关键词不能为空

当前您在: 大学查询网 > 大学 >

自强大学哈尔滨工业大学深圳 模式识别 2017 考试重要知识点

作者:高考题库网
来源:https://bjmy2z.cn/daxue
2020-12-10 22:57
tags:

-

2020年12月10日发(作者:吴怀)




?


(


?


i


|


?


j


)

be the loss incurred for taking action


?


i


when the state of nature is


?


j.


action


?


i


assign the sample into any class-



Conditional

risk


R


(


?


i


|


x


)

?

< br>j


?


c


?


(


?


i


|


?


j


)


P


(


?


j


?


j


?

1


|


x


)


for i = 1,…,a


Select the action

?


i


for which

R(


?


i


| x)

is minimum


R is minimum and R in this case is called the Bayes risk = best reasonable result that can be achieved!




?


ij


:loss incurred for deciding


?


i


when the true state of nature is


?


j




g


i


(x) = - R(


?


i


| x)


max. discriminant corresponds to min. risk


g


i


(x) = P(


?


i


| x)


max. discrimination corresponds to max. posterior


g


i


(x)


?


p(x |


?


i


) P(


?


i


)

g


i


(x) = ln p(x |


?


i


) + ln P(


?


i


)



问题由估计似然概率变为估计正态分布的参数问题


极大似然估计和贝叶斯估计结果接近相同,但方法概念不同



Please

present

the

basic

ideas

of

the

maximum

likelihood

estimation

method

and


Bayesian estimation method. When do these two methods have similar results ?


请描述最大似然估计方法和贝叶斯估计方法的基本概念。

什么情况下两个方法 有


类似的结果?



I

Maximum-likelihood view the parameters as quantities whose values are fixed


but unknown. The best estimate of their value is defined to be the one that maximizes


the probability of obtaining the samples actually observed.


II

Bayesian methods view the parameters as random variables having some known


prior

distribution.

Observation

of

the

samples

converts

this

to

a

posterior

density,


thereby revising our opinion about the true values of the parameters.


III

Under the condition that the number of the training samples approaches to the


infinity,

the

estimation

of

the

mean

obtained

using

Bayesian

estimation

method

is


almost identical to that obtained using the maximum likelihood estimation method.


















最小风险决策通常有一个更低的分类准确度相比于最小错误率贝叶斯决策。

然 而,


最小风险决策能够避免可能的高风险和损失。


贝叶斯参数估计方法。



Vectorize the samples.


Calculation of the mean of all training samples.


Calculation of the covariance matrix


Calculation of eigenvectors and eigenvalue of the covariance matrix. Build the feature


space.


Feature extraction of all samples. Calculation the feature value of every sample.



Calculation of the test sample feature value.


Calculation of the samples of training samples like the above step.


Find the nearest training sample as the result.







Exercises




1.

How to use the prior and likehood to calculate the posterior ?

What is the formula ?


怎么用先验概率和似然函数计算后验概率?公式是什么?



P(


?


j


| x) = p(x |


?


j


) . P(


?


j


) / p(x)




p

(

x

)

?




?


p

(

x

|


?


)

P

(


?


)


j

j


j

?

1


j

?

2


?


P

(


?


)

?

1


,


?


P

(


?


j

j< /p>


|

x

)

?

1




2.

What’s the difference in the ideas of the minimum error Bayesian decision and minimum risk


Bayesian

decision?

What’s

the

condition

that

makes

the

minimum

error

Bayesian

decision


identical to the minimum risk Bayesian decision?


最小误差贝叶斯决策和最小风险贝叶斯决策的概念 的差别是什么?什么情况下最小误


差贝叶斯决策和最小风险贝叶斯决策是一致的(相同的 )?


答:在两类问题中,若有


?


12


?


?


22


?


?


21


?


?


11


,即所谓对称损失函数的情况,则这时最小风< /p>


险的贝叶斯决策和最小误差的贝叶斯决策方法显然是一致的。



the

minimum

error Bayesian

decision:

to

minimize

the

classification

error

of the

Bayesian


decision.



the minimum risk Bayesian decision: to minimize the risk of the Bayesian decision.




if

R(


?


1


| x) < R(


?


2


| x)

action


?


1


: “decide


?


1


” is taken



R(


?


1


| x) =


?

?


11


P (


?


1


| x) +


?


12


P(


?


2


| x)



R(


?


2


| x) =


?

?


21


P (


?


1


| x) +


?


22


P(


?


2


| x)





3.

A person takes a lab test of nuclear radiation and the result is positive. The test returns a


correct positive result in 99% of the cases in which the nuclear radiation is actually present,


and a correct negative result in 95% of the cases in which the nuclear radiation is not present.


Furthermore,

3%

of

the

entire

population

are

radioaetively

eontaminated.

Is

this

person


eontaminated?


一人在某实验室做了一次核辐射检测,结果是阳性的。当核辐射真正存在时,检测结果

< p>
返回正确的阳性概率是

99%

;当核辐射不存在时,结果返回正确的 阴性的概率是

95%


而且,所有被测人群中有

3%

的人确实被辐射污染了。那么这个人被辐射污染了吗?


答:

被辐射污染概率


P

(


?


1


)< /p>

?

0.03



未被辐射污染概率< /p>


P

(


?


2


)

?

0.97



X

表示阳性,


X


表示阴性,则有如下结论:

< p>


P

(

X

|


?


1


)

?

0.99



P

(

X

|


?


2


)

?

0.95




P< /p>

(


?


1


|

X

)

?


P

(

X

< p>|


?


1


)

P

(


?


1


)

?


P

(

X

|


?


)

P

(


?

)


i

i


i

?

1


2


?


0.99

?

0.03


?

0.38



0.99

?

0.03

?

(1

< p>?

0.95)

?

0.97



P

(


?


2


|

X

)

?

1

?

P

(


?


1


|

X

)

?

0.62


根据贝叶斯决策规则有:


< p>
P

(


?


2


|

X

)

?

P

(

?


1


|

X

)



所以这个人未被辐射污染。



4.

Please

present

the

basic

ideas

of

the

maximum

likehood

estimation

method

and

Bayesian


estimation method. When do these two methods have similar results ?


请描述最大似然估计方法和贝叶斯估计方法的基本概念。

什么情况下两个 方法有类似的


结果?


?


用来估计


?


所属总体分布的某个真

答:

I.

设有一个样本集


?

要求我们找出估计量


?


实参数

< p>
?


使得带来的贝叶斯风险最小,这就是贝叶斯估计的概念。


(

另一种说法:

把待估计的参数看成是符合某种先验概率 分布的随机变量;

对样本进


行观测的过程,就是把先验概率密度转化为后 验概率密度,这样就利用样本的信息修正


了对参数的初始估计值

)


II.

最大似然估计法的思想很简单:

在已 经得到试验结果的情况下,

我们应该寻找使这


个结果出现的可能性最大的 那个


?


作为真


?


的估计。


III.

在训练样本数目接近无穷时,

使用贝叶斯估计方法获得的平均值估计几乎和使用最


大似然估计的方法获得的 平均值一样



题外话:

-


-


-


-


-


-


-


-



本文更新与2020-12-10 22:57,由作者提供,不代表本网站立场,转载请注明出处:https://bjmy2z.cn/daxue/27815.html

哈尔滨工业大学深圳 模式识别 2017 考试重要知识点的相关文章