计
/
问题制定
/
数据和决策
/
了解认知偏差
/
数据进行劝说和行动
/
数据集成和领域知识
/
用数据讲故事
课程简介:
This
course
introduces
students
to
the
burgeoning
data
sciences
landscape,
with
a
particular
focus
on
learning
how
to
apply
data
science techniques to uncover, enrich,
and answer questions facing
industries
today.
After
an
introduction
to
data
sciences
and
an
overview
of
the
program,
students
will
explore
how
organizations
make
decisions
and
the
emerging
role
of
big
data
in
guiding
both
tactical and strategic decisions.
Lectures, readings, discussions, and
assignments will teach how to apply
disciplined, creative methods to
ask
better
questions,
gather
data,
interpret
results,
and
convey
findings to various audiences in ways
that change minds and change
behaviors.
The
emphasis
throughout
is
on
making
practical
contributions
to
real
decisions
that
organizations
will
and
should
make.
Industries
and
domains
that
we
will
explore
include
sports
management,
finance,
energy,
journalism,
intelligence,
health
care,
and media
entertainment.
本课程
向学生介绍了新兴的数据科学的情况,
尤其侧重于学
习如何运用
数据的科学技术来发现、
丰富并回答如今所面临的行
业问题。<
/p>
在介绍了数据科学和项目的概况后,
学生将探讨企业如
何做出决策和大数据在指导战术和战略决策中扮演的新兴角色。
讲座、
p>
阅读、
讨论、
作业会教学生如何运用学科和
创造性的方法
来提出更好的问题,
收集数据、
< br>解释结果并向大量听众传达调查
结果可以改变思想和行为方式。
< br>整体的重点是为组织提供切实有
效的决策。
我们将探讨的
行业和领域包括体育管理,
金融,
能源,
新闻,情报,医疗保健和媒体娱乐。
2.
Exploring and Analyzing Data
探索和分析数据
技能:
Research
design
/
Statistical analysis
研究设计
/
统计分析
工具:
R
课程简介:
The goal of this course
is to provide students with an introduction to
many different types of quantitative
research methods and statistical
techniques for analyzing data. We begin
with a focus on measurement,
inferential
statistics,
and
causal
inference.
Then,
we
will
explore
a
range
of
statistical
techniques
and
methods
using
the
open-source
statistics
language,
R.
We
will
use
many
different
statistics
and
techniques for analyzing
and viewing data, with a focus on applying
this
knowledge
to
real-world
data
problems.
Topics
in
quantitative
techniques
include:
descriptive
and
inferential
statistics,
sampling,
experimental
design,
parametric
and
non-parametric
tests
of
difference, ordinary least squares
regression, and logistic regression.
p>
本课程的目的是为学生提供介绍许多不同类型的定量研究方
法和分析
数据的统计技术。首先侧重于测量、统计推断和因果推
断。
然后
,
将探讨一系列使用开源统计语言
R
的
统计技术和方法。
我们将使用许多不同的统计和技术来分析和查看数据,重点是将
这一知识用于解决现实世界的数据问题。定量技术主题包括:描
述和统
计推断,
取样,
实验设计,
参数化和差
异性的非参数检验,
普通最小二乘回归和回归。
3. Storing and Retrieving
Data
存储和检索数据
技能:
Data acquisition/Data
cleaning and normalization/Building data bases
/
Data classification and indexing
/
Data warehousing
数据采
集
/
数据清理和规范化
/
建筑数据库
/
数据分类和索引
/
数据仓库
工具:
Python / Relational
databases / Hadoop / Map reduce/ Spark/
Cloud Computing (AWS)
课程简介:
This course prepares
students to deal with large-scale collections of
data
as
objects
to
be
stored,
searched
over,
selected,
and
transformed
for
use. We examine both the
background theory and practical application
of
information
retrieval,
database
design
and
management,
data
extraction,
transformation
and
loading
for
data
warehouses,
and
operational
applications.
We
will
examine
traditional
methods
of
information
retrieval
and
database
management
as
well
as
new
approaches
that
use
massively
parallel
computation
(MapReduce/Hadoop).
Through
readings,
discussion,
and
hands-on
experimentation,
students
will
be
prepared
to
discuss,
plan,
and
implement
storage,
search
and
retrieval
systems
for
large-scale
structured
and
unstructured
information
systems
using
a
variety
of
software
tools.
They
will
also
be
able
to
evaluate
large-scale
information
storage and retrieval systems in terms of both
efficiency
and effectiveness in
providing timely, accurate, and reliable access to
needed information.
-
-
-
-
-
-
-
-
-
上一篇:酒店礼宾实习周记20篇
下一篇:周记作文之酒店客房实习周记20篇